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Abstract
Transmission spectra of one-dimensional fractal multilayer structures are found to exhibit self-similar properties. Self-similarity

manifests itself in the shape of a transmission envelope (map of transmission dips) rather than in the map of resonance transmission

peaks, as is commonly the case with spectra of quasiperiodic systems. To observe the self-similarity, one needs to apply a power

transformation to the transmittance in addition to the usual frequency scaling. The values of this power as well as the scaling factor

have been calculated analytically and found to depend on the geometrical parameters of the structure.
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1. Introduction

Problems of wave propagation in deterministic non-

periodic inhomogeneous media such as quasicrystals

and fractal structures have been an object of intense

research during the last decade. It has been found that

such systems fall in between periodic and disordered

media. The way aperiodic order can affect wave

propagation phenomena is of great interest for theorists,

while new effects introduced by such a geometry can be

useful in applications.

One of the most widely known examples is a one-

dimensional quasiperiodic (QP) lattice constructed

according to certain substitution rules such as a Fibonacci

[1,2] or Thue-Morse [3,4]. It was shown that such a

system exhibits self-similar transmission spectra—
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namely, the location of transmission peaks represents a

fractal Cantor set [2]. It was also seen that different

structures belonging to the same substitution sequence

(e.g., Fibonacci multilayers of different stages) some-

times possess spectral scalability, i.e., their spectra are

related to each other by means of scaling rules [5].

On the other hand, we showed earlier that fractal

multiplayer structures constructed according to a

generalized Cantor algorithm always possess spectral

scalability [6], and this scalability directly results from

geometrical self-similarity of these structures [7]. At the

same time, it was shown that transmission peaks occupy

the whole frequency region and so, unlike with QP

structures, the peak location exhibits no fractal

properties [6].

However, multifractal analysis of the transmission

spectral plot has revealed indications of its fractal nature

[8]. Indeed, it was later observed that at least some

families of fractal multilayers possess spectral self-

similarity [9]. However, the nature of this effect, as well
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Fig. 1. Initial three generations (N ¼ 1–3) for some families of fractal

multilayers constructed according to Eq. (2).
as its connection to spectral scalability or geometrical

character of the system in question has so far been

uninvestigated.

In this paper, we analyze the spectral self-similarity of

fractal multilayers. We show numerically and analyti-

cally that self-similarity is inherently present in all fractal

multilayers, but has several significant differences from

what occurs in QP media. We also demonstrate that

spectral self-similarity and scalability are both closely

related to geometrical self-similarity of fractal structures.

Prior to proceeding with the results, we briefly touch

upon the construction procedure of fractal multilayers,

which is dealt with in Section 2. In Section 3, numerical

demonstrations of spectral self-similarity in various

fractal structures are presented. Analytical derivation of

self-similarity based on spectral scalability is provided

in Section 4. Finally, Section 5 summarizes the paper.

2. Fractal multilayers and spectral scalability

Along with our previous investigations [6–9], we

consider binary one-dimensional fractal photonic

structures, i.e., multilayer structures consisting of two

kinds of layers, labeled A and B, their refractive index

and thickness satisfying the relation:

nAdA ¼ nBdB � pc

2v0

: (1)

This ensures that optical thicknesses of all the layers are

equal, and introduces a natural frequency scale, 2v0,

with respect to which normal-incidence optical spectra

are periodic.

The construction procedure of fractal multilayers is

based on a generalization of a middle-third Cantor set

generation algorithm. It is provided in detail in Refs.

[7,9]. One of the possible approaches is to introduce a

substitution rule, e.g.:

A!AAAAA; B!BABAB: (2)

Here, A always transforms into several A-layers (the

number defined as G), while the transformation of B,

also of G members, can consist both of A and B. The

placement of A-layers in the latter is encoded as a set C

of positions starting with zero, e.g., C ¼ f1; 3g for

Eq. (2). The number of elements in C is defined as

C. The procedure starts with a single B-layer as an

initiator, and the number the transformation Eq. (2) is

recurrently applied is known as a number of generations

N of a fractal structure. The notation ðG;C;NÞ will be

used to denote a specific fractal multilayer, and it can be
seen that Eq. (2) corresponds to structures ð5; f1; 3g;NÞ
[7]. Fig. 1 shows several initial generations of various

fractal structures generated according to this procedure.

