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1 Introduction

Recent advances in miniaturization techniques have proliferated the theoretical
and experimental interest in controlling transport through contacts with minimal
possible size. From a purely classical point of view, where the problem resembles
- the one of calculating the passage of a dilute gas through a narrow hole, one
obtains for the resistance R of such a point contact [1]

_ _PF

where pp is the Fermi momentum, n. is the electron density and D is the dia-
meter of the contact. This resistance is commonly referred to as the Sharvin
resistance. For small contacts quantum effects will become important, since for
small D only a limited number of eigenmodes of the electronic system under
consideration can fit into the contact, and consequently the quantization of the
transverse momentum limits the transport through the system. In the case of
non-interacting electrons each transmission channel or eigenmode will carry one
quantum of conductance Gg = 2e2/h, corresponding to a resistance of 12.9k2.
The factor 2 in this formula is due to spin degeneracy. In general, the proba-
bility 7; of channel 7 can be any number between zero and one characterizing
the conductance of each channel in units of the quantum of conductance. The
total transmission probability 7 is the sum of all single channel transmission
coeflicients, ‘

M
T = Zfri, with 7 € [0, 1], (2)

a=1

and can be any number between zero and M, where M is the number of channels
present. The total conductance is therefore given by

e2
G = QZT' (3)
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In the linear response regime the conductance G = g—{,|yzo is related to the
local density of states (LDoS) of the interacting region provided the coupling to
left and right lead is symmetric [2]. Hence, it seems sufficient to determine the
number of channels M and the independent transmissions 7;. In the following
we will briefly review the experimental findings and then discuss which problems
may arise in a simple tight-binding modelling of the junction. A more complete
treatment of these problems leads to an interacting model. In the case of strong

interactions we are able to connect the experimental findings to an approximate
sum rule.

2 Experimental Observations

Experiments on a large ensemble of metallic contacts have demonstrated the sta-
tistical tendency of atomic-size contacts to have preferred values of conductance
G [3]. The experimental evidence stems from conductance histograms calculated
from repeated recordings of breaking curves from contacts fabricated by diffe-
rent experimental methods such as scanning tunnelling microscopes (STM) [4],
dangling wires [5] or mechanically controllable breakjunctions (MCB) [6].

In the case of monovalent metals the preferred values are often close to integer
multiples of Gy [4,6,5]. The natural explanation of this finding is a set of trans-
port channels that are either fully open (7; = 1) or completely closed (1; = 0),
i.e. that there is an underlying ”transmission quantization”. This interpretation
is supported by measurements of the shot noise [7], the thermo-power [8] or the
conductance fluctuation amplitude [9] of gold few-atom contacts fabricated with
the mechanically controllable break-junction technique. For all three properties
a minimum is expected and observed: when fully open transport channels are
present. Here, it is thought that each individual transport channel is made up
of the single valence orbital of a monovalent atom and that a contact with con-
ductance M Gy is comprised of M such atoms. Interestingly also some of the
multivalent metals do show histograms with a pronounced peak structure with
spacings of the order of Gy [10], see Fig. 1.

For the case of aluminum where the first histogram peak is located around
0.8G), it has been shown, that contacts with this conductance do transmit more
than one channel, mostly three channels [11,12]. In this experiment the chan-
nel ensemble has been determined by analyzing the nonlinear current-voltage
characteristics of superconducting atomic contacts. In contrast to the observa-
tions for monovalent metal contacts, each of these channels has a transmission
well below one. It has been argued that these findings might be either due to
strong disorder in the contact region induced by the particular sample fabri-
cation method that involves thin evaporated films [13] or by the influence of
the determination procedure relying on superconductivity. However, additional
evidence for not completely open channels is again found in the shot-noise sig-
nal of aluminum contacts in the normal state fabricated with the MCB method
from bulk aluminum [7]. The fact that more than one channel contributes to the
conductance of a single-atom contact is naturally explained by a quantum che-
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Fig.1l. Conductance histogram constructed from over 30000 individual opening curves
for two different samples made of aluminum fabricated by the MCB technique. Each
curve was recorded at 4.2 K while stretching contact to break. From [10]

