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pled nanopillar waveguide consists of several rows of periodically or aperiodically placed dielectric rods 

(pillars). In such a waveguide, light confinement is due to the total internal reflection, while guided modes 

dispersion is strongly affected by the waveguide structure. We present a systematic analysis of the optical 

properties of coupled nanopillar waveguides and discuss their possible applications for integrated optics. 
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1 Introduction 

Photonic crystals (PhCs) are known for offering unique opportunities for controling the flow of light by 

acting as waveguides, cavities, dispersive elements, etc. [1–4]. Photonic crystal waveguides (PCW) are 

one of the promising examples of PhCs applications at micron and sub-micron length-scales. They can 

be formed by removing one or several lines of scatterers from the PhC lattice (Fig. 1a). PCW based on 

PhCs with different two-dimensional (2D) lattices of both air holes in a dielectric background and dielec-

tric rods in air were reported [1–3]. Light confinement in PCW is obtained due to a complete photonic 

bandgap (PBG), in contrast to the standard guiding mechanism in a conventional dielectric waveguide 

(Fig. 1b). It was theoretically predicted that a PhC waveguide can possess loss-free propagation as soon 

as a guiding mode falls into a complete PBG. However, progress in PhC research has revealed that losses 

are inevitable and sometimes might be rather high even in spite of broad PBG. Special optimization 

efforts are now intensively applied for decreasing optical losses and the results are quite promising [5, 6]. 

 At the same time, PBG guiding is not the only waveguiding mechanism in a PhC. Unique anisotropy 

of PhCs can cancel out the natural diffraction of the light, leading to the self-guiding of a beam in a non-

channel PCW [7–9]. The common principle of index guiding (guiding due to total internal reflection) 

can be also found in periodic systems. It is rather straightforward if a waveguide is organized as a defect 

in a lattice of holes in a dielectric material. Then, the channel itself has higher index of refraction than 

the average index of the drilled or etched medium. Topologically inverted systems like periodic arrays of 

rods or nanopillars placed in air can also provide waveguiding due to index difference [2]. However, 

fabrication of rod arrays on the nanoscale is a relatively difficult technological problem. 
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Fig. 1 Optical waveguides: (a) photonic crystal waveguide, (b) dielectric waveguide, (c) nanopillar 

waveguide, and (d) coupled nanopillar waveguide. 

 
The recent progress in the fabrication of nanorod structures has proved the relevance of their study not 

only as a useful theoretical model. For example, two-dimensional (2D) silicon-on-insulator (SOI) pillar 

PhC have recently been fabricated and characterized [10]. Sandwich-like structures have also been suc-

cessfully realized in GaAs Al O
x y

/  material system [11]. Membrane-like structures have been realized, 

based on polymer membranes incorporating Si rods [12]. Recently, various combinations of active mate-

rials inserted in single nanowires or arrays of nanopillars have been under attention as well [13]. It is 

important to point out that all of the above mentioned studies do not only present a successful practical 

realization of the pillar PhC structures, but also report transmission efficiencies and out-of-plane radia-

tion losses comparable with the 2D PhC based on hole geometry. 

 A one-dimensional (1D) chain of rods placed at equal distance from one another (Fig. 1c) possesses guid-

ing properties as was shown by Fan et al. [2]. The fundamental mode of such a periodic nanopillar 

waveguide lies below the light line and below the first PBG corresponding to the 2D PhCs with a square 

lattice of the same rods. Guiding is due to total internal reflection. A better confinement of light can be 

achieved, if several 1D periodic chains are placed in parallel (Fig. 1d) [14]. Such waveguides are called cou-

pled nanopillar waveguides (CNPWs) and are designated as Wn, where n is the number of parallel rows 

comprising the CNPW. In building a CNPW both the longitudinal and the transverse relative shift between 

individual waveguides can be arbitrary, and thus, a high flexibility in dispersion engineering can be achieved. 

 In this paper, we review basic properties of coupled nanopillar waveguides and discuss their possible 

applications for integrated optics. In Section 2, a CNPW is introduced and possible ways to tune the 

CNPW dispersion are discussed. The transmission efficiency of 2D and 3D CNPWs is reported in Sec-

tion 3. The route to improve the coupling between a nanopillar waveguide and an external dielectric 

waveguide (like an optical fiber) is discussed in Section 4 with respect to aperiodic NPWs. Possible 

applications of coupled periodic and aperiodic nanopillar waveguides are discussed in Section 5. Sec-

tion 6 concludes the paper. 

2 Dispersion engineering 

2.1 Dispersion tuning 

In Ref. [2] it was shown that a single row of periodically placed dielectric rods is effectively a single-

mode waveguide within a wide frequency range (Fig. 2, left panel). It has a well confined fundamental 

mode. Attaching one, two or more identical W1 waveguides in parallel to the original one produces a 

coupled-waveguide structure [14]. It is well known in optoelectronics that this leads to the splitting of the 

original mode into n modes, where n is the number of coupled waveguides [15]. 