As was noted above, it was shown that the optical

spectra of fractal multilayers exhibit spectral scal-

ability, e.g., the transmission spectra TðvÞ of

ðG;C;N þ 1Þ and ðG;C;NÞ structures are related as:

�
TNþ1

�
v

G

��g
¼ TNðvÞ; (3)

where the power g can be approximately represented as

g � ½G=ðG� CÞ�2 [7]. It was also shown that while the

1=G factor responsible for frequency scaling directly

follows from geometrical self-similarity, the power g

reflects an incoherent effect largely independent of

either the structure topology or the spectral shape,

which can be confirmed by the fact it turns out not

to depend on the composition of C.

3. Numerical observation of self-similarity

As noted in Section 1, there has been an indication

that at least some families of fractal structures exhibit

self-similar optical spectra. This self-similarity, how-

ever, has manifested itself in the shape of a transmission

spectrum envelope rather than in the transmission peak

location (as is the case with QP media). A straightfor-

ward further step would be to find out whether this

behavior can be attributed to all fractal multilayers

constructed as described in the previous section.

As a result of extensive numerical research, it has

been shown that this is indeed the case. For modeling,

we chose structures with various G and C to ensure

maximum topological variety, and sufficiently large N

so that the total number of layers GN would be of the

order of 500–2000. Such values are large enough to

assure a rich transmission spectrum, allowing to observe

at least three stages of self-similarity. For spectra
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calculation, generalized effective-medium multiple-

reflection method based on Airy formulas was used

(essentially a generalization of Sun-Jaggard procedure

described in Refs. [10,11] on arbitrary fractal multi-

layers). Such methods utilize the geometrical self-

similarity of the structures in question to the maximum

extent. This results in the fact that the computation time

scales linearly with N rather than exponentially, as is the

case with traditional transfer matrix approaches.

The illustration of self-similarity for some structures

is shown in Fig. 2. It can be seen that, as in the case of

scalability, a frequency-scaling factor equal to G is

introduced. Also along with scalability, it appears there

is a need for an additional power transformation of

transmittance to facilitate self-similarity observations.

The derivation of this power law is given in the

following section.

4. Power law for self-similarity

The main problem for any analytical derivation for

the spectral self-similarity consists in the fact that as can
Fig. 2. Numerical illustration of spectral scalability. The top plots show the tr

Fig. 1, namely ð3; f1g; 6Þ (a), ð5; f1; 3g; 4Þ (b), and ð7; f1; 3; 5g; 4Þ (c). For ea

to a power equal to gðG� CÞ [see Eq. (3) ].
be seen in Fig. 2, it is to a large extent a ‘‘visual’’ effect,

and precise mathematical description of what can be

seen as ‘‘coincident’’ or ‘‘matching’’ spectra is not

straightforward. However, we will try to employ some

assumptions to derive both the scaling factor and the

power law of spectral self-similarity.

We need to consider the following equation:

�
TN

�
v

G

��b
¼ TNðvÞ; (4)

and solve it for the power b. However, one can see

immediately from Fig. 2 that Eq. (4) cannot be true for

any v because scaled spectra in fact contain a lot of

transmission peaks at different places which do not

coincide for Fig. 2. However, what makes the plots

in that figure look similar is that at the frequencies v0

between transmission peaks the transmittance behaves

according to Eq. (4).