mical model that calculates the transport channel in a tight-binding formalism
starting from the valence orbitals of the metal [14,15]. This description implies
- that the conductance properties of atomic-size contacts are dominated by atomic
arrangements. E.g. jumps in the conductance when stretching a contact would
be a consequence of a rearrangements of the atoms as suggested by the expe-
riment from Rubio et al. [16] who showed that the jumps in the conductance
appear simultaneously with a jump in the strain force. A possible explanation
of the preferred conductance values could thus be the existence.of preferred ato-
mic arrangements of the contact. This would imply the appearance of preferred
transmission coefficients. However, this interpretation still lacks a complete ex-
planation why the transmissions of the individual channels of a single Al atom
add up to a total conductance value close to 1. The latter is evidenced in Fig. 2.
The bottom panel of Fig. 2 shows in detail the evolution of {7;} when a contact is
opened. The upper panel of Fig. 2 shows the evolution of the total transmission
T as obtained from the sum of all individual transmissions. There are several
remarkable features in this evolution. First, the abrupt changes in 7 correspond
generally to a complete rearrangement of the transmission set. Second, even du-
ring the more continuous evolution on the tilted plateaus the variations of 7 arise
from changes in several of the individual channels. Interestingly the variations of
the total conductance are smaller than the variations of the individual 7;, since
some of the 7; increase while others decrease. Similar results are observed when
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Fig. 2. Top panel: total transmission 7=)_ 7; as a function of time while opening an
aluminum sample at 0.5 pm/s and below 100 mK. Bottom panel: evolution of individual
transmission coefficients 7;. The vertical lines correspond to conductance jumps with
change of the number of channels. The x-axis scale indicates the approximate variation
of the distance between anchors. The origin of the distance axis has been set to the
point where the contact breaks and enters the tunnel regime

closing the contacts as shown in Fig. 3. Even within a plateau rearrangements
of the {7;} occur while the total conductance remains almost unchanged (see
e.g. the plateau with M = 3 in Fig. 2 or M = 5 in Fig. 2. Thus, there seems
to be a tendency for the contacts to adopt such contacts that have a preferred
value of the total conductance, i.e. the sum of all transmission, regardless of
the transmission ensemble itself. The continuous evolution of the transmission
without abrupt rearrangements can again be explained by a tight binding model
which describes the evolution of the LDoS and consequently of the {r;} [17].
However, the mechanism giving rise to channel rearrangements without change
of G remains unclear.

In what follows we describe the non-self-consistent tight binding calculation,

stress the special role of the constriction and present a possible explanation for
the observed behavior.

3 Tight-Binding Modelling for Break-Junctions

It is a hallmark of Fermi liquid theory that for low-lying excitations the electron-
electron interaction leads only to a renormalization expressed in terms of Fermi
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Fig.3. Same as Fig. 2 when closing the contact at a speed of 1.1 pm/s

liquid parameters. In calculating bulk properties of so-called ’simple’ metals -
in contrast to e.g. narrow band materials- the electron-electron interaction can
safely be neglected altogether. In those cases the band structure and, therefore,
the LDoS is easily obtained from a band structure calculation using, e.g., a non-
self-consistent tight-binding model of the material under consideration [18,19].
In general the tight binding method aims at replacing the exact many-body
Hamiltonian H by a parametrized Hamiltonian matrix in a basis of well localized
functions ("atomic orbitals’). The omission of the Coulomb interaction among the
electrons leads to a Hamiltonian matrix that does not depend on the distribution
of electrons. Consider a usual tight-binding Hamiltonian Hrp:

HTB Zew‘c%aa Ciao + Z thaajﬁcww jBo) (4)

<%,7> aﬁ

where i runs over all the atoms, «, 8 are band indices and <ii> is a restricted
sum over nearest neighbors only. In the following N will be the total number of
atoms and n will denote the number of bands.