 In Fig. 2, dispersion diagrams for W1, W2, W3 and W4 CNPWs are shown. All rods are placed at the 

vertices of a square lattice. To model a CNPW dispersion we used the plane-wave expansion method 

(PWM) [16]. The supercell consists of one period in the z direction and 20 periods in the x direction, 

where n periods occupied by dielectric rods were placed in the center of the supercell. The waveguide is 

oriented along the z-axis (Fig. 2). The calculations were performed for 2D structures and for TM polari-

zation. The n modes of the CNPW are bound between the Γ X-  and X M-  projected bands of the corre-

sponding infinite PhC of a 2D square lattice of rods (Fig. 2, dashed lines) [14]. All modes are effectively  
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Fig. 2 Dispersion diagrams for CNPWs with 1, 2, 3 and 4 rows. The insets show a sketch of the 

waveguides. The coordinate system together with the first quadrant of the first Brillouin zone for the 

square lattice with period a are also shown. The grey areas depict the continuum of radiated modes lying 

above the light line. Guided modes are shown as black solid lines. The projected band structure of the in-

finite 2D PhC is shown as dashed lines. Here 13 0ε = .  and r = 0 15a. . 

 

localized within the waveguide region. Near the irreducible Brillouin zone (IBZ) boundary the dispersion 

is strongly affected by the system periodicity. 

 It is well known that by varying the filling factor, i.e. the rod radius, and the dielectric constant of the 

rods, one can tailor the frequency range and slope of the PhC bands. Taking into account that the CNPW 

modes are bound by Γ X-  and X M-  bands of the corresponding infinite 2D PhC, a proper frequency 

adjustment of nanopillar waveguide modes can be done by changing these two parameters. Decreasing 

the dielectric constant of the rods, while keeping their radius constant, pushes the bundle of n CNPW 

modes to higher frequencies. The modes shift towards lower frequencies, if the nanopillar radius in-

creases, with fixed dielectric constant. In general, the mode tuning follows the rule: the larger the aver-

age refractive index of the system, the lower the mode frequencies [14]. 

 Another option for tuning the mode dispersion of CNPW is to change the distance between individual 

waveguides, the transverse offset. Examples are shown in Fig. 3 for two transverse offsets, 0 5d a= .  

(left) and 2 0d a= .  (right). In these cases the rods are situated at the vertices of a rectangular lattice. 

While the mode overlap of individual waveguides is larger (smaller) for close (far) positioned 

waveguides, the coupling strength is stronger (weaker). For two identical waveguides, this in turn results  

 

M

 

Fig. 3 Same as in Fig. 2 for CNPWs with different transverse offsets, 0 5d a= .  (left) and 2 0d a= .  

(right). The insets show a sketch of waveguides and coordinate system. 
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Fig. 4 Same as in Fig. 2 for triangular lattices W2, W3, W4 and W5 waveguides. The insets show a 

sketch of the waveguides and the coordinate system. Here 13 0ε = .  and 0 26 .r a= .  

 

in stronger (weaker) mode splitting, β β κ
±
= ± , with respect to the propagation constant β of the un-

coupled NPW. Here κ is a coupling coefficient [15].  Note, that the CNPW mode frequencies  are still 

bounded by the position of the projected band structure of the corresponding infinite rectangular PhC 

(Fig. 3, dashed lines). 

 The last parameter which may affect the dispersion of a CNPW is the longitudinal shift between its 

individual rows. In Fig. 4 the dispersion diagrams for CNPW with rods placed in the vertices of a trian-

gular lattice are shown for W2, W3, W4 and W5 waveguides. The orientation of the waveguides coin-

cides with the Γ X-  direction of the triangular lattice. The mode splitting in a “triangular lattice” W2 

waveguide strongly depends on the propagation constant (Fig. 4, left panel), being large for small β  and 
vanishing near the IBZ boundary. This is in contrast to a “square lattice” W2 waveguide (Fig. 2), where 

the mode splitting is approximately constant for all propagation constants. The mode degeneracy near the 

IBZ boundary leads to regions with negative dispersion (backward propagating waves) of the second 

mode. For CNPWs with the number of rods larger than two (Fig. 4, right panels) it results, furthermore, 

in the formation of mini-bandgaps and multiple backward waves regions in the dispersion. Note that in 

spite of the complex nature of the mode splitting, CNPW modes are still bounded by the projected bands 

of the corresponding triangular lattice PhC. 

 

 

Fig. 5 Dispersion diagrams of the W2 CNPW for different longitudinal shifts δ. The insets show a 

sketch of two parallel periodic waveguides with transverse offset d and longitudinal shift δ. Here 13 0ε = . , 

0 15r a= .  and d a= . 
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 The longitudinal shift δ can be arbitrarily set to any value between 0δ =  and 0 5aδ = . . The concomi-

tant dramatic changes in the CNPW dispersion are illustrated in Fig. 5 for the case of W2 waveguide. 

Starting from the simple mode splitting for 0δ =  one can have a very flat second band for 0 25aδ ª . , 

with negative dispersion regions in the second band for 0 25aδ > .  and degenerate first and second bands 

at the IBZ boundary for 0 5aδ = . . By combining such shifted W2 waveguides and appropriately choos-

ing the rod radius and transverse offset one obtains large flexibility in designing CNPWs with anomalous 

dispersion in the frequency range of interest. 

2.2 Coupled mode model 

To understand qualitatively the physical mechanism of the anomalous dispersion presented in the last 

example (Fig. 5), the coupled mode theory (CMT) can be used [17]. Being an approximate theory, CMT 

nevertheless manages to combine a simple physical model with accurate qualitative and even quantita-

tive results [18]. In what follows, two identical coupled periodic waveguides a-W1 and b-W1 are ar-

ranged in a W2 CNPW. The second waveguide, b-W1, is shifted by δ with respect to the first one (Fig. 5, 

inset). We limit ourselves to the scalar CMT, which in our case corresponds to the TM polarization. 

