2025
- Expansion dynamics of strongly correlated lattice bosons37
Julian Schwingel, Michael Turaev, Johann Kroha, and Sayak Ray - Measurement-induced dynamical quantum thermalization38
Marvin Lenk, Sayak Biswas, Anna Posazhennikova, Johann Kroha
Entropy 27, 636 (2025)
DOI: https://doi.org/10.3390/e2706063639
- Stabilizing open photon condensates by ghost-attractor dynamics40
Aya Abouelela, Michael Turaev, Roman Kramer, Moritz Janning, Michael Kajan, Sayak Ray, Johann KrohaEntropy 27, 636 (2025)
DOI: https://doi.org/10.1103/hcsq-dwcg41
- Discovery of a non-Hermitian phase transition in a bulk condensed-matter system42
Jingwen Li, Michael Turaev, Masakazu Matsubara, Kristin Kliemt, Cornelius Krellner, Shovon Pal, Manfred Fiebig, Johann Kroha
- Missing spectral weight in a paramagnetic heavy-fermion system43
Jingwen Li, Debankit Priyadarshi, Chia-Jung Yang, Ulli Pohl, Oliver Stockert, Hilbert von Loehneysen, Shovon Pal, Manfred Fiebig, Johann Kroha
Phys. Rev. B 111, 035117 (2025)
DOI: https://doi.org/10.1103/PhysRevB.111.03511744
- Kondo coherence versus superradiance in terahertz radiation-driven heavy-fermion systems46
Chia-Jung Yang, Michael Woerner, Oliver Stockert, Hilbert v. Löhneysen, Johann Kroha, Manfred Fiebig, and Shovon Pal
Phys. Rev. B 109, 235103 (2024)
DOI: https://doi.org/10.1103/PhysRevB.109.23510347
- Non-Markovian dynamics of open quantum systems via auxiliary particles with exact operator constraint48
Tim Bode, Michael Kajan, Francisco Meirinhos, Johann Kroha
Phys. Rev. Research 6, 013220 (2024)
DOI: https://doi.org/10.1103/PhysRevResearch.6.01322049. - Temporal Bistability in the Dissipative Dicke-Bose-Hubbard System50
Tianyi Wu, Sayak Ray, Johann Kroha
Annalen der Physik, 2300505 (2024)
DOI: https://doi.org/10.1002/andp.202300505.51
- Strange-metal behavior without fine-tuning in PrV2Al2052
Marvin Lenk, Fei Gao, Johann Kroha, Andriy H. Nevidomskyy,
Phys. Rev. Res. 6, L042008 (2024)
DOI: https://doi.org/10.1103/PhysRevResearch.6.L04200853
- Kritische Verlangsamung und Vernichtung von Fermionen54
Chia-Jung Yang, Manfred Fiebig, Shovon Pal, Johann Kroha,
Physik in unserer Zeit 54 (6), 269-270 (2023).
DOI: https://doi.org/10.1002/piuz.20237060654 - Critical slowing down near a magnetic quantum phase transition with fermionic breakdown55
Chia-Jung Yang, Kristin Kliemt, Cornelius Krellner, Johann Kroha, Manfred Fiebig, Shovon Pal,
Nature Physics 19, 1605-1610 (2023).
DOI: https://doi.org/10.1038/s41567-023-02156-756 - Photoemission signature of the competition between magnetic order and Kondo effect in CeCoGe357
Peng Li, Huiqing Ye, Yong Hu, Yuan Fang, Zhiguang Xiao, Zhongzheng Wu, Zhaoyang Shan, Ravi P. Singh, Geetha Balakrishnan, Dawei Shen, Yi-feng Yang, Chao Cao, Nicolas C. Plumb, Michael Smidman, Ming Shi, Johann Kroha, Huiqiu Yuan, Frank Steglich and Yang Liu,
Phys. Rev. B 107, L201104 (2023), Editors' Suggestion.
DOI: https://doi.org/10.1103/PhysRevB.107.L20110458 - Quantum spin liquid in an RKKY-coupled two-impurity Kondo system59
Krzysztof P. Wójcik and Johann Kroha,
Phys. Rev. B 107, L121111 (2023).
DOI: https://doi.org/10.1103/PhysRevB.107.L12111160 - Asymmetry effects on the phases of RKKY-coupled two-impurity Kondo systems61
Krzysztof P. Wójcik and Johann Kroha,
Phys. Rev. B 107, 125146 (2023).
DOI: https://doi.org/10.1103/PhysRevB.107.12514662
- Classical route to ergodicity and scarring phenomena in two component Bose-Josephson junction63
Debabrata Mondal, Sudip Sinha, Sayak Ray, Johann Kroha, and Subhasis Sinha,
Phys. Rev. A 106, 043321 (2022).
DOI: https://doi.org/10.1103/PhysRevA.106.04332164
- Real- and Fourier space observation of the anomalous pi mode in Floquet engineered plasmonic waveguide arrays65
Anna Sidorenko, Zlata Fedorova (Cherpakova), Johann Kroha, Stefan Linden,
Phys. Rev. Research 4, 033184 (2022).
DOI: https://doi.org/10.1103/PhysRevResearch.4.03318466
- Chaos onset in large rings of Bose-Einstein condensates67
Damian Wozniak, Johann Kroha, Anna Posazhennikova,
Phys. Rev. A 106, 033316 (2022).
DOI: https://doi.org/10.1103/PhysRevA.106.03331668
- Adaptive Numerical Solution of Kadanoff-Baym Equations69
Francisco Meirinhos, Michael Pohl, Johann Kroha, Tim Bode,
SciPost Phys. Core 5, 030 (2022).
DOI: https://doi.org/10.21468/SciPostPhysCore.5.2.03070
- Non-local correlations and entanglement of ultracold bosons in the 2D Bose-Hubbard lattice at finite temperature71
Ulli Pohl, Sayak Ray, Johann Kroha,
Ann. Phys. (Berlin) 534, 2100581 (2022).
DOI: https://doi.org/10.1002/andp.20210058172 (open access)
- Phasen eines Bose-Einstein-Kondensats aus Licht73
Fahri Öztürk, Julian Schmitt, Johann Kroha, Martin Weitz,
Phys. Unserer Zeit 52 (4), 162 (2021).
DOI: https://doi.org/10.1002/piuz.20217040474
- Observation of a non-Hermitian phase transition in an optical quantum gas75
Fahri Emre Öztürk, Tim Lappe, Göran Hellmann, Julian Schmitt, Jan Klaers, Frank Vewinger, Johann Kroha, Martin Weitz,
Science 372 (6537), 88-91 (2021).
DOI: https://doi.org/10.1126/science.abe986976
- Dissipation engineered directional filter for quantum ratchets77
Zlata Fedorova, Christoph Dauer, Anna Sidorenko, Sebastian Eggert, Johann Kroha, Stefan Linden,
Phys. Rev. Research 3, 013260, (2021), Editors' Suggestion.
DOI: https://doi.org/10.1103/PhysRevResearch.3.01326078
- Expansion dynamics in two-dimensional Bose-Hubbard lattices: BEC and thermal cloud79
Mauricio Trujillo-Martinez, Anna Posazhennikova, and Johann Kroha,
Phys. Rev. A 103, 033311(2021).
DOI: https://doi.org/10.1103/PhysRevA.103.03331180
- Oxygen vacancy-driven orbital multichannel Kondo effect in Dirac nodal-line metals IrO2 and RuO281
Sheng-Shiuan Yeh, Ta-Kang Su, An-Shao Lien, Farzaneh Zamani, Johann Kroha, Chao-Ching Liao, Stefan Kirchner, and Juhn-Jong Lin,
Nature Communications 11, 4749 (2020).