The hoppmg element t;, ;3 of (4) is obviously equal to (d)mlHT Blo;s), where

|Pia) = c o 10). The Slater-Koster two-center approximation approximates this
integral in the case of i # j by [20,21]

b s0(bi — b;) = / @ (r — b B 5(r — by), 5)
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where H is the two-center part of the Hamiltonian H consisting of the kinetic
energy operator and the (considered spherically symmetric) part of the single-
particle potential on atom ¢ and j located at position b; and b;. The 'L/jjﬂ are
Lowdin orbitals. These hopping elements depend on the magnitude - usually the
lattice constant - and the orientation of w, determined by the lattice type. In
the case where the two atoms are identical, the t;, js(u) can be parameterized
by ten independent ’Slater-Koster parameters’ usually denoted by h,g, where
a and (3 specify the orbital angular momenta (s,p,d), and v = o, 7, specifies
the angular momentum component relative to the vector u connecting atom
i and atom j. The relation between the ¢, jg of (4) and the Slater Koster

parameters is relatively simple for s- and p-like orbitals and fixed distance or
lattice constant. '

A frequently used method to go beyond this simple tight-binding approach
and to include some aspects of the electron-electron interaction for bulk pro-
perties is via the local charge neutrality condition (LCNC). The tight-binding
Hamiltonian, (4) might give rise to spurious charge transfer resulting in a local
charge different from the ionic charge. In a good metal, this net charge is usually
screened on a scale -the screening length- smaller than the lattice constant,
thereby restoring a uniform charge density. This is modelled by the LCNC by
enforcing an electron density that equals on each site the ionic charge. The tight-
binding method augmented with the condition of local charge neutrality, which
enforces the same occupation on each site has been employed by A. Yeyati [14]
and J. C. Cuevas [19,15,17] to obtain the evolution of the channel transmissions
in atomic break-junctions when stretching the contacts.

4 A Multi-level Impurity Model

The opening of the quantum point contact just before rupture might be mo-
delled by varying the overlap of the wavefunctions of the atom or atoms in the
constriction with its neighbors. According to Harrison [22] a lattice constant
dependence can easily be built into the tis ;s to obtain the band structure at
different lattice spacings by scaling the Slater-Koster parameters as d~2 for the
(s,8), (s,p), and (p,p) parameters, where d is the ratio between new and old lat-
tice spacing. Other parameters show a more complex scaling. The (s, d) elements
for example scale as d~7/2. Harrison’s scaling argument might be oversimplified
in many instances. In any case the overlap of the wavefunctions and hence the
tia,j8 have to vanish exponentially for large enough d.

We will now rewrite the tight-binding Hamiltonian in order to stress the
central role of the atom(s) in the constriction which will be referred to as the
central atom or impurity.

After redistributing the indices ¢ in such a way that ¢ = 0 corresponds to the
central atom, Hrp ofn (4) can be rewritten as:



Conductance Quasi-quantization of Quantum Point Contacts 309

Hrp = Hp + Hc

150 <i,i>  a,B

: i%0,j#0 o
= € CT C
- m~0mo ~“0Omo

m,o

T Z Z (tOm,iﬁcgmGCiﬁg + tiﬁ,OmczﬁacOma>‘

i=n.N. m,o
B8

> i—n.n. denotes a sum over the nearest neighbors of the central atom. In order
- to have Hrp hermitian, the hopping elements have to satisfy ¢, i = tip.iq- This
then implies that Hp is an hermitian operator and hence can be diagonalized
by a unitary transformation:

IJI?[TBIJ“1 = fJHBfJ—l + ﬁHcﬁ_l, (7)

where UHgU ! is diagonal in the new basis. With the following transformation
of the annihilation and creation operators from the old to the new representation

Cho = ZUiacia,G (8)

the hybridization term between the central atom and the leads assumes the
following form (for simplicity: tom,ig = tm,ig and cOmU — dl.,):

Y tmisdhoCise = ) Z tm,i80hne (Ul3)* Cro

i=n.N. ko ;—n.N.
Bym,o m B
=) Vrdh,chos 9)
k,o
where V" is given by
V=D tmas(Ul)" | (10)
i=n.N.