 The modes of the W2 waveguide are defined as the solutions of the 2D scalar wave equation 

 ( ) ( ) ( )
2 2

2

02 2
0E x z k x z E x z

x z
ε

∂ ∂Ê ˆ+ , + , , = ,Á ˜Ë ¯∂ ∂
 (1) 

where the dielectric function of the composite structure is simply the sum of dielectric functions of the 

two W1 waveguides, ( ) ( ) ( )a b
x z x z x zε ε ε, = , + , . Here 

0
/k cω=  is a wave number in vacuum. We are 

looking for a solution of Eq. (1) in the form of a linear combination of the propagating modes in two 

isolated W1 waveguides [19], which allows us to separate spatial variables in the form 

 ( )( ) ( ) ( e ( ) e ) ( ) e ( ( ) e ( ) e ) .i z i z i i z i z

a a a b b b
E x z x f z b z x f z b zβ β βδ β β

Ψ Ψ
- - -

, = + + +  (2) 

Here 
0

( ) ( ) exp ( ( ) )
m m
f z F z i zβ β= -  and 

0
( ) ( ) exp ( ( ) )

m m
b z B z i zβ β= - -  are the slowly varying ampli-

tudes of forward and backward propagating modes near the Bragg resonance condition of a single peri-

odic W1 waveguide with period a and 
0

π aβ = / . The functions ( )
a
xΨ  and ( )

b
xΨ  represent the transverse 

field distributions, and indexes m a b= ,  refer to a-W1 and b-W1 waveguides, respectively. The spatial 

shift between the two W1 waveguides is accounted for by the corresponding phase shift e
iβδ-

 of the field 

of the b-W1 waveguide.  Here β is the propagation constant of a homogenized W1 waveguide of width 

2l r=  and dielectric constant ( )eff
( ) 1 d ( )

z a

z

x a z x zε ε

+

= / ,Ú . The dependence of the propagation constant β   

on frequency is given by the standard planar waveguide dispersion relation [15] 

 2 2 2 2 2 2 2 2 2 1

eff 0 0 eff 0
tan ( ) ( ) ,

2

l
n k k n kβ β β

Ê ˆ
-Á ˜

Á ˜
Ë ¯

- = - -  (3) 

where we have introduced the effective index of refraction of the homogenized waveguide 
eff eff
n ε= . 

The transverse field distributions ( )
a
xΨ  and ( )

b
xΨ  obey the scalar wave equations 

 ( ) ( ) ( )
2

2 2

0 02
0 ,

m m m
x k x x

x
β Ψ ε Ψ

Ê ˆ
Á ˜
Á ˜
Á ˜Ë ¯

∂
- + =

∂
 

with m a b= ,  and the transverse dependent dielectric functions ( )
0m

xε  being a z-average dielectric con-

stant of the m-th waveguide. Substituting the mode expansion (2) into the scalar wave Eq. (1) and ex-

panding the dielectric constant ( )x zε ,  in a Fourier series with respect to z , 

 ( ) ( ) ( ) ( )2

0 0

0

( ( ) ( )) e
il i a z

a b al bl

l

x z x x x xε ε ε ε ε
- /

π

, = + + + ,Â  (4) 
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with the Fourier coefficients ( )
ml

xε , one obtains after some lengthy but straightforward derivations a 

system of four ordinary differential equations relating slowly varying amplitudes of the forward and 

backward propagating modes in the two W1 waveguides, 

 
d ˆ

d

a a

b b

a a

b b

F F

F F
iM

B Bz

B B

Ê ˆ Ê ˆ
Á ˜ Á ˜
Á ˜ Á ˜
Á ˜ Á ˜
Á ˜ Á ˜
Á ˜ Á ˜
Á ˜ Á ˜
Á ˜ Á ˜
Á ˜ Á ˜Á ˜ Á ˜Ë ¯ Ë ¯

= . (5) 

For the propagation constant close to the Bragg point 
0

π aβ = / , the system matrix ˆM  has the form 

 
0

0

0 0

2

0 0

0 0

2

0 0

e 0

e 0 e
ˆ

0 e

0 e e

i

a

ii

a

i

a

i i

a

M

βδ

β δβδ

βδ

β δ βδ

β β κ κ

κ β β κ

κ β β κ

κ κ β β

-Ê ˆ
Á ˜
Á ˜
Á ˜
Á ˜
Á ˜

-Á ˜
Á ˜
Á ˜-Á ˜Á ˜Ë ¯

- - -

- - -

= .

-

-

 (6) 

To simplify the following analysis, we have kept only two coupling constants, namely 
0

κ , accounting for 

the coupling between two homogenized waveguides, and 
a

κ , describing the waveguide’s intrinsic peri-

odic structure. These coupling constants are defined in a usual way, as overlap integrals of the transverse 

field distributions with the corresponding Fourier coefficients of the dielectric function expansion. The 

resulting propagation constants of the supermodes of the W2 waveguide are given as the eigenvalues of 

the system matrix ˆM  (6) 

 ( ) ( )
W2 0

β ω β β ω= + D , (7) 

with 

 ( ) ( ) ( ) ( )2 2 2 2 2 2

0 0 0 0
( ) 4( ) 2 2 cos 2π .

a a a
β ω β ω β κ κ κ β ω β κ κ δD = ± - + - ± - - +  (8) 

The implicit dependence of the propagation constant on frequency is given via the dispersion relation (3) 

of a planar homogenized waveguide. 