DOI: https://doi.org/10.1038/s41467-020-18407-782
- Teraherz Conductivity of Heavy-fermion Systems from Time-resolved Spectroscopy83
Chia-Jung Yang, Shovon Pal, Farzaneh Zamani, Kristin Kliemt, Cornelius Krellner, Oliver Stockert, Hilbert v. Löhneysen, Johann Kroha, and Manfred Fiebig,
Phys. Rev. Research 2, 033296 (2020).
DOI: https://doi.org/10.1103/PhysRevResearch.2.03329684
- Magnetic Kondo regimes in a frustrated half-filled trimer85
K. P. Wojcik, I. Weyman, J. Kroha,
Phys. Rev. B 102, 045144 (2020).
DOI: https://doi.org/10.1103/PhysRevB.102.04514486
- Observation of topological transport quantization by dissipation in fast Thouless pumps87
Z. Fedorova, H. Qiu, S. Linden, J. Kroha,
Nature Communications 11, 3758 (2020).
DOI: https://doi.org/10.1038/s41467-020-17510-z88
Nature SharedIt link: https://rdcu.be/b5RNz89
- Majorana-Kondo interplay in T-shaped double quantum dots90
I. Weyman, K. P. Wojcik, and P. Majek,
Phys. Rev. B 101, 235404 (2020).
DOI: https://doi.org/10.1103/PhysRevB.101.23540491
- Fluctuation dynamics of an open photon Bose-Einstein condensate92
F. E. Ozturk, T. Lappe, G. Hellmann, J. Schmitt, J. Klaers, F. Vewinger, J. Kroha, M. Weitz,
Phys. Rev. A 100, 043803 (2019), Editors' Suggestion.
DOI: https://doi.org/10.1103/PhysRevA.100.04380393
- Giant superconducting proximity effect on spintronic anisotropy94
Krzysztof P. Wojcik, Maciej Misiorny, Ireneusz Weymann,
Phys. Rev. B 100, 045401 (2019).
DOI: https://doi.org/10.1103/PhysRevB.100.04540195
- Fermi volume evolution and crystal-field excitations in heavy-fermion systems probed by time-domain terahertz spectroscopy96
Shovon Pal, Christoph Wetli, Farzaneh Zamani, Oliver Stockert, Hilbert von Löhneysen, Manfred Fiebig, and Johann Kroha,
Phys. Rev. Lett. 122, 096401 (2019).
DOI: https://doi.org/10.1103/PhysRevLett.122.09640197
- Fluctuation-damping of isolated, oscillating Bose-Einstein condensates98
Tim Lappe, Anna Posazhennikova, Johann Kroha,
Phys. Rev. A 98, 023626 (2018).
DOI: https://link.aps.org/doi/10.1103/PhysRevA.98.02362699
- Time-resolved collapse and revival of the Kondo state near a quantum phase transition100
100Christoph Wetli, S. Pal, Johann Kroha, Kristin Kliemt, Cornelius Krellner, Oliver Stockert, Hilbert von Löhneysen, Manfred Fiebig,
Nature Physics 14, 1103 (2018).
DOI: https://doi.org/10.1038/s41567-018-0228-3101
Nature SharedIt link: https://rdcu.be/3KAs102
- Thermalization of isolated Bose-Einstein condensates by dynamical heat bath generation103
Anna Posazhennikova, Mauricio Trujillo-Martinez, Johann Kroha,
Ann. Phys. (Berlin) 530, 1700124 (2018). Journal link104
Feature article and featured in Advanced Science News105
- Interplay of Kondo effect and RKKY interaction106
Johann Kroha,
Lecture notes, Autumn school on Correlated Electrons, FZ Jülich, 25-29 Sept. 2017,
published in "The Physics of Correlated Insulators, Metals, and Superconductors",
E. Pavarini, E. Koch, R. Scalettar, and R. Martin (Eds.),
Series "Modeling and Simulation" Vol. 7, pp 12.1-12.27 (VerlagForschungszentrum Julich, 2017).
- Oscillation and suppression of Kondo temperature by RKKY coupling in two-site Kondo systems107
Ammar Nejati and Johann Kroha,
Proceedings of SCES 2016, Hangzhou, China; J. Phys.: Conf. Series 807, 082004 (2017).
- Kondo destruction in RKKY-coupled Kondo lattice and multi-impurity systems108
Ammar Nejati, Katinka Ballmann, and Johann Kroha,
Phys. Rev. Lett. 118, 117204 (2017).
DOI: https://doi.org/10.1103/PhysRevLett.118.117204109
Supplemental Material is attached to the article on arXiv.
- Inflationary quasiparticle creation and thermalization dynamics in coupled Bose-Einstein condensates110
Anna Posazhennikova, Mauricio Trujillo-Martinez, and Johann Kroha,
Phys. Rev. Lett. 116, 225304 (2016).
DOI: https://doi.org/10.1103/PhysRevLett.116.225304111
Supplemental material112
- Theory of Curie temperature enhancement in electron-doped EuO113
Tobias Stollenwerk and Johann Kroha,
Phys Rev. B 92, 205119 (2015).
- Renormalization group theory for Kondo breakdown in Kondo lattice systems114
Katinka Ballmann, Ammar Nejati and Johann Kroha,
J. Phys.: Conf. Series 592, 012090 (2015);
Proceedings of the conference on Strongly Correlated Electron Systems SCES2014, Grenoble 2014
- Tuning the ultrafast spin dynamics in carrier-density-controlled ferromagnets115
M. Matsubara, A. Schmehl, J. Mannhart, A. Melville, D. G. Schlom, M. Trujillo Martinez, A. Schroer, J. Kroha, and M. Fiebig,
Nature Communications 6, 6724 (2015).
- Temporal nonequilibrium dynamics of a Bose Josephson junction in the presence of incoherent excitations116
M. Trujillo-Martinez, A. Posazhennikova and J. Kroha,
New J. Phys. 17, 013006 (2015).
- Extended Two-Channel Kondo Phase of a Rotational Quantum Defect in a Fermi Gas117
Evaristus Fuh Chuo, Katinka Ballmann, Laszlo Borda and Johann Kroha,
J. Phys: Conf. Series 568, 012007 (2015);
Proceedings of the 27th conference on Low Temperature Physics LT27, Buenos Aires, 2014
- Identifying Kondo orbitals through spatially resolved STS118
Andrey E. Antipov, P. Ribeiro, Johann Kroha and Stefan Kirchner,
Phys. Stat. Sol. B 250, 562-567 (2013).
- Transmission statistics in a nonconservative disordered optical medium119
Zhong Yuan Lai and Oleg Zaitsev,
Phys. Rev. A 88, 023861 (2013).
- Rotational quantum impurities in a metal: Stability of the 2-channel Kondo fixed point in a magnetic field120
Katinka Ballmann and Johann Kroha,
Ann. Physik (Berlin) 524, 245-251 (2012).
- The Pseudoparticle Approach to Strongly Correlated Systems121
R. Fresard, J. Kroha and P. Wölfle,
in "Strongly Correlated Systems: Theoretical Methods",
A. Avella and F. Mancini Eds., Springer Series in Solid-State Sciences122, Volume 171, 65-101 (2012).
- Nonlinear σ model for optical media with linear absorption or gain123
Zhong Yuan Lai and Oleg Zaitsev,
Phys. Rev. A 85, 043838 (2012).
- PRL Viewpoint: Tuning correlations in a 2D electron liquid124
Johann Kroha,
Physics 4, 106 (2011).
