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Abstract. Electron transport at large bias voltage through quantum dots in the Kondo regime is described within the
perturbative renormalization group extended to nonequilibrium. The conductance, local magnetization, dynamical spin
susceptibility and local spectral function are calculated. We show how the Kondo effect is suppressed by nonequilibrium
decoherence and how it is generated in excited states by a bias voltage.
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The transport of electrons through a quantum dot in
the limit of weak coupling to the leads is governed by
Coulomb interaction effects, forcing integral electron
charge on the dot (Coulomb blockade) [1]. In the case
that the total spin of the dot is nonzero, however, the
antiferromagnetic exchange interaction of this local spin
with the conduction electron spins in the leads gives rise
to a Kondo resonance in the local density of states at the
Fermi level. Electron transport may then take place via
resonance tunneling, and the Coulomb blockade is re-
moved. The enhancement of the linear conductance G
as the Kondo resonance is formed for decreasing tem-
perature, ideally up the unitarity limit G � 1 (in units of
2e2 � h) has been seen in a number of experiments.

In the Kondo regime, the quantum dot may be repre-
sented by its local spin �S, exchange-coupled to the con-
duction electron spins in the leads α � L � R
H � ∑

k � α � σ
	
εk 
 µα � c �kασ ckασ 
 ∑

αα � Jαα � �sαα ��� �S 
 BSz �
(1)

where �sαα � � 1
2 ∑�

kσ � �k � σ � c �kασ �τσσ � ck � α � σ � , �τ are the Pauli
matrices, Jαα � are coupling constants, and B is the Zee-
man splitting of the local spin levels

	
S � 1

2 ). We will
consider the weak coupling regime gαα � � Jαα � N 	 0 �����
1, where N

	
0 � is the conduction electron density of states

at the Fermi level.
The Kondo resonance is formed by successive, coher-

ent, quasielastic spin-flip processes, generating a cloud
of particle-hole excitations out of the conduction electron
Fermi sea near the quantum dot. It is suppressed by finite
temperature, T � TK , washing out the sharp Fermi edge,
or by a magnetic field causing a Zeeman splitting B, lift-
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FIGURE 1. Differential conductance of a singlet-triplet
quantum dot. Solid (broken) line: renormalized (second order)
perturbation theory.

ing the degeneracy of the local spin levels, at B � TK .
Here TK � Dexp

	 
 1
g � (D bandwidth, g � N

	
0 � J) is the

Kondo temperature. At finite bias voltage V the Kondo
enhancement of the conductance is observed to be sup-
pressed if eV � TK (zero bias anomaly).

The reason for this suppression is an increase in de-
coherence caused by a sufficiently large finite current
through the dot. As shown in [2], the decoherence rate Γ
is given by the transverse or longitudinal spin relaxation
rate 1

T2
or 1

T1
, depending on the process considered. In

equilibrium (i.e. linear response) one finds in the pertur-
bative regime

	
T ��� TK � , Γ � Σα � α � g2

αα � T , the so-called
Korringa law, and hence Γ ��� T for T ��� TK (this is
correct even if the bare coupling constant go is replaced



by the renormalized coupling g � 1 ��� n � T � TK � ). By con-
trast, for eV ��� TK ,and T ��� eV , Γ  g2

LReV which can
be much larger than TK , for sufficiently large V . This
means that the Kondo screening remains incomplete, the
more so the larger V . Note that only the coupling con-
stant gLR enters, and roughly speaking Γ is proportional
to the current through the dot.

In a quantitative description the bare coupling con-
stants get renormalized. The degree of renormalization
depends on the energy of the conduction electrons in-
volved in the interaction process. Therefore, the renor-
malization group (RG) equations describing how the
couplings change when high energy states are projected
out have to be formulated for energy dependent coupling
functions [3] rather than only the coupling constants at
the Fermi energy as in the usual equilibrium RG. This
is because at finite bias voltage excitations are possi-
ble within an energy window of finite width eV even
at zero temperature. For a given energy ω , e.g. above
the Fermi energy, the RG flow stops when the running
cutoff D moves below ω ! D �#" ω " . As a consequence,
the coupling functions form peaks at the resonance fre-
quencies corresponding to the different Fermi energies
at ω �%$ eV � 2 $ B. At or near resonance the RG flow is
stopped by the decoherence rate Γ.

These coupling functions may be inserted into the
low order expressions for the current, the decoherence
rate Γ or any other quantity one wishes to calculate [4].
In addition, the energy levels of the states involved are
broadened by an amount given by the decoherence rate
Γ [3].

In the presence of a magnetic field the local spin
will be partially polarized, � Sz �'&� 0. The degree of
polarization is determined by the current flowing through
the dot, provided eV ��� T , rather than by the thermal
equilibrium occupation [3]. Since � Sz � enters most of
the observable quantities, in particular the current, and
the decoherence rate Γ, it is evaluated simultaneously
with the coupling functions in the RG process.

While a finite current through the dot generates deco-
herence and tends to suppress the Kondo effect, a finite
bias voltage can help to promote the Kondo effect in a
situation where it is suppressed at zero bias. Such a sit-
uation arises when a magnetic field is applied, splitting
the degenerate levels of the local spin and suppressing
the Kondo effect if B ��� TK . A finite bias voltage such
that eV � B provides the energy necessary for a spin
flip-down tunneling process followed by a spin flip-up
process in reverse and thus restores the Kondo effect to
some extent. The differential conductance is then seen to
develop “Kondo peaks” at eV �($ B [5].

A more direct example of the Kondo effect generated
by nonequilibrium is provided by a quantum dot with
a spin singlet ground state and a low-lying spin triplet
excited state with low-energy exchange Hamiltonian ex-

pressable in terms of the spin operator )S (now S � 1) and
the singlet-triplet transition operators )Pi j (i ! j � 1 ! 2 de-
notes the two levels):

Hexch � ∑
αα * ∑i j

Ji j
αα * + δi j )S , τ1

i j )Pi j -/. )sαα * (2)

where Pz
21 �0� Pz

12 �21 �434" 0 ��� s " , P 121 �0� P 512 �21 �6
2 " 1 ��� s " and P 521 �7� P 112 �81 �93 6 2 ":3 1 ��� s " ,

where " s � and " m � , m �9$ 1 ! 0 denote the singlet
ground state and the triplet excited states of the dot.
A finite bias voltage eV � δ , where δ is the singlet-
triplet level splitting, allows to populate the triplet state,
in which coherent spin flip processes may take place,
leading to a Kondo effect. A Kondo enhancement of this
type has been seen in a recent experiment on a short piece
of carbon nanotube serving as the quantum dot [6].

We have calculated the differential conductance G of a
singlet-triplet two-level quantum dot [7]: As seen in Fig.
1, G is enhanced by Kondo correlations (solid line) in
comparison to lowest order perturbation theory (dashed
line).

The perturbative renormalization group method ex-
tended to nonequilibrium systems allows for a controlled
calculation of the properties of quantum dots in the
Kondo regime, provided any one of the relevant energy
scales, eV ! B, level splitting δ , or T is sufficiently large
compared to TK . The small parameter of the theory is
1 ��� n � X � TK � , where X � max � eV ! B ! δ ! T). For a “usual”
(Anderson-type) quantum dot, the decoherence gener-
ated by the current stops the RG flow of the couplings
in the weak coupling regime. Only for special situations
(not yet realized in experiment), when the coupling JLR
responsible for the current is much smaller than the cou-
plings Jαα may the RG flow extend into the strong cou-
pling regime, requiring new methods.
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