 In Fig. 6 the dispersion diagram of W2 waveguide calculated using Eqs. (7), (8) is presented for three 

values of  the longitudinal shift 0 0δ = .  (left), 0 5δ = .  (center) and 0 25δ = .  (right). See figure caption  

 
 

 

Fig. 6 Dispersion diagrams of two coupled periodic waveguides (solid lines) within the framework of coupled 

mode theory for three values of the longitudinal shift 0 0δ = .  (left), 0 5δ = .  (center) and 0 25δ = .  (right). The dotted 

line is the dispersion of a homogenized waveguide folded into the first Brillouin zone. The dashed lines are the 

folded dispersions of two coupled homogenized waveguides. Here 
eff

1 5n = . , 0 3l a= . , 
0

0 06κ = .  and 0 03
a

κ = . . 
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for further details on the parameters. The dotted line shows the dispersion of a planar homogenized 

waveguide calculated using the dispersion relation (3) and folded back into the first Brillouin zone by the 

Bragg wave vector corresponding to the periodic W1 waveguide. By setting the self-action coupling 

constant, 
a

κ , to zero and choosing some finite value for the inter-row coupling constant, 
0

κ , one can 

reproduce the simple band splitting within the CMT model. The split modes are shown as dashed lines 

(Fig. 6). 

 To analyze the influence of the periodic structure and the longitudinal shift on the split band structure, 

we first consider zero longitudinal shift, 0 0δ = . . In this situation the detuning of the propagation constant 

from the Bragg wave vector,  
0

β , is given by 2 2

0
( )

a
∆β ∆ κ κ= ± ± - , where 

0
( )∆ β β= -  is the detun- 

ing of the propagation constant of the homogenized waveguide from the Bragg point. The propagation 

factor of the supermodes is given by the exponential 
( )2 2

0
0

( )

e e

a
i z

i z
∆ κ κ

β
± ± -

± , which corresponds to propagat- 

ing modes only if 2 2

0
( ) 1

a
∆ κ κ± - > . In the opposite situation, there are two bandgaps at Bragg wave 

vector 
0

β  with central frequencies corresponding to 
0

∆ κ= ± . These bandgaps are due to the destructive 

interference of the first forward propagating and the first backward propagating supermodes and the 

second forward propagating and the second backward propagating supermodes, respectively, as can be 

seen from the left panel of Fig. 6. In the case of half-period shifted W1 waveguides, 0 5δ = . , the detuning 

of the propagation constant and the supermode propagation factor are given by 2 2

0a
β ∆ κ κ

Ê ˆ
Á ˜
Ë ¯

D = ± - ±  

and ( )
2 2

0 0
e e

a
i z

i z
∆ κ

β κ
Ê ˆ
Á ˜Ë ¯

± -
± ± . In this case two bandgaps exist at shifted Bragg wave vectors 

0 0
β κ±  with 

central frequency at 0 0∆ = . . This corresponds to the destructive interference of the first forward propa-

gating and the second backward propagating supermodes and vice versa (Fig. 6, center). It is important 

to mention here that at the Bragg condition, 
0

β , (IBZ boundary) the first forward propagating and the 

first backward propagating supermodes are in phase, which leads to the degeneracy of the first and sec-

ond bands at the IBZ boundary (Fig. 4). The shift of the Bragg condition away from the IBZ boundary, 

0 0
β κ± , is a reason for the appearance of a region with negative dispersion in the second band (Fig. 4). In 

the case of arbitrary shift between the W1 waveguides a destructive interference takes place between all 

possible pair combinations of forward and backward propagating supermodes leading to the formation of 

four bandgaps and anomalous dispersion (Fig. 5). In the right panel of Fig. 6 an example of a CMT dis-

persion diagram is shown for the case of quarter-period shifted waveguides, 0 25δ = . . 
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Fig. 7 Left: Dispersion diagram and transmission spectra of a 2D “square-lattice” W4 CNPW. The fundamental 

mode was excited. Here 13 0ε = .  and 0 15 .r a= .  Right: Dispersion diagram and transmission spectra of a 2D W3 

“triangular-lattice” CNPW. Solid line – even excitation, dashed line – odd excitation. Here 13 0ε = .  and 0 26 .r a= .  
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3 Transmission efficiency 

An important characteristic of the novel waveguides is their transmission efficiency. To analyze trans-

mission efficiencies of different 2D and 3D CNPW, the finite difference time domain (FDTD) method 

[20] with perfectly matched layers as absorbing boundary conditions at all sides and a resolution of 16 

grid points per lattice constant is used here. The modes are excited by a Gaussian-shaped temporal im-

pulse, the Fourier transform of which is broad enough to cover the frequency range of interest. Fields are 

monitored by input and output detectors. The transmitted wave intensities are normalized by the ones of 

the incident waves. 

 The calculated transmission spectrum of a 20 periods long, straight “square-lattice” W4 CNPW is 

shown in the left panels of Fig. 7. There are four modes under the light line as it is shown in the band 

diagram. In Fig. 7 the transmission of the fundamental mode is shown directly together with the disper-

sion diagram. The W4 waveguide displays high transmission efficiency (close to 100%) over a broad 

spectral range. The position of the cut-off frequency is clearly seen in the spectrum. 