- Thickness-dependent magnetic properties of oxygen-deficient EuO125
M. Barbagallo, T. Stollenwerk, J. Kroha, N.-J. Steinke, N.D.M. Hine, J.F.K. Cooper, C.H.W. Barnes, A. Ionescu, P.M.D.S. Monteiro, J.-Y. Kim, K.R.A. Ziebeck, C.J. Kinane, R.M. Dalgliesh, T.R. Charlton, S. Langridge,
Phys. Rev. B 84, 075219 (2011).
- A tunable two-impurity Kondo System in an atomic point contact126
J. Bork, Y.-H. Zhang, L. Diekhöner, L. Borda, P. Simon, J. Kroha, P. Wahl and Klaus Kern,
Nature Physics 7, 901–906 (2011).
DOI: https://doi.org/10.1038/nphys2076127
Supplementary material128
- Efficient construction of maximally localized Wannier functions: locality criterion and initial conditions126
Tobias Stollenwerk, Dmitry V. Chigrin, and Johann Kroha,
J. Opt. Soc. America B 28, 1951 (2011).
- Local photonic modes in periodic or random, dielectric and lasing media129
Tobias Stollenwerk, Regine Frank, Andreas Lubatsch, Oleg Zaitsev, Sergei V. Zhukovsky, Dmitry N. Chigrin, and Johann Kroha,
J. Appl. Phys. B 105 (1), 163-180 (2011).
- Scalar Wave Propagation in Random, Amplifying Media: Influence of Localization Effects on Length and Time Scales and Threshold Behavior130
R. Frank, A. Lubatsch,
Phys. Rev. A 84, 013814 (2011).
- Gas lasers with wave-chaotic resonators131
O. Zaitsev,
J. Phys. B 43, 245402 (2010).
- Diagrammatic semiclassical laser theory132
O. Zaitsev and L. Deych,
Phys. Rev. A 81, 023822 (2010).
- High-temperature signatures of quantum criticality in heavy fermion systems133
J. Kroha, M. Klein, A. Nuber, F. Reinert, O. Stockert, H. v. Löhneysen,
invited paper, International Conference on Magnetism ICM09, Karlsruhe, July 2009;
J. Phys. Cond. Mat. 22, 164203 (2010); arXiv:0907.1340
- Optically Driven Mott-HubbardSystems out of Thermodynamic Equilibrium134
A. Lubatsch and J. Kroha,
Annalen der Physik 18, 863-867 (2010).
- Theoretical Approach to Random Lasing in Thin Systems on Reflecting Substrates135
R. Frank, A. Lubatsch, J. Kroha, K. Busch,
AIP Conf. Proc. 1176, 110, (2009).
- Light Propagation in Anisotropic Disordered Media136
A. Lubatsch, R. Frank,
AIP Conf. Proc. 1176, 124, (2009).
- Nonequilibrium Josephson oscillations in Bose-Einstein condensate without dissipation137
Mauricio Trujillo Martinez, Anna Posazhennikova and Johann Kroha,
Phys. Rev. Lett. 103, 105302 (2009).
- Two atomic quantum dots interacting via coupling to BECs138
Anna Posazhennikova and Wolfgang Belzig,
arXiv:0902.3406 (2009).
- Kondo "underscreening" cloud: spin-spin correlations around a partially screened magnetic impurity139
L. Borda, M. Garst, and J. Kroha,
Phys. Rev. B 79, R100408 (2009).
- Light Transport and Localization in Diffusive Random Lasers140
R. Frank, A. Lubatsch, and J. Kroha,
J. Opt. A: Pure Appl. Opt. 11, 114012 (2009).
- Echo of the Quantum Phase Transition of CeCu6-xAux in XPS: Breakdown of Kondo Screening141
M. Klein, J. Kroha, H. v. Löhneysen, O. Stockert, and F. Reinert,
Phys. Rev. B, 79, 075111 (2009).
- Theory of Cherenkov radiation in periodic dielectric media: Emission spectrum142
Ch. Kremers, D. N. Chigrin, and J. Kroha,
Phys. Rev. A 79, 013829 (2009).
- Bistability and Mode Interaction in Microlasers143
Sergei V. Zhukovsky, Dmitry N. Chigrin, and Johann Kroha,
Phys. Rev. A 79, 033803 (2009).
- Light transport and Correlation Length in a Random Laser144
R. Frank, A. Lubatsch and J. Kroha,
Ann. Physik (Berlin) 18, 882 (2009).
- Light Transport in Disordered Systems with Absorption or Gain145
A. Lubatsch, R. Frank, and J. Kroha,
submitted to J. Stat. Mech. (2008).
- Signature of quantum criticality in photoemission spectroscopy at elevated temperature146
M. Klein, A. Nuber, F. Reinert, J. Kroha, O. Stockert, and H. v. Löhneysen,
Phys. Rev Lett. 101, 266404 (2008).
- Self-consistent study of Anderson localization in the Anderson-Hubbard model in two and three dimensions147
P. Henseler, J. Kroha, and B. Shapiro,
Phys. Rev. B 78, 235116 (2008).
- Density correlations in cold atomic gases: Atomic speckles in the presence of disorder148
Peter Henseler and Boris Shapiro,
Phys. Rev. A 77, 033624 (2008).
- Static screening and delocalization effects in the Hubbard-Anderson model149
Peter Henseler, Johann Kroha, and Boris Shapiro,
Phys. Rev. B 77, 075101 (2008).
- Simultaneous ferromagnetic metal-semiconductor transition in electron-doped EuO150
Michael Arnold and Johann Kroha,
Phys. Rev. Lett. 100, 046404 (2008).
- Coherent particle oscillations between two Bose-Einstein condensates mediated by a single localized impurity atom151
U. R. Fischer, Ch. Iniotakis, A. Posazhennikova,
Phys. Rev. A 77, 031602(R) (2008).
- Bistability and Ultrafast Mode Switching in Microlasers152
Sergei V. Zhukovsky, Dmitry N. Chigrin, A.V. Lavrinenko, and Johann Kroha,
IEEE Conference on Lasers and Electro-Optics (CLEO) Vols 1-9, pp. 2329-2330 (2008).
- Stable two-channel Kondo fixed point of an SU(3) quantum defect in a metal: renormalization group analysis and conductance spikes153
Michael Arnold, Tobias Langenbruch, and Johann Kroha,
Phys. Rev. Lett. 99, 186601 (2007).
- Strong mode coupling, bistable lasing, and mode switching dynamics in twin coupled microcavities154
S. V. Zhukovsky, D. V. Chigrin, A. V. Lavrinenko, and J. Kroha (2007).
- Coupled nanopillar waveguides: optical properties and applications155
Dmitry N. Chigrin, Sergei V. Zhukovsky, Andrei V. Lavrinenko, and Johann Kroha,
Phys. Stat. Sol. A 204 (11) 3647 (2007).
- Universality in Voltage-driven Nonequilibrium Phase Transitions156
Johann Kroha, Michael Arnold, and Beate Griepernau,
J. Low Temp. Phys. 147 (3-4), 505 (2007);
dedicated to Prof. Hilbert von Löhneysen on the occasion of his 60th birthday.
- High Resolution Photoemission Study on Low-TK Ce Systems: Kondo Resonance, Crystal Field Structures, and their Temperature Dependence157
D. Ehm, S. Schmidt, S. Hüfner, F. Reinert, J. Kroha, P. Wölfle, O. Stockert, C. Geibel and H. von Löhneysen,
Phys. Rev. B 76, 045117 (2007).
- Switchable lasing in multimode microcavities158
Sergei V. Zhukovsky, Dmitry N. Chigrin, Andrei Lavrinenko, Johann Kroha,
Phys. Rev. Lett. 99, 073902 (2007).
- Strong vs. Weak Coupling Duality and Coupling Dependence of the Kondo Temperature in the Two-Channel Kondo Model159
Christian Kolf and Johann Kroha,
Phys. Rev. B 75, 045129 (2007).