B

In this basis the tight-binding Hamiltonian equation (4) can therefore be written |
as:

HTB = Zek cko-cka Zem mo ma (11)
+ EZ(Vkmdmgckd +h.c.).

ko m

This is nothing but a multi-level impurity model without Coulomb repulsion on
the impurity (U = 0). In general t,, ;3 # 0 for o # 8, which is —in parts— a con-
sequence of s-p hybridization. Therefore the resulting model (even for only one
local level) is different from the usual SU(n) x SU(2) Anderson model although
several bands are involved.
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5 Electronic Density and Static Screening in the
Constriction

In the following we will argue that the LCNC breaks down in the constriction’
and therefore a tight-binding approach together with a local charge neutrality
constraint treats the Coulomb interaction in an oversimplified way.

In order to understand how a local charge neutrality constraint can modify
the transmission through the constriction we will employ a semiclassical argu-
ment to see that the geometric constriction will alter the screening length. In
a metallic system a local impurity potential @ shifts the energy levels locally
by an amount ¢. In order to guarantee a spatially uniform Fermi energy Ep
throughout the system electrons will have to be redistributed such that the po-
tential generated by the density change dn(r) according to Poisson’s law cancels
the impurity potential. Therefore the impurity potential is related to the local
electron density via

V2d(r) = én(r)ele, =~ D(r,Er) ®(r)e?/e,, ‘ (12)

where D(r, Er) is the local density of states and & < EFr has been assumed. In
spherical coordinates and with open boundary conditions we obtain the Thomas
Fermi screening length for the bulk:

A = /€, /e2D(Ep). (13)

For aluminum the bulk screening length is roughly Ar ~ 0.5 A. The lattice
constant is approximately a ~ 4 A and therefore Ar < a for the bulk.

In order to obtain the corresponding screening length in a quantum point
contact where the finite boundary conditions will change the screening properties
of the electrons, not only (12) in the presence of the new boundary conditions
has to be solved. In addition, the Schrodinger equation must be solved to take
the effect on the local electron density into account. In standard perturbation
theory this would correspond to solving the random phase approximation (RPA)
for the chosen geometry. ‘

In the following we consider a simple toy model to simulate the effect of the
finite geometry. To this end we model the elongation of the quantum wire in
oblate spheroidal coordinates ({, 7, ¢). The coordinate surfaces of this system
are confocal ellipses and hyperbolas rotated around the minor axis. We will use
this set of coordinates since a suitable approximation of the surface of the sample
is obtained by having n = £ng with 0 < ¢ < mand 1 < { < co. The elongation of
the quantum wire is then modelled by a decrease in 7g. The minimal possible 7
is assumed while the wire breaks and should be below a lattice constant. Fig. 4
shows this surface for various 7. For details of this model and oblate spheroidal
coordinates see [23,24]. J. Torres et al have generalized the Landauer-Biittiker
formula to a wire with similar geometry [25]. Kassubek et al. have used a free-
electron model for two- and three-dimensional wires [26]. Imposing hard wall
boundary conditions and neglecting Coulomb interaction among the electrons
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Fig.4. Modelling the break-junction experiment: While opening the contact the cen-
tral region of the quantum wire gets thinner until it breaks. In this simple model of
the experiment we describe the wire by a surface of constant 79 in oblate spheroidal

coordinates (¢, n, ¢) and the opening of the contact by a decrease in 7. For details,
see [23,24]

we solve for the one-particle density. As expected, the increase in kinetic energy
leads to a depletion of the density in the constricted region. Figure 5 shows our
result for the electron density where we assumed the first 200 eigenstates to be
occupied. In the numerical evaluation we chose a cut-off {y large enough such
that the density in the constriction (¢ & 1) did not depend on it.