 In the right panels of Fig. 7, the band structure and transmission spectra are shown for the W3 “trian-

gular-lattice” CNPW. A 20 period long, straight CNPW is cut in the Γ X-  direction of the triangular 

lattice. A substantial suppression of the transmission is seen in the spectrum, coinciding exactly with the 

position of the mini bandgap in the band structure. Changing the parity of the signal field distorts the 

spectrum reflecting the mode symmetries. The even mode displays high transmission efficiency (close to 

100%) over a broad spectral range. The odd mode has a lower level of transmission and is mostly trans-

mitted at higher frequencies. Here, by odd and even modes we understand the corresponding first two 

fundamental modes of a conventional dielectric waveguide. The surprisingly high transmission of the 

even mode above the cutoff frequency, 0 34ω ª . , can be explained by the resonant behavior of the folded 

radiation mode with negative group velocity [21]. We found similar behavior above cutoff for other 

“triangular-lattice” CNPW structures. 

 An example of 3D calculations for an SOI W4 “triangular-lattice” CNPW is presented in Fig. 8. In the 

left panel the dispersion diagram of the structure is presented, while its transmission spectrum for the 

even mode is plotted in the central panel. The dispersion diagram was calculated using 3D supercell 

PWM. In general, the transmission spectrum is very similar to the corresponding spectrum of 2D struc-

ture (Fig. 7, right). The transmission band is rather broad with 80% transmission efficiency at maximum 

 

0 0.2 0.4 0.6 0.8 1

Transmission
0 0.1 0.2 0.3 0.4 0.5

Wave vector (2π/a)

0.1

0.2

0.3

0.4

0.5

Fr
eq

ue
nc

y 
(a

/λ
)

     

Fig. 8 (Left) Transmission spectra of even mode and dispersion diagram of 3D W4 SOI “triangular lat-

tice” CNPW. (Right) Field distribution inside W4 SOI CNPW in horizontal (top) and vertical (bottom) 

planes. Grey levels mark electric field amplitude. Black contours correspond to waveguide structure. 

White dashed lines depict positions of the corresponding cuts. Here radius is 0 2r a= . , the total nanopillar 

height is 3h a= , the thickness of Si layer equals to a. Dielectric constants of Si and SiO
2
 were chosen as 

11 5ε = .  and 2 1025ε = . , respectively. 



phys. stat. sol. (a) 204, No. 11 (2007)  3655 

www.pss-a.com © 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 

Feature

Article

and a sizable stopband at the mini bandgap frequencies. We attribute the moderate level of transmission 

to the impedance mismatch at the conventional waveguide-nanopillar waveguide interface. In the right 

panel of Fig. 8, the steady-state electric field distribution inside the CNPW is shown for a monochro-

matic source with normalized frequency 0 3aω λ= / = . . The field is well confined within the waveguide 

core in both the horizontal and vertical planes. There is no evidence for strong energy leakage into the 

substrate. 

4 Aperiodic nanopillar waveguides 

In addition to allowing arbitrary variation of the period and displacement (which is one of the advantages 

of the nanopillar waveguides as opposed to the PCWs), CNPWs allow arbitrary modification of the lon-

gitudinal geometry. A localized change of the properties introduced in one or several nanopillars would 

create a point defect, which functions as a resonator [2, 24]. The design of such micro-resonators on the 

scale of a few wavelengths is essential for integrated optics applications. Ideally, such resonators should 

combine the apparently contradictory features of a high Q-factor and of a sufficiently good coupling to a 

waveguide terminal to inject or extract light into or from the resonator. Due to the absence of a complete 

bandgap, the breaking of translational symmetry inevitably results in radiation losses of the resonator 

mode, which raises the need for optimizing the Q-factor of the resonator in 1D nanopillar waveguides. 

There have been some proposals to decrease the losses based on either mode delocalization [23] or on 

the effect of multipole cancellation [24]. A delocalized mode typically suffers from a decrease of the  

Q-factor. On the other hand, the spatial radiation loss profile of a mode described in Ref. [24] has a  

nodal line along the waveguide axis, which means poor coupling to any components coaxial with the 

waveguide. 

 Other than by means of a point defect, a resonant system can also be created by changing the periodic 

arrangement of nanopillars into a non-periodic one. We show that the use of such aperiodically ordered 

waveguide leads to improved coupling to the coaxial terminal without considerably sacrificing the Q-

factor of the resonant modes. We use fractal Cantor-like NWPs as an example [25]. To construct aperi-

odic NPW, nanopillars of equal radius are arranged in a 1D chain, where the distances between adjacent 

pillars are given by the Cantor sequence. If we denote S and L for short and long distance (
S

d  and 
L

d ), 

respectively, the Cantor sequence is created by the inflation rule L LSL S SSSÆ , Æ  and unfolds in the 

following self-similar fashion, which represents a series of middle third Cantor prefractals 

L LSL LSLSSSLSL LSLSSSLSLSSSSSSSSSLSLSSSLSL . . .Æ Æ Æ Æ  

 In order to compare the amount of energy gathered by the coaxial terminal and dissipated elsewhere, 

we excite the system by a dipole source emitting a pulse with a broad spectrum, and use the FDTD 

method to investigate the process of energy loss into the surroundings. Figure 9 shows the results. For 

the point-defect structure, the radiation of the resonant mode primarily escapes sideways (Fig. 9(a)), so  

 

 

Fig. 9 Normalized energy flux of electromagnetic radiation escaping from the resonator into the terminal (solid 

line) and elsewhere (dashed line) for three nanopillar structures shown in the insets: a W1 with a point defect [24] 

(left); a W1 with Cantor-like longitudinal geometry (center) and a W3 Cantor-like CNPW (right). Here, 
S

0 5 ,d a= .  