- Simultaneous ferromagnetic and and semiconductor-metal transition in EuO160
Michael Arnold and Johann Kroha,
Physica C 460, 1137 (2007).
- Polariton bandstructure of disordered metallic photonic crystal slabs161
D. Nau, A. Schönhardt, D. N. Chigrin, H. Kroha, A. Christ und H. Giessen,
Physica Status Solidi B 244 (4), 1262 (2007).
- Selective lasing in multimode periodic and non-periodic nanopillar waveguides162
Sergei V. Zhukovsky, Dmitry N. Chigrin, Andrei Lavrinenko, Johann Kroha,
Physica Status Solidi B 244 (4), 1211 (2007).
- Numerical modelling of lasing in microstructures
Sergei V. Zhukovsky and Dmitry N. Chigrin,
Physica Status Solidi B 244 (10), 3515-3527 (2007).
- Spin Correlations and Finite-Size Effects in the One-dimensional Kondo Box163
Thomas Hand, Johann Kroha, Hartmut Monien,
Phys. Rev. Lett. 97, 136604 (2006); cond-mat/0602352
- Low-loss resonant modes in deterministically aperiodic nanopillar waveguides164
Sergei V. Zhukovsky, Dmitry N. Chigrin, Johann Kroha
J. Opt. Soc. Am. B 23, 2265 (2006); cond-mat/0601296
- Theory of strong localization effects of light in disordered loss or gain media165
Regine Frank, Andreas Lubatsch, and Johann Kroha
Phys. Rev. B 73, 245107 (2006); cond-mat/0511331
- Nonequilibrium electron transport through quantum dots in the Kondo regime166
P. Wölfle, J. Paaske, A. Rosch, and J. Kroha
AIP Conference Proceedings 850, 1378 (2006); (LT24, Orlando, 2005).
- Comment on "Fano Resonance for Anderson Impurity Systems"167
Ch. Kolf, J. Kroha, M. Ternes, and W.-D. Schneider
Phys. Rev. Lett. 96, 019701 (2006); cond-mat/0503669
- Influence of correlation and temperature on the electronic structure of bulk and thin film GdN168
Satadeep Bhattacharjee and S. Mathi Jaya,
Eur. Phys. J. B 49, 305 (2006).
- pi-junction behavior and Andreev bound states in Kondo quantum dots with superconducting leads169
Gabriel Sellier, Thilo Kopp, Johann Kroha, and Yuri S. Barash,
Phys. Rev. B 72, 174502 (2005); cond-mat/0504649
Selected for Virtual Journal of Applications of Superconductivity, VJSuper170, issue Nov. 15 (2005)171.
- Spectral self-similarity in fractal one-dimensional photonic structures172
S. V. Zhukovsky and A. V. Lavrinenko
Photonics and Nanostructures, 3, 129 (2005).
- Numerical characterization of nanopillar photonic crystal waveguides and directional couplers
D. N. Chigrin, A. V. Lavrinenko, and C. M. Sotomayor Torres
Opt. Quantum Electron. 37 (2005), pp. 331-341.
- Theory of light diffusion in disordered media with linear absorption or gain173
A. Lubatsch, J. Kroha, and K. Busch,
Phys. Rev. B 71, 184201 (2005); cond-mat/0412083
- Photonic quasicrystals for applications in WDM systems
J. Romero-Vivas, D. N. Chigrin, A. V. Lavrinenko, and C. M. Sotomayor Torres,
Phys. Stat. Sol. (a), 202 (2005) No 6, pp. 997-1001.
- Resonant add-drop filter based on photonic quasicrystal174
J. Romero-Vivas, D. N. Chigrin, A. V. Lavrinenko, and C. M. Sotomayor Torres
Opt. Express, 13 (2005) No 3, pp. 826-835 (Cover story).
- Conserving Diagrammatic Approximations for Quantum Impurity Models: NCA and CTMA175
J. Kroha and P. Wölfle,
Invited article, in a Special Topics Section of JPSJ, "Kondo Effect -- 40 Years after the Discovery", J. Phys. Soc. Jpn. 74 (1), 16 (2005); cond-mat/0410273
- The Kondo Effect in Non-Equilibrium Quantum Dots: Perturbative Renormalization Group176
A. Rosch, J. Paaske, J. Kroha, and P. Wölfle
Invited article, in a Special Topics Section of JPSJ, "Kondo Effect -- 40 Years after the Discovery", J. Phys. Soc. Jpn. 74 (1), 118 (2005); cond-mat/0408506
- Fermi Liquid Properties of the Anderson Impurity Model within a Conserving Pseudoparticle Approach177
S. Kirchner, J. Kroha, and P. Wölfle,
in Proceedings of the International Conference on "Strongly Correlated Electron Systems SCES04", Karlsruhe, 2004; Physica B 359-261C, 756 (2005).
- Non-equilibrium Transport Through Quantum Dots in the Kondo Regime178
J. Paaske, A. Rosch, P. Wölfle, and J. Kroha,
Contributed paper to the International Conference on Low-Temperature Physics LT24, Orlando, Florida (2005).
- Radiation pattern of a classical dipole in a photonic crystal: photon focusing179
D. N. Chigrin,
Phys. Rev. E 70, 056611 (2004).
- Dynamical Properties of the Anderson Impurity Model within a Diagrammatic Pseudoparticle Approach180
S. Kirchner, J. Kroha, and P Wölfle,
Phys. Rev. B 70, 165102 (2004); cond-mat/0404311
- Nonequilibrium Transport through a Kondo Dot: Decoherence Effects181
J. Paaske, A. Rosch, J. Kroha, and P Wölfle,
Phys. Rev. B 70, 155301 (2004); cond-mat/0401180
-
Conductance Quasi-quantization of quantum point contacts182
S. Kirchner, J. Kroha, and E. Scheer,
Lecture Notes in Physics 630, 303 (2004).
- Pseudogaps in the t-J model: Extended DMFT study183
K. Haule, A. Rosch, J. Kroha and P Wölfle,
Phys. Rev. B 68, 155119 (2003).
- Non-equilibrium Transport and Relaxation in Diffusive Nanowires with Kondo Impurities184
J. Kroha, A. Rosch, J. Paaske, and P. Wölfle,
Adv. Solid State Phys. (B. Kramer Ed.) 43, 223 (Springer, 2003).
- Non-Equilibrium Transport through a Kondo-Dot in a Magnetic Field: Perturbation Theory and Poor Man's Scaling185
A. Rosch, J. Paaske, J. Kroha and P Wölfle,
Phys. Rev. Lett. 90, 076804 (2003).
- Conductance Quasi-quantization of Quantum Point Contacts: Why Tight-binding Models are Insufficient
S. Kirchner, J. Kroha, P. Wölfle, and E. Scheer
in "Anderson Localization and its Ramifications: Disorder Phase Coherence and Electron Correlations",
T. Brandes and S. Kettemann Eds., 303 (Springer 2003).
- Structure and Transport in Multi-orbital Kondo Systems186
J. Kroha, S. Kirchner, G. Sellier, P. Wölfle, D. Ehm, F. Reinert, S. Hüfner, and C. Geibel,
Invited paper, XXIII. International Conference on Low Temperature Physics LT23, Hiroshima, 2002.
Physica E 18, 69 (2003).
- Fermi and Non-Fermi liquid behavior of quantum impurity models: Diagrammatic Pseudoparticle Approach187
J. Kroha and P. Wölfle
Invited Article, Proceedings of the International Conference on ``Mathematical Methods in Physics'', Montreal 2000;
in ``Theoretical Methods for Strongly Correlated Electrons'',
D. Senechal, A.-M. Tremblay, and C. Bourbonnais Eds.,
CRM Series in Mathematical Physics (Springer, New York, 2003).