It is known for any multilayer system that a

transmission peak is essentially a result of constructive
ansmission spectra for the structures belonging to the families shown in

ch of these plots, the central part is scaled in frequency by G and raised



S.V. Zhukovsky, A.V. Lavrinenko / Photonics and Nanostructures – Fundamentals and Applications 3 (2005) 129–133132

Fig. 3. The dependence of xN ¼ log TN ðv0ÞðTNþ1ðv0ÞÞ on N for the

families of fractal multilayers shown in Fig. 1. One can see a good

convergence towards G� C (shown by horizontal lines), which is an

indication that between resonance peaks the wave traverses N-gen-

eration substructures inside a ðG;C;NÞ structure incoherently, as

independent filters.
interference of waves multiply reflected at layer

interfaces. This is essentially a resonant, coherent

effect, and long-range order of layer arrangement plays

an important part in the peak formation. It can be

reasonably assumed that between transmission peaks

there are regions where those resonant conditions not

satisfied, and long-range order is irrelevant to a certain

extent. Looking at the formation of fractal multilayers

(see Fig. 1), it can be seen that a ðG;C;N þ 1Þstructure

consists of G� C previous-generation substructures

ðG;C;NÞ. That said, it can be concluded that whenever

the frequency is strongly off-peak, we can assume that

the wave propagates through those substructures

independently, undergoing subsequent attenuation. This

can be indirectly confirmed by Fig. 3 and leads to:

TNþ1ðv0Þ ¼ ½TNðv0Þ�G�C: (5)

Substituting Eq. (5) into Eq. (3) for v0, we obtain:

�
TN

�
v

G

��gðG�CÞ
¼ TNðvÞ; (6)
Table 1

Comparison of spectral scalability and self-similarity in QP and fractal mu

Spectral scalability

QP Fractal

Applies to Transmittance TðvÞ

Frequency region ð2nþ 1Þv0 2nv0

Frequency scaling factor Irrational G

Power law Unknown g ¼ ½G=ðG� CÞ�2
from where it follows that:

b ¼ gðG� CÞ: (7)

As the final note here, we can now see that a purely

empirical guess b ¼ 2g given in Ref. [9] for the struc-

ture ð4; f1; 2g; 5Þ is none other than a particular case of

Eq. (7) for G� C ¼ 2.

5. Discussion

We have shown numerically that fractal one-

dimensional photonic structures indeed exhibit spectral

self-similarity, and confirmed analytically that this self-

similarity is closely related to spectral scalability. Since

the latter is known to result from the geometrical self-

similarity [7], we can conclude that geometrical self-

similarity of fractal structures is reflected in the nature

of their optical spectra.

Comparing the optical properties of QP and fractal

structures, one can now see these two types of structures

exhibit both scalability and self-similarity. However,

these effects differ in nature for those two types. The

most prominent difference consists in the nature of self-

similarity, which occurs for different spectral features.

Anther important difference is the frequency region of

effects. While for QP structures both effects are

observed around odd multiples of the central frequency

v0 [see Eq. (1) ], fractal structures exhibit their spectral

properties around even multiples of v0, as seen from

both Eqs. (3) and (6). Other differences include the

value of scaling factor and the applicability of a power

law. The differences are summarized in Table 1.

In conclusion, in both QP and fractal multilayers the

above mentioned two spectral effects are similar in

essence but different in details. So, previously known

results that the reason for spectral self-similarity is a

quasiperiodic geometrical structure [2], while geome-

trical fractal structure underlies spectral scalability [7],

point at the fact that both QP and fractal multilayers

should inherently possess quasiperiodicity as well as
ltilayer structures

Spectral self-similarity

QP Fractal

Transmission resonance

locations (‘‘peak map’’)

Transmittance envelope

(‘‘dip map’’)

ð2nþ 1Þv0 2nv0

Irrational G

None b ¼ ðG� CÞg
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fractality. However, differences in detail are not entirely

parametric, so it can be stated that despite the common

possibility of substitution-rule construction (see Eq. (2)

and compare to Ref. [4]), fractal structures are in some

ways different from QP multilayers.

Further studies of this matter are definitely of use to

achieve an understanding concerning the correlations

between topological properties of inhomogeneous

media and the properties of wave propagation inside

them. This, in turn, would hopefully be useful in the

design of optical devices for nanophotonics and

integrated optics. A straightforward extension of this

paper would be to analyze the spectral dependencies of

the density of modes, which should give us more

information about the exact nature of localized and

extended states in deterministic aperiodic media.
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