L
0 81 ,d a= .  0 15 ,r a= . 0 75a∆ = .  and 13 0ε = . . The point defect is created by doubling the radius of a central rod in a 

periodic waveguide with period 
L

d . Arrows mark the resonances discussed in the text. 



3656 D. N. Chigrin et al.: Coupled nanopillar waveguides optical properties and applications  

© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.pss-a.com 

despite having a high Q-factor (
4

2 1 10. ¥ ), the coupling between the resonator and other components 

cannot be made efficient. The Cantor structure shows a considerably improved coupling (Fig. 9(b)) ac-

companied by a drop of the Q-factor down to 
3

2 7 10. ¥ . Using a W3 CNPW with Cantor geometry 

(Fig. 9(c)) raises it back to 4
1 1 2 4 10Q = . ∏ . ¥  while still providing just as good coupling to the coaxial 

terminal. 
 One should notice that the Cantor geometry is only one kind of deterministically aperiodic arrange-

ment. Other kinds, e.g., quasi-periodic Fibonacci-like one, can be used leading to a modification of the 

mode structure of NPWs as well as the coupling efficiency of resonant mode into coaxial terminal [25]. 

Engineering the longitudinal geometry of CNPWs appears to be a promising and powerful tool for a 

further degree of freedom in controlling their dispersion properties. 

5 Applications 

Relatively high transmission efficiency and flexibility in dispersion tuning of CNPWs may initiate their 

use as components for efficient and compact nanophotonics devices. Here we discuss two possible appli-

cations of CNPWs in integrated optics: a coupled nanopillar waveguide directional coupler [22] and a 

switchable coupled mode laser [31]. 

5.1 Directional coupler 

A pair of CNPWs can be used as an effective directional coupler [22]. An example of such a directional 

coupler based on two W1 waveguides is shown in Fig. 10. Analyzing the dispersion diagram of the cou-

pling section, namely W2 CNPW (Fig. 10, left panel), one can see a pronounced difference in the propa-

gation constants of the even and odd supermodes in the frequency region around 0 25 0 27.ω = . - .  It is a 

result of the strong interaction of coupled waveguides, which now are much closer to each other than in 

the case of standard line defect waveguides in a PhC lattice (see, for example, the similar rod structure  

in [26]). In this frequency range the difference between the even and odd supermode propagation  

constants is close to 0 1 2π a. ◊ / , which leads to a crude estimate of minimum coupling length [27]: 

L = ( ) ( )even odd
π/| | π 0 1 2π 5k k a a- = / . ◊ / = .  Enhanced interaction leads to a shorter coupling length. This is 

illustrated in Fig. 10, right panel, where the time averaged squared electric field pattern is shown for the 

normalized frequency 0 26ω = . . Guided light hops from the bottom W1 waveguide to the top one and 

back on a distance equal to approximately 5a , which represents well the estimated value. In contrast to a 

directional coupler proposed in [28], the CNPW structure does not require a specially adjusted separation 

layer between coupled waveguides, thus considerably simplifying a directional coupler design and fabri-

cation. 

 

 

Fig. 10 Dispersion diagram for the W2 CNPW section of a directional coupler (left). Directional coupler 

based on two W1 CNPWs (right). Grey levels mark field intensity. Here 13 0ε = .  and 0 15 .r a= .  
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There are several parameters, which can be used to optimize the directional coupler, e.g., length of the 

coupling region or the number of rows in each of the waveguides. As it has been shown in Section 2, 

longitudinal and transverse offsets between the individual waveguides, as well as variation of the dielec-

tric constant and radius of the rods substantially modify the dispersion of the compound system, thus 

affecting the coupling efficiency. For example, by shortening the distance between two waveguides one 

can dramatically increase the propagation constant difference and reduce the coupler size. A similar 

effect cannot be achieved with standard PhC waveguides without any special design tricks involving 

intermediate walls, which increases the complexity of the fabrication procedure. An arbitrary longitudi-

nal offset breaks the symmetry of the device with respect to the symmetry plane between the two W1 

waveguides, which may further improve the coupling strength similar to the case of an antisymmetric 

grating coupler [29, 30]. 

5.2 Laser resonators 

The periodicity of the coupled nanopillar waveguides ensures the distributed feedback within a finite 

waveguide section. This can be seen from the flat tails of the nanopillar waveguide modes near the IBZ 

edge, which correspond to a very low group velocity of CNPW modes. Taking into account that any of 

the CNPW modes can be efficiently excited in the waveguide using an external seeding signal of the 

appropriate spatial profile [14], we have proposed the design of a switchable laser resonator [32] with 

distributed feedback based on the CNPW. The possibility to tune the number of modes, their frequency 

and separation (Section 2) would make such a resonator a promising candidate for a chip-integrated laser 

source. 

 The concept of switchable lasing was originally proposed in Ref. [14] and has got further justifications 

in our recent work [32]. In essence, a switchable microlaser comprises a multimode microresonator, 

where lasing can be switched on demand to any of its eigenmodes by injection seeding [33, 34], i.e. by 

injecting an appropriate pulse before and during the onset of lasing, such that the stimulated emission 

builds up in a designated mode selected by this seeding field rather than from the random noise present 

in the system due to quantum fluctuations and spontaneous emission [32]. 