- Interplay between the Geometrical and the Electronic Structure in Quasicrystals188
J. Kroha, D. Walther, and R. von Baltz,
in "Quasicrystals - Structure and Physical Properties",
H.-R. Trebin Hrsg., pp 236 (Wiley, 2003).
- High Resolution PES Investigations on the Prototype Heavy Fermion Compound CeCu6189
D. Ehm, F. Reinert, J. Kroha, O. Stockert, and S. Hüfner,
Acta Physica Polonica (Sp. Iss. SI) 34, 951 (2003).
- Selfconsistent Auxiliary Particle Theory for Strongly Correlated Fermion Systems
S. Kirchner, J. Kroha, and P. Wölfle
Invited paper, in ``High Performance Computing in Science and Engineering 2002",
E. Krause and W. Jäger Eds. (Springer, 2003), ISBN 3-54043860-2.
- Nonequilibrium Electron Transport through Nanostructures: Correlation Effects190
P. Wölfle, A. Rosch, J. Paaske, and J. Kroha.
- Pseudogaps in an Incoherent Metal191
K. Haule, A. Rosch, J. Kroha, and P. Wölfle,
Phys. Rev. Lett., 89 236402 (2002).
- Non-equilibrium Transport through a Kondo-Dot in a Magnetic Field192
P. Wölfle, A. Rosch, J. Paaske, and J. Kroha,
Adv. Solid State Phys. 42, 175, B. Kramer Ed. (Springer, 2002).
- Self-consistent Conserving Theory for Quantum Impurity Systems: Renormalization Group Analysis193
Stefan Kirchner and Johann Kroha,
J. Low Temp. Phys. 126, 1233 (2002).
- Quantitative Line Shape Analysis of the Kondo Resonance of Cerium Compounds194
D. Ehm, F. Reinert, S. Schmidt, G. Nicolay, and S. Hüfner, J. Kroha, O. Trovarelli and C. Geibel,
in Proceedings of the SCES 2001 conference, Physica B 312, 663 (2002).
- Theory of the non-equilibrium quasiparticle distribution induced by Kondo defects195
J. Kroha and A. Zawadowski,
Phys. Rev. Lett. 88, 176803 (2002).
- Anderson impurity model at finite Coulomb interaction U: The generalized Non-crossing Approximation196
K. Haule, S. Kirchner, J. Kroha, and P. Wölfle,
Phys. Rev. B, 64, 155111 (2001).
- The Kondo effect in quantum dots at high voltage: Universality and scaling197
A. Rosch, J. Kroha, and P. Wölfle,
Phys. Rev. Lett., 87, 156802 (2001).
- Comment on ``Non--equilibrium Electron Distribution in Presence of Kondo Impurities'' (cond-mat/0102150.v2)198
J. Kroha and A. Zawadowski, cond-mat/0105026.
- Temperature dependence of the Kondo resonance and its satellites in CeCu2Si2199
F. Reinert, D. Ehm, S. Schmidt, G. Nicolay, and S. Hüfner, J. Kroha, O. Trovarelli and C. Geibel,
Phys. Rev. Lett., 87, 106401 (2001).
- Non-equilibrium electronic transport and interactions in short metallic nanobridges200
H. B. Weber, R. Häussler, H. v. Löhneysen and J. Kroha,
Phys. Rev. B 63, 165426 (2001).
- Kondo effect in non-equilibrium201
Theory of energy relaxation induced by dynamical defects in diffusive nanowires
J. Kroha,
invited paper, in "Kondo Effect and dephasing in low-dimensional metallic systems" (Proceedings of the NATO Advanced Research Workshop ``Size dependent magnetic scattering'', Pecs, Hungary, May 28 - June 1, 2000), V. Chandrasekhar, C. v. Haesendonck, and A. Zawadowski, eds., NATO Science Series II, vol. 50 , 133 (Kluwer Academic Publishers, 2001).
- Theory of STM spectroscopy of magnetic ions on metal surfaces202
O. Ujsaghy, J. Kroha, L. Szunyogh and A. Zawadowski,
in "Kondo Effect and dephasing in low-dimensional metallic systems" (Proceedings of the NATO Advanced Research Workshop ``Size dependent magnetic scattering'', Pecs, Hungary, May 28 - June 1, 2000), V. Chandrasekhar, C. v. Haesendonck, and A. Zawadowski, eds., NATO Science Series II, vol. 50 , 245 (Kluwer Academic Publishers, 2001).
- Pair breaking in s-wave superconductors by two-channel Kondo impurities203
G. Sellier, S. Kirchner and J. Kroha,
in "Kondo Effect and dephasing in low-dimensional metallic systems" (Proceedings of the NATO Advanced Research Workshop ``Size dependent magnetic scattering'', Pecs, Hungary, May 28 - June 1, 2000), V. Chandrasekhar, C. v. Haesendonck, and A. Zawadowski, eds., NATO Science Series II, vol. 50 , 241 (Kluwer Academic Publishers, 2001).
- Generalized conductance sum rule in atomic break junctions204
S. Kirchner, J. Kroha and E. Scheer,
in "Kondo Effect and dephasing in low-dimensional metallic systems" (Proceedings of the NATO Advanced Research Workshop ``Size dependent magnetic scattering'', Pecs, Hungary, May 28 - June 1, 2000), V. Chandrasekhar, C. v. Haesendonck, and A. Zawadowski, eds., NATO Science Series II, vol. 50 , 215 (Kluwer Academic Publishers, 2001).
- Zero-bias transport anomaly in metallic nanobridges: Magnetic field dependence and universal conductance fluctuations205
H. B. Weber, R. Häussler, H. v. Löhneysen and J. Kroha,
Invited paper, in "Kondo Effect and dephasing in low-dimensional metallic systems" (Proceedings of the NATO Advanced Research Workshop ``Size dependent magnetic scattering'', Pecs, Hungary, May 28 - June 1, 2000), V. Chandrasekhar, C. v. Haesendonck, and A. Zawadowski, eds., NATO Science Series II, vol. 50 , 53 (Kluwer Academic Publishers, 2001).
- Diagrammatic theory of the Anderson impurity model with finite Coulomb interaction206
K. Haule, S. Kirchner, J. Kroha and P. Wölfle,
in "Kondo Effect and dephasing in low-dimensional metallic systems" (Proceedings of the NATO Advanced Research Workshop ``Size dependent magnetic scattering'', Pecs, Hungary, May 28 - June 1, 2000), V. Chandrasekhar, C. v. Haesendonck, and A. Zawadowski, eds., NATO Science Series II, vol. 50 , 211 (Kluwer Academic Publishers, 2001).
- Diagrammatic theory of Anderson impurity and lattice models: Fermi and non-Fermi liquid behavior207
Johann Kroha and Peter Wölfle,
Invited paper, in Proceedings of the NATO Advanced Research Workshop ``Open problems in strongly correlated electron systems'', Bled, Slowenia, April 26--30, 2000, J. Bonca, P. Prelovsek, A. Ramsak und S. Sarkar eds., NATO Science Series II, Vol. 15, 101 (Kluwer Academic Publishers, Dordrecht, 2001).
- Diagrammatic theory of the Anderson impurity model with finite Coulomb interaction206
K. Haule, S. Kirchner, H. Kroha and P. Wölfle,
in Proceedings of the NATO Advanced Research Workshop ``Open problems in strongly correlated electron systems'', Bled, Slowenia, April 26--30, 2000, J. Bonca, P. Prelovsek, A. Ramsak und S. Sarkar eds., NATO Science Series II, Vol. 15, 413 (Kluwer Academic Publishers, Dordrecht, 2001).