Although we neglected the Coulomb interaction in our toy model, which
will try to balance any density fluctuations, it is clear that the competition
between kinetic energy and interaction cannot restore a uniform density. LUNC
on the contrary enforces a uniform density by assuming that A7 < a everywhere.
Forcing the system to a constant screening length even in the constriction will
of course modify the LDoS at the Fermi energy, D(Er). This is analogous to
fixing the screening length according to Ar < a, see (13). Consequently the
current and hence the conductance will be modified accordingly. In order to
prevent this, the Coulomb interaction in the constriction has to be explicitly
taken into account in the tight binding Hamiltonian, (4) without resorting to the
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Fig. 5. One-particle density for an opening angle of the point contact corresponding
to mo = 0.5. The density does not depend on ¢ due to the symmetry of the chosen hard
wall potential. The density in the constriction is depleted in the central region

LLCNC. The Hamiltonian we will use to describe the break-junction experiments
therefore assumes the form:

1 o .
H = Hrp + 5 Z Um,m' NmoeNm/ o’ (14)
(m,o)#(m’,0”)
where we introduced intra- and interlevel Coulomb matrix elements Uy,  in
the central region.

In the last section we will derive an approximate sum rule for the total
transmission probability 7 of the Hamiltonian of (14) with 2 orbitals on the
central atom.

6 Conductance in the Strongly Correlated Regime
The current through the quantum point contact described by (14) in the case of

symmetric coupling to left and right lead can be related to the LDoS according
to [2]

7= %; / o [£() — Fo+ S Imtr{L- Go(w)}.

Here, G, is the local Green function and the lead-to-orbital coupling matrix I’
is given by [2]:

Dnm = 21 ) pr() VPV, (15)
k
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where pi(€) is the density of states of the leads. The conductance follows imme-
diately:

al

G= |  =m{l' GO0} (16)

The lattice constant dependence of the elements of I" is obtained from (10) and
Harrison’s scaling law as

Tpm = 27p(0) Y tmiatian ~ d% (17)
i=n.N.
which is a rather strong lattice constant dependence. Since the ground state of H
in (14) is a spin singlet [27], the quantum dot acts for low enough temperatures as
a pure potential scatterer for electrons traversing the system, and the following
Fermi liquid relations hold [28,24],

(hw)? + (rkpT)?

Zgl(w) = ke Tw w, ' < Tk (18)
0
/_ duw tr {62(“’ Qda(w)} — 0, (19)

where Tk is a dynamically low energy scale of the system, analytically given
n [29]. The averaged electron number in the dot per spin, ng,, can now be

evaluated using the general relation d%ln(ggl) =(1- %) G4 and the Luttinger
theorem (19),

— Im / Wit Gao () = = [r{1n G ()™ 1}]
It may be re-expressed, using tr In G4, =1n det G4, 7L, as

Ndoe = —arccot
U

Im det Gg,(0)1 (20)

Re det G45(0)71 }

The scattering T-matrix of the device, I" - G4, which for symmetric coupling to
left /right lead completely determines the conductance G. Using the Fermi liquid
property equation (18) together with the Dyson equation relating G4, and X;(w)
and (20), we obtain at the Fermi energy (w =0, T <« Tk) for n =2,

Im tr (I" - G,(0)) = sin?(mng,) + (21)
Reldet(iI" — X7(0))]

- 2 - *
sin(27mn4 )Fll(gd)Q + 259(0)) + I'2a(€a,1 + 211(0))

This is an exact result, valid for arbitrary microscopic pérameters L s Ea, ST
Upn,m- 1t is the generalization of the well-known unitarity rule of the single-level
Anderson impurity problem to the case of several impurity levels [30]. Having
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at least one of the local levels significantly below the Fermi level (e,=1 < 0,
lem=1]/Inm > 1) and the Coulomb repulsion large enough (Upmi/Innt > 1)
to enforce nyg, &= 1/2 we obtain a conductance close to the conductance unit.
This resembles the observed behavior. The condition Up m//Inn 3> 1 can be
met through the decrease in the hopping amplitude while opening the contact.
This situation is analogous to the situation in narrow band materials where the
small band width leads to a strongly correlated state. Provided the wire does
not break and the temperature is well below the low energy scale Tk, which
depends exponentially on the entries of the coupling matrix, it seems that we
will always reach this regime while elongating the wire according to (17).
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