 To provide a basic physical picture of switchable lasing we first consider briefly a simple semi-

classical laser model in the case of two identical coupled single-mode cavities [32]. In this case there are 

two modes, the symmetric and the antisymmetric one, characterized by spatial field distributions 
1 2
( )u

,

r  

and frequencies 
1 2 0

ω ω ω∓
,

= D , respectively. Here ωD  is the mode detuning from the frequency of the 

single-cavity resonance, 
0

ω . For weak mode overlap the spatial intensity profiles of the two modes nearly 

coincide, 2 2

1 2
| ( )| | ( )|u r u rª . We assume that the cavities contain a laser medium with a homogeneously 

broadened gain line of width 
a

ω ωD > D , centered at frequency 
0a

ω ω δ= + . Here δ  is the detuning of 

the gain profile from the cavity frequency 
0

ω . For this system the semiclassical Maxwell–Bloch equa-

tions [33, 35], in the rotating-wave and the slowly varying envelope approximation read 

 1 1

1 1 1

1

d ( )
( )

d

E t
gR E t

t gR

κÊ ˆ= -Á ˜Ë ¯
L  

      
11 2 11 12 2

1 1 11 1 1 22 2 21 1 12 2 1 1
( | | [ Re ( )] | | ) ( ) ( )gR E E E t F tη α α α χ- + - + ,L L L M  

 2 2

2 2 2

2

d ( )
( )

d

E t
gR E t

t gR

κÊ ˆ= -Á ˜Ë ¯
L  

      
22 21 2 22 2

2 2 11 1 12 2 21 1 22 2 1 2 2
([ Re ( )] | | | | ) ( ) ( )gR E E E t F tη α α χ α- - + + .L L M L  (9) 

Here all the spatial dependencies of the electric field and atomic polarization were represented in the 

basis of the two cavity modes, such that 1 2

1 1 2 2
( ) ( ) ( ) e ( ) ( ) ei t i t

E t E t u E t u
ω ω- -

, = +r r r , etc., and the atomic 

polarization was eliminated adiabatically [36, 37]. ( )jE t  are slowly varying envelopes of two modes 

j = 1, 2.  In  Eq. (9) the terms linear in ( )jE t  describe stimulated emission driving, where the light–matter 
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Fig. 11 (Left) Cavity phase diagrams for a lasing system governed by Eq. (9) for s n( ) ( )j jF F t F t�  in the 

case of symmetric distribution of mode frequencies with respect to gain. The dots denote the stable cavity 

states and the curves represent the phase trajectories for their temporal evolution for different ratios 
s s

1 2
F F:  in the direction of the arrows. (Right) Time evolution of the total laser field (shown in grey) and 

the two cavity modes envelops 
1

E  (solid line ) and 
2

E  (dashed line) for the ratio s s

1 2
4 3F F: = : . One can 

see how the first mode wins the competition. Here numerical values of the coefficients in Eq. (9) were 

calculated for W2 CNPW resonator with the following parameters, period a, 1 21d a= . ,  0 15r a= .  and 

13 0ε = . . 

 

coupling constant  is  denoted by 
2

0
2πg dω� �/ , the pumping rates projected onto the two resonator 

modes by ( ) ( ) ( ) dj j j

G

R u u R*
= Ú r r r r , and the cavity mode decay rates by .jκ  Here d  is the dipole mo- 

ment of the atomic transition. The coefficients 1
Rej jβ -

=L , with ( )
1 2

2
a

iβ ω δ ω
,

= D / + ± D , account for 

the different mode-to-gain couplings due to asymmetrical detuning of the atomic transition with respect 

to the resonator  frequencies. The terms cubic in ( )jE t  describe field saturation above the lasing thresh- 

old,  where 2 2
d 2η γ ��= /  and the overlap integrals  ( ) ( ) ( ) ( ) dij

kl i j k l

G

u u u uα
**

= Ú r r r r r  are  taken over the  

regions G  containing the gain medium. Here γ �  is the non-radiative decay rate. The frequency depend-

ence of the cross-saturation terms is given by 1 1( )ij i jβ β- -*
= +M , i jπ . Since 2 2

1 2
| ( )| | ( )|u r u rª  we can 

further assume that ii ij

jj jiα α α= ∫ , 
1 2

R R R= =  and 
1 2

κ κ κ= = . 

 The inhomogeneous terms ( )jF t  originate from the external injection seeding field and from a noise 

field accounting for spontaneous emission [36]. For vanishing functions ( )jF t , Eq. (9) would take the 

form of the standard two-mode competition equations [33, 35], describing bistable lasing [38] and mode 

hopping in the presence of stochastic noise in the system [39]. If both an external seeding field s ( )t,rE  

and a stochastic noise field n ( )t,rE  are present in the cavity, s n( ) ( ) ( )t t t, = , + ,r r rE E E , the inhomogene-

ous terms are given by, 

 s n( ) d e ( ) ( ) d ( ) ( )j

t

i tj j

j j j j

t G

F t t u t F F t F t
ω

τ

ω

τ

¢

-

ª , = + .¢ ¢Ú Ú r r r

L
E  (10) 

The time integration in Eq. (10) is the averaging over a time interval larger than 1 ω/D . The function ( )F t  

is determined by the temporal dependence of the seeding signal s ( )t,rE . The coefficients s

jF  and n ( )jF t  

are determined by the spatial overlap of each mode with the seeding and noise fields, respectively. 