- Electronic stabilization of amorphous and quasicrystalline metals: Importance of quantum correlations208
Hans Kroha,
Mat. Sci. Eng. A, 294-296, 500 (2000).
- Theory of the Fano resonance in the STM tunneling density of states due to a single Kondo impurity209
O. Újsághy, J. Kroha, L. Szunyogh and A. Zawadowski,
Phys. Rev. Lett. 85, 2557 (2000).
- Energy and phase relaxation in non-equilibrium diffusive nano-wires with two-level systems210
J. Kroha,
Invited paper, Frühjahrstagung der Deutschen Physikalischen Gesellschaft, Regensburg, 2000.
Festkörperprobleme/Adv. Solid State Phys. 40, 267 (2000).
- Auxiliary particle theory of threshold singularities in photoemission and X-ray absorption spectra: Test of a conserving T-matrix approximation211
T. Schauerte, J. Kroha and P. Wölfle,
Phys. Rev. B 62, 4394 (2000).
- Fermi and non-Fermi liquid behavior in quantum impurity systems: Conserving slave boson theory212
Johann Kroha and Peter Wölfle,
Invited paper, Frühjahrstagung der Deutschen Physikalischen Gesellschaft, Münster, 1999.
Festkörperprobleme/Adv. Solid State Phys. 39, 271 (1999).
- Electron-electron interaction effects in a diffusive Cu nanobridge213
H. B. Weber, R. Häussler, H. v. Löhneysen, P. Pfundstein and J. Kroha,
Jahrbuch 1998, Physikalisches Institut, Universität Karlsruhe (1999).
- Correlation-enhanced Friedel oscillations in amorphous and quasicrystalline alloys214
J. Kroha,
in Aperiodic'97, Proceedings of the international conference on aperiodic crystals,
M. de Boisieu, J.-L. Verger-Gaugry and R. Currat, eds., 499 (World Scientific, Singapore, 1999).
- The Kondo box: A magnetic impurity in an ultrasmall metallic grain215
Wolfgang B. Thimm, Johann Kroha and Jan v. Delft,
Phys. Rev. Lett. 82, 2143 (1999).
- Correlation-enhanced Friedel oscillations in amorphous alloys and quasicrystals216
Johann Kroha,
J. Noncryst. Solids, 250-252, 865 (1999).
- Fermi and non-Fermi liquid behavior in quantum impurity systems217
Johann Kroha and Peter Wölfle,
in The Cracow School of Theoretical Physics, XXXVIII. Course: New Quantum Phases, Elementary Excitations and Renormalization in High Energy and Condensed Matter Physics, Acta Phys. Pol. B 29 (12), 3781 (1998)218.
- Fermi and non-Fermi liquid behavior of local-moment systems within a conserving slave boson theory219
Johann Kroha and Peter Wölfle,
in "Magnetism and Electronic Correlations in Local-Moment Systems: Rare-Earth Elements and Compounds",
M. Donath, P. A. Dowben and W. Nolting, eds., pp. 335, World Scientific (Singapore, 1998).
- Non-equilibrium dynamics of the Anderson impurity model220
M. H. Hettler, J. Kroha, and S. Hershfield,
Phys. Rev. B 58, 5649 (1998).
- Antiferromagnetic interlayer exchange coupling across an amorphous metallic spacer layer221
D. E. Bürgler, D. M. Schaller, C. M. Schmidt, F. Meisinger, J. Kroha, J. McCord, A. Hubert, and H.-J. Güntherodt,
Phys. Rev. Lett. 80, 4983 (1998).
- Unified description of Fermi- and non-Fermi liquid behavior in a conserving slave boson approximation for strongly correlated impurity models222
J. Kroha, P. Wölfle, and T. A. Costi,
Phys. Rev. Lett. 79, 261 (1997).
- Disorder-enhanced electron correlations near the crystalline-amorphous transition223
J. Kroha, A. Huck, and T. Kopp,
Czech. J. Phys. 46, (S4) 2275 (1996).
- Conserving slave boson approximations for the Anderson model beyond NCA224
J. Kroha, T. A. Costi, P. Wölfle, P. Hirschfeld, and K. A. Muttalib,
Czech. J. Phys. 46, (S4), 1897 (1996).
- Spectral properties of the Anderson impurity model: Comparison of numerical-renormalization-group and noncrossing-approximation results225
T. A. Costi, J. Kroha, and P. Wölfle,
Phys. Rev. B 53, 1850 (1996).
- Coulomb interaction and disorder at q = 2k_F: A novel instability of the Fermi sea and implications for amorphous alloys226
J. Kroha, A. Huck, and T. Kopp,
Phys. Rev. Lett. 75, 4278 (1995).
- Infrared divergences in the Kondo problem227
T. A. Costi, P. Schmitteckert, J. Kroha, and P. Wölfle,
Physica C235-240, 2287 (1994).
- Nonlinear conductance for the two channel Anderson model228
M. H. Hettler, J. Kroha, and S. Hershfield,
Phys. Rev. Lett. 73, 1967 (1994).
- Numerical renormalization group study of pseudo-fermion and slave-boson spectral functions in the single impurity Anderson model229
T. A. Costi, P. Schmitteckert, J. Kroha, and P. Wölfle,
Phys. Rev. Lett. 73, 1275 (1994).
- Localization of classical waves in a random medium: A self-consistent theory230
J. Kroha, C. M. Soukoulis, and P. Wölfle,
Phys. Rev. B 47, 11093 (1993).
- Diffusion of classical waves in random media
J. Kroha, C. M. Soukoulis, and P. Wölfle,
in "Photonic band gaps and localization", C. M. Soukoulis, ed., NATO ASI Series B 308, 63 (Plenum Press, 1993).
- Conserving slave boson approach to strongly correlated Fermi systems: Single impurity Anderson model231
J. Kroha, P. Hirschfeld, K. A. Muttalib, and P. Wölfle,
Solid State Comm. 83 (12), 1003 (1992).
- X-ray photoemission spectra of impure simple metals232
Y. Chen and J. Kroha,
Phys. Rev. B 46, 1332 (1992).
- Diagrammatic self-consistent theory of Anderson localization for the tight-binding model233
J. Kroha,
in "Anderson localization and mesoscopic Fluctuations",
B. Kramer, G. Schön, eds.,
Physica A 167, 231 (1990).
- Self-consistent theory of Anderson localization for the tight-binding model with site-diagonal disorder234
J. Kroha, T. Kopp, and P. Wölfle,
Phys. Rev. B 41, R888 (1990).