 We consider the situation when the seeding prevails over the noise, i.e., n( ) ( )s

j jF F t F t� , before and 

during the onset of lasing. After the onset the jE  become so large that the terms jF  have no effect any-

more. During the onset the evolution of the resonator will be determined by the ratio of s

1
F  and s

2
F . In 

Fig. 11 (left) the phase trajectories of the temporal resonator state evolution in the (
2 2

1 2
E E, ) space is 

presented for different values of s

1
F  and s

2
F . As seen in Fig. 11 (left), the lasing state first reaches overall 
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Fig. 12 Amplitude spectra (top) and laser filed distribution (bottom) for the periodic injection-seeded four-row 

CNPWs. The lines labeled “Mode-1” to “Mode-4” correspond to the seeding signals (a)–(d) shown in bottom panel. 

The shaded areas represent the laser amplification line, with its central frequency 0 3225
a

ω = . . The pumping rate 

equals 13 1

p 1 0 10 sW
-

= . ¥ . The panels (a)–(d) correspond to different seeding signals, shown schematically as excited 

in the terminal. 

 

intensity saturation (
2 2 2

1 2 s
E E E+ = ) and then drifts towards one of the stable fixed points corresponding 

to single-mode lasing (either 
2 2

1 s
E E=  or 

2 2

2 s
E E= ). The drift happens on a longer time scale than the 

initial overall intensity growth, and the intermode beats decay fast after the lasing onset (Fig. 11, right).  

 The drift occurs towards the mode whose spatial and temporal overlap with the seeding signal is lar-

ger, demonstrating a switchable lasing behavior. It is important to note that even in the case of asymmet-

ric detuning of the cavity modes with respect to the gain frequency ( 0δ π ), single-mode lasing is 

achieved into the mode whose spatial overlap with the seeding field, s

jF , is largest, i.e., if one of the 

following conditions, s s

1 2
F F�  or s s

1 2
F F� , is satisfied. 

 To demonstrate the predictions of this simple theory we have modeled the lasing action in four-row 

CNPW structure with a realistic injection seeding (Fig. 12) using the FDTD method [31]. The externally 

pumped laser-active medium is placed in the central 7 pillars of all four rows. This is done to maximize 

coupling between the active medium and the main localization region of the lasing modes. The popula-

tion dynamics of an active medium is described at each space point by the rate equations of a four-level 

laser with an external pumping rate 
p

W . To achieve population inversion we have chosen the following 

values for the non-radiative transition times, 
32 10 21

τ τ τ� � , with 13

31 10
1 10 sτ τ

-

= = ¥ , 10

21
3 10 sτ

-

= ¥ , 

and the total level population is 24

total
10N =  per unit cell [40]. The Maxwell equations are solved using 

FDTD scheme supplemented by the usual equation of motion for the polarization density in the medium 

and by the laser rate equations [40–43]. All calculations were done for TM polarization. The seeding 
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signal is excited by four emitters (linear groups of dipoles) engineered on the regular dielectric 

waveguide attached to the CNPW structure (see Fig. 12). Each of the emitters generates a single short 

Gaussian pulse with carrier frequency 
a

ω  and with half-width duration 4
10 d

t
tσ = . The relative phase of 

the fields in these pulses is chosen 0 or π. Technically, the seeding dipoles are realized as point like 

oscillating current sources in the Maxwell equations [31]. Similarly, the spontaneous emission [42, 44, 

45] can be modeled as an ensemble of point current sources, randomly placed in space, with temporally 

δ-correlated Langevin noise [45]. The computational domain of size 7 22a a¥  was discretized with a 

mesh point spacing of 16a/ . The time step is related to the spatial mesh to assure stability and was cho-

sen 17
d 6 10 st

-

= ¥ . To simulate an open system, perfectly matched layer (PML) boundary conditions 

[20] were used. 

 In Fig. 12 (top) the lasing spectra in the steady state long after the seeding signal has decayed is 

shown. The broad shaded area depicts the laser line of width 
a

ωD  centered at 
a

ω , which is shifted 

slightly towards lower frequencies. As a rule the Q-factor is larger for modes with the higher frequency. 

The shifted laser line compensates this Q-factor difference, so that any of the four CNPW modes can be 

selected by the appropriate seeding signal with the same symmetry. In Fig. 12 (bottom) the spatial elec-

tric field distribution in the four-row CNPW laser resonator is shown at an instant of time long after the 

seeding signal has decayed and after the steady state has been reached. The symmetry of the selected 

lasing modes corresponds to that of the seeding signal (Fig. 12). 

 The proposed concept of switchable lasing is not limited to the periodic CNPW structures, but is ex-

pected to work in any resonator featuring bi- or multistability. Any coupled cavity based system would 

be a good candidate for the effects predicted. For example aperiodic CNPW based resonator also show 

the switchable lasing behavior for resonant modes discussed in Section 4 [31]. 

6 Conclusion 

We have shown that a novel type of coupled nanopillar waveguides, comprised of several periodic or 

aperiodic rows of dielectric rods, may have potential applications in compact photonics. The strong cou-

pling regime can be utilized in ultrashort directional couplers or laser cavities, which might possess an 

additional functionality and flexibility when different longitudinal and transverse offsets among individ-

ual waveguides are employed. The factors of major influence upon the mode dispersion have been ana-

lyzed. Transmission spectra for 2D and 3D systems prove the possible single mode excitation by impos-

ing specific symmetry conditions onto a field source and high transmission characteristics of coupled 

nanopillar waveguides. 
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