Links
- https://www.pi.uni-bonn.de/kroha/en/publications/publications#publications_2023
- https://www.pi.uni-bonn.de/kroha/en/publications/publications#publications_2024
- https://www.pi.uni-bonn.de/kroha/en/publications/publications
- https://www.pi.uni-bonn.de/kroha/en/publications/publications#publications_2012
- https://www.pi.uni-bonn.de/kroha/en/publications/publications#publications_2013
- https://www.pi.uni-bonn.de/kroha/en/publications/publications#publications_2014
- https://www.pi.uni-bonn.de/kroha/en/publications/publications#publications_2016
- https://www.pi.uni-bonn.de/kroha/en/publications/publications#publications_2015
- https://www.pi.uni-bonn.de/kroha/en/publications/publications#publications_2017
- https://www.pi.uni-bonn.de/kroha/en/publications/publications#publications_2018
- https://www.pi.uni-bonn.de/kroha/en/publications/publications#publications_2019
- https://www.pi.uni-bonn.de/kroha/en/publications/publications#publications_2020
- https://www.pi.uni-bonn.de/kroha/en/publications/publications#publications_2022
- https://www.pi.uni-bonn.de/kroha/en/publications/publications#publications_2021
- https://www.pi.uni-bonn.de/kroha/en/publications/publications#publications_2001
- https://www.pi.uni-bonn.de/kroha/en/publications/publications#publications_2002
- https://www.pi.uni-bonn.de/kroha/en/publications/publications#publications_2003
- https://www.pi.uni-bonn.de/kroha/en/publications/publications#publications_2004
- https://www.pi.uni-bonn.de/kroha/en/publications/publications#publications_2005
- https://www.pi.uni-bonn.de/kroha/en/publications/publications#publications_2006
- https://www.pi.uni-bonn.de/kroha/en/publications/publications#publications_2007
- https://www.pi.uni-bonn.de/kroha/en/publications/publications#publications_2008
- https://www.pi.uni-bonn.de/kroha/en/publications/publications#publications_2009
- https://www.pi.uni-bonn.de/kroha/en/publications/publications#publications_2010
- https://www.pi.uni-bonn.de/kroha/en/publications/publications#publications_2011
- https://www.pi.uni-bonn.de/kroha/en/publications/publications#publications_1990
- https://www.pi.uni-bonn.de/kroha/en/publications/publications#publications_1991
- https://www.pi.uni-bonn.de/kroha/en/publications/publications#publications_1992
- https://www.pi.uni-bonn.de/kroha/en/publications/publications#publications_1993
- https://www.pi.uni-bonn.de/kroha/en/publications/publications#publications_1994
- https://www.pi.uni-bonn.de/kroha/en/publications/publications#publications_1995
- https://www.pi.uni-bonn.de/kroha/en/publications/publications#publications_1996
- https://www.pi.uni-bonn.de/kroha/en/publications/publications#publications_1997
- https://www.pi.uni-bonn.de/kroha/en/publications/publications#publications_1998
- https://www.pi.uni-bonn.de/kroha/en/publications/publications#publications_1999
- https://www.pi.uni-bonn.de/kroha/en/publications/publications#publications_2000
- https://arxiv.org/abs/2507.09397
- https://arxiv.org/abs/2505.20593
- https://doi.org/10.3390/e27060636
- https://arxiv.org/abs/2503.16695
- https://doi.org/10.1103/hcsq-dwcg
- https://arxiv.org/abs/2412.16012
- https://arxiv.org/abs/2408.07345
- https://doi.org/10.1103/PhysRevB.111.035117
- https://www.pi.uni-bonn.de/kroha/en/publications/publications#top
- https://arxiv.org/abs/2312.06931
- https://doi.org/10.1103/PhysRevB.109.235103
- https://arxiv.org/abs/2308.00968
- https://doi.org/10.1103/PhysRevResearch.6.013220
- https://arxiv.org/abs/2311.13301
- https://doi.org/10.1002/andp.202300505.
- https://arxiv.org/abs/2312.13366
- https://doi.org/10.1103/PhysRevResearch.6.L042008
- https://onlinelibrary.wiley.com/doi/full/10.1002/piuz.202370606
- https://arxiv.org/abs/2208.05932
- https://www.nature.com/articles/s41567-023-02156-7
- https://arxiv.org/abs/2302.13313
- https://journals.aps.org/prb/abstract/10.1103/PhysRevB.107.L201104
- https://arxiv.org/abs/2106.07519
- https://journals.aps.org/prb/abstract/10.1103/PhysRevB.107.L121111
- https://arxiv.org/abs/2209.11556
- https://journals.aps.org/prb/abstract/10.1103/PhysRevB.107.125146
- https://arxiv.org/abs/2204.12422
- https://doi.org/10.1103/PhysRevA.106.043321
- https://arxiv.org/abs/2203.05503
- https://doi.org/10.1103/PhysRevResearch.4.033184
- https://arxiv.org/abs/2203.14625
- https://doi.org/10.1103/PhysRevA.106.033316
- https://arxiv.org/abs/2110.04793
- https://doi.org/10.21468/SciPostPhysCore.5.2.030
- https://arxiv.org/abs/2106.14860
- https://doi.org/10.1002/andp.202100581
- https://www.kroha.uni-bonn.de/publications/phasen-eines-bose-einstein-kondensats-aus-licht
- https://doi.org/10.1002/piuz.202170404
- https://arxiv.org/abs/2010.15829
- https://doi.org/10.1126/science.abe9869
- https://arxiv.org/abs/2010.16150
- https://doi.org/10.1103/PhysRevResearch.3.013260
- https://arxiv.org/abs/2007.06331
- https://doi.org/10.1103/PhysRevA.103.033311%20
- https://arxiv.org/abs/1910.13648
- https://doi.org/10.1038/s41467-020-18407-7
- https://arxiv.org/abs/2004.07719v2
- https://doi.org/10.1103/PhysRevResearch.2.033296
- https://arxiv.org/abs/2003.11140
- https://doi.org/10.1103/PhysRevB.102.045144
- https://arxiv.org/abs/1911.03770
- https://doi.org/10.1038/s41467-020-17510-z
- https://rdcu.be/b5RNz
- https://arxiv.org/abs/2001.11280
- https://doi.org/10.1103/PhysRevB.101.235404
- https://arxiv.org/abs/1908.00883
- https://journals.aps.org/pra/abstract/10.1103/PhysRevA.100.043803
- https://link.aps.org/doi/10.1103/PhysRevB.100.045401
- https://journals.aps.org/prb/abstract/10.1103/PhysRevB.100.045401
- https://arxiv.org/abs/1810.07412
- https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.122.096401
- https://arxiv.org/abs/1806.00376
- https://link.aps.org/doi/10.1103/PhysRevA.98.023626
- https://arxiv.org/abs/1703.04443
- https://doi.org/10.1038/s41567-018-0228-3
- https://rdcu.be/3KAs
- https://arxiv.org/abs/1705.01754
- http://onlinelibrary.wiley.com/wol1/doi/10.1002/andp.201700124/full
- http://www.advancedsciencenews.com/quantum-system-thermalization/
- https://arxiv.org/abs/1710.00192
- https://arxiv.org/abs/1612.06620
- https://arxiv.org/abs/1612.03338
- https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.118.117204
- http://arxiv.org/abs/1603.04898
- https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.116.225304
- https://www.pi.uni-bonn.de/kroha/en/publications/downloads/bec_thermalization_supplmat.pdf
- http://arxiv.org/abs/1509.01422
- https://www.pi.uni-bonn.de/kroha/en/publications/downloads/ballmann_2015_j-_phys-__conf-_ser-_592_012090.pdf
- http://arxiv.org/abs/1304.2509
- http://iopscience.iop.org/1367-2630/17/1/013006/article
- https://www.pi.uni-bonn.de/kroha/en/publications/downloads/2ck-su3_lt27.pdf
- http://onlinelibrary.wiley.com/doi/10.1002/pssb.201200936/abstract
- http://pra.aps.org/abstract/PRA/v88/i2/e023861
- https://www.pi.uni-bonn.de/kroha/en/publications/downloads/2ck_adp2012.pdf
- https://www.pi.uni-bonn.de/kroha/en/publications/downloads/sb_review_2011.pdf
- https://springerlink3.metapress.com/content/0171-1873/
- http://pra.aps.org/abstract/PRA/v85/i4/e043838
- http://physics.aps.org/articles/v4/106
- http://arxiv.org/abs/1104.4363
- http://arxiv.org/abs/1108.0869
- https://doi.org/10.1038/nphys2076
- https://www.pi.uni-bonn.de/kroha/en/publications/downloads/supplementary_v2.pdf
- https://www.kroha.uni-bonn.de/publications/papers/for557_report_final
- http://arxiv.org/abs/1106.3020
- http://arxiv.org/abs/1010.5985
- http://dx.doi.org/10.1103/PhysRevA%2E81%2E023822
- https://www.pi.uni-bonn.de/kroha/en/publications/downloads/kroha_jpcm_22_16_164203.pdf
- https://www.pi.uni-bonn.de/kroha/en/publications/downloads/annalenphysik_18_863_2010.pdf
- http://link.aip.org/link/?APCPCS/1176/110/1
- http://link.aip.org/link/?APCPCS/1176/124/1
- http://arxiv.org/abs/0903.5459
- http://arxiv.org/abs/0902.3406
- http://arxiv.org/abs/0811.1032
- https://www.pi.uni-bonn.de/kroha/en/publications/downloads/joa_11_114012_2009.pdf
- http://arxiv.org/abs/0811.0749
- http://arxiv.org/abs/0808.3519
- http://arxiv.org/abs/0804.3758
- https://www.pi.uni-bonn.de/kroha/en/publications/downloads/annalenphysik_18_882_2010.pdf
- http://www.th.physik.uni-bonn.de/kroha/...
- http://arxiv.org/abs/0806.3296
- http://link.aps.org/doi/10.1103/PhysRevB.78.235116
- http://link.aps.org/doi/10.1103/PhysRevA.77.033624
- http://link.aps.org/doi/10.1103/PhysRevB.77.075101
- http://arxiv.org/abs/0708.0416
- http://arxiv.org/abs/0709.1542
- https://doi.org/10.1109/CLEO.2008.4552104
- http://www.arxiv.org/abs/0707.4152
- https://www.pi.uni-bonn.de/kroha/en/publications/downloads/spie-icono.pdf
- https://www.pi.uni-bonn.de/kroha/en/publications/downloads/cnpw-review.pdf
- http://www.lanl.gov/abs/cond-mat/0610280
- http://www.arxiv.org/abs/cond-mat/0702360
- http://www.arxiv.org/abs/cond-mat/0701619
- http://xxx.arxiv.org/abs/cond-mat/0610631
- https://www.pi.uni-bonn.de/kroha/en/publications/downloads/euo_physicac.pdf
- https://www.pi.uni-bonn.de/kroha/en/publications/downloads/disorder-physstatsol-b_070128.pdf
- http://xxx.arxiv.org/abs/cond-mat/0611351
- http://www.lanl.gov/abs/cond-mat/0602352
- http://www.lanl.gov/abs/cond-mat/0601296
- http://www.lanl.gov/abs/cond-mat/0511331
- https://www.pi.uni-bonn.de/kroha/en/publications/downloads/lt24_proc.pdf
- http://www.lanl.gov/abs/cond-mat/0503669
- https://www.pi.uni-bonn.de/kroha/en/publications/downloads/gdn.pdf
- http://www.lanl.gov/abs/cond-mat/0504649
- http://www.vjsuper.org/
- http://scitation.aip.org/dbt/dbt.jsp?KEY=VIRT03&Volume=CURVOL&Issue=CURISS
- https://www.pi.uni-bonn.de/kroha/en/publications/downloads/photns_zhukovsky05.pdf
- http://www.lanl.gov/abs/cond-mat/0412083
- http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-3-826
- http://www.lanl.gov/abs/cond-mat/0410273
- http://www.lanl.gov/abs/cond-mat/0408506
- https://www.pi.uni-bonn.de/kroha/en/publications/downloads/sces04.pdf
- https://www.pi.uni-bonn.de/kroha/en/publications/downloads/lt24.pdf
- http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=PLEEE8000070000005056611000001&idtype=cvips&gifs=yes
- http://www.lanl.gov/abs/cond-mat/0404311
- http://xxx.lanl.gov/abs/cond-mat/0401180
- https://www.pi.uni-bonn.de/kroha/en/publications/downloads/lectnotesphys630_303_2004.pdf
- http://xxx.lanl.gov/abs/cond-mat/0304096
- https://www.pi.uni-bonn.de/kroha/en/publications/downloads/dpg03.ps
- http://xxx.lanl.gov/abs/cond-mat/0202404
- http://arxiv.org/abs/cond-mat/0702578
- http://xxx.lanl.gov/abs/cond-mat/0105491
- https://www.pi.uni-bonn.de/kroha/en/publications/downloads/spqc_report.pdf
- https://www.pi.uni-bonn.de/kroha/en/publications/downloads/cecu6proc.ps
- https://www.pi.uni-bonn.de/kroha/en/publications/downloads/hvar.ps
- http://xxx.lanl.gov/abs/cond-mat/0205347
- https://www.pi.uni-bonn.de/kroha/en/publications/downloads/kondo_rg.ps
- http://xxx.lanl.gov/abs/cond-mat/0202351
- https://www.pi.uni-bonn.de/kroha/en/publications/downloads/ceru2si2proc.ps
- http://xxx.lanl.gov/abs/cond-mat/0104151
- http://xxx.lanl.gov/abs/cond-mat/0105490
- http://xxx.lanl.gov/abs/cond-mat/0105032
- http://xxx.lanl.gov/abs/cond-mat/0105026
- http://xxx.lanl.gov/abs/cond-mat/0104037
- http://xxx.lanl.gov/abs/cond-mat/0007077
- http://xxx.lanl.gov/abs/cond-mat/0102185
- http://xxx.lanl.gov/abs/cond-mat/0009351
- https://www.pi.uni-bonn.de/kroha/en/publications/downloads/2cksc.ps
- http://xxx.lanl.gov/abs/cond-mat/0010103
- http://xxx.lanl.gov/abs/cond-mat/0007333
- http://xxx.lanl.gov/abs/cond-mat/0007274
- http://xxx.lanl.gov/abs/cond-mat/0005483
- http://xxx.lanl.gov/abs/cond-mat/9911263
- http://xxx.lanl.gov/abs/cond-mat/0005166
- http://xxx.lanl.gov/abs/cond-mat/0102188
- http://xxx.lanl.gov/abs/cond-mat/9912007
- http://xxx.lanl.gov/abs/cond-mat/0007103
- https://www.pi.uni-bonn.de/kroha/en/publications/downloads/jahrbuch98.ps
- http://xxx.lanl.gov/abs/cond-mat/9707295
- http://xxx.lanl.gov/abs/cond-mat/9809416
- http://xxx.lanl.gov/abs/cond-mat/9810068
- https://arxiv.org/abs/cond-mat/9804061
- https://www.actaphys.uj.edu.pl/R/29/12/3781
- http://xxx.lanl.gov/abs/cond-mat/9804061
- http://xxx.lanl.gov/abs/cond-mat/9707209
- http://xxx.lanl.gov/abs/cond-mat/9802148
- http://xxx.lanl.gov/abs/cond-mat/9611096
- https://www.pi.uni-bonn.de/kroha/en/publications/downloads/lt21a.ps
- https://www.pi.uni-bonn.de/kroha/en/publications/downloads/lt21b.ps
- http://xxx.lanl.gov/abs/cond-mat/9507008
- http://arxiv.org/abs/cond-mat/9411122
- http://www.th.physik.uni-bonn.de/th/Groups/Kroha/PAPERS/IR_Kondo.ps.gz
- http://arxiv.org/abs/cond-mat/9405059
- http://xxx.lanl.gov/abs/cond-mat/9404097
- https://www.pi.uni-bonn.de/kroha/en/publications/downloads/prb47_11093_93.pdf
- https://www.pi.uni-bonn.de/kroha/en/publications/downloads/ssc_1992.pdf
- https://www.pi.uni-bonn.de/kroha/en/publications/downloads/prb46_1332_92.pdf
- https://arxiv.org/abs/1501.05465
- https://www.pi.uni-bonn.de/kroha/en/publications/downloads/prb41_r888_90.ps