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ABSTRACT

Bistable lasing in twin coupled microcavities is demonstleanalytically and numerically, underlying a new prideipf a
multiple-wavelength microlaser where the lasing wavelbiigyswitched by locking into the desired mode in a multimode
resonator. The bistability appears due to an interplay éetwcoherent and incoherent mode interaction processesteas
by similarity between the spatial intensity distributidittoe modes in the gain region. The wavelength switching dyina

in a model system of twin defects in a photonic crystal is akpd on the basis of the theoretical analysis presented.

1. INTRODUCTION

Micro- and nanostructure based photonic devices play a &eyip many areas of optoelectronics, integrated opticd, an
optical telecommunications. Of these devices, microisgrrovide an important milestone, facilitating low-threghd 4
integrated, on-chip coherent light sources, which can ladsotilized for quantum computing and cavity quantum etectr
dynamics studies. Making microlasers capable of multipeelength operation has the obvious advantage in prayidin
an additional degree of freedom in on-chip light controlwéwer, the small cavity size makes it increasingly diffi¢alt
introduce a tuning element into the laser resonator. Idstetunable microlaser is commonly envisaged as a systemewhe
the entire single-mode cavity is subject to a modificatiorabyexternal process, the most common among them being
thermal, electro-optical, or micromechanical tuning nagems>~’

Aside from the difficulties associated with the need to ugereal (and often quite slow) means to manipulate optical
circuits, it is also non-trivial to make the cavity in questisupport single-mode lasing. This two-step process df firs
having to suppress multiple-mode operation and then deyituning mechanism for the cavity naturally calls forth an
alternative principle: to start with a multimode resonadad then to lock it into one of its modes on demand, thereby
creating aswitchable(as opposed to tunable) microscopic laser light sourceceSime mode locking is widely known to
occur in laser§, such switchable lasing provides a viable, potentiallyogiical alternative to conventional microcavity
tuning.

There are two problems to be seen on the way to switchableglaFirst, one does not want the locking signal to be
monochromatic Instead, one can use a pulsed locking sigttative spectrum spanning all the modes in question, making
the resonator lock to the signal's symmetry rather tharrégdency. This idea was put forth earlier for coupled dieiec
nanopillar waveguidé$ and successfully extended to the lasing regime in our réneestigations.

A more serious and more fundamental problem lies in the sattimode competition processes. When several modes
interact in a cavity, those with a highérfactor tend to win the competition and dominate in lasifiggd mode becomes
dominant, multimode lasing ensu&€n the contrary, switchable lasing implies that the resameen have stable, single-
mode lasing for more than one mode. In other words, the lgste® in question must b@- or multistable

Theoretically, three lasing regimes of two-mode compmtitixist® 10 (i) domination of the mode with the significantly
higher Q-factor; (ii) simultaneous two-mode lasing if the modes @se in@ and weakly coupled to each other; and
(iii) bistable lasing when the coupling between the modestrisng. However, despite being a theoretically valid Igsin
regime, bistability means that cross-saturation betwbemiodes exceeds their self-saturation, i.e., each modeatzg
its counterpart more readily than it saturates itself. Tais be imagined with relative ease in a system of two high;gai
low-Q coupled lasefs:1? where the radiation coming out of each laser cavity is da@dhto the other cavity, and the



cavity finesse as well as feedback are specially weakenedsewent formation of a compound dual-laser resonsitan.

a microlaser where both modes coexist in the same cavitynttaherent mode coupling involving the spatial hole burning
effects cannot be made that strong except by resorting titi@aal effects such as saturable absorbers or carriarsidh 14

or else to special cases such as counterpropagating modag lasers or different polarizations in bistable laserdgis
where the two modes (and two only) are degenerate so thatahelength of both is the same.

In contrast, the present paper focuses on demonstratiastable lasing with wavelength switching in coupled cavity
based microlasers. The strong coupling between modesisvachby coherent (presumably, population pulsation based
mode interaction processes. Contrary to the recent expatiahresults on bistable lasing in twin coupled microdigks
or microringst® identical coupled cavities are considered, and a pulsekirigesignal is used to switch the operating
wavelength. Instead of being eigenmodes of slightly diffiéicavitiest> 1®the modes in question are supermodes formed
when identical single-mode cavities are coupled. The tvemlensystem based on twin defects in a 2D photonic crystal
(PhC) lattice proposed in our recent wdrkpredicted to be capable of 20 nm wavelength switching on ansutnsecond
time scale, has been analyzed in detail. The principle destireadily allows extension to the coupled cavity based
systems featuring more modes, as verified elsewteraanopillar waveguides.

The structure of the paper is as follows. In Sec. 2 a coupledenmultiscale analysis is developed for the eigenmodes
of twin coupled microcavities. Starting from the MaxwelleBh semiclassical equations, the evolution of the modes an
population inversion is derived. In Sec. 3 the resultingadigms are analyzed. Bistable lasing regime has been @gtain
and coherent mode interaction processes are singled dug asast probable cause. In Sec. 4 we investigate the dynamics
of the mode-to-mode switchifgusing the models obtained in earlier sections. Finally, Sesummarizes the paper.

2. COUPLED TWO-MODE EQUATIONS

The small cavity size of microlasers causes their mode tstre¢o show a greater variety compared to bulk cavities. In
order to investigate the effects related to the mode strecinteraction, and dynamics of laser radiation in miatastures,
one can use methods based on the eigenmode decompositienazivity field, similar to those developed for bulk reson-
ators!®19 In this section, we extend the formalism developed in thekvadiS. Hodgest al.® to the case of two modes

in a defect-based microcavity. Unlike most accounts, wévddhe equations for laser dynamics without any specific
assumptions for the mode geometry and simplify them for &g corresponding most closely to the eigenmodes of twin
coupled cavities, i.e., the modes as similar to each othpossible, but still not identical in frequency.

2.1. Slowly varying envelope equations and two-mode temporal multiscale expansion

The system of basic equations is constructed of three @rtee laser rate equations, reduced to the equation foulpep
tion inversion of the laser transition; (ii) the equatiomudtion for macroscopic polarization density, obtained nadified
electronic oscillator model, and (iii) the scalar wave d@@raderived from the Maxwell equations for TM polarization
the 2D case. Applying the slowly varying envelope approxiorg® the equations take the fotfh

.9
%P(r,t} = —(yL +i0) P(r,t) — %W(r, t)E(r, 1),
%W(r,t) = Y [R—-W(rt)]+ ﬁb [E(r,t)P*(r,t) — E*(r,t)P(r,t)], Q)
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HereW (r, t) has the meaning of population inversiddis the pumping rate; is the dipole moment, and the radiative and
non-radiative decay rates are givempyand, respectively. We consider a resonant system that featucesigenmodes
with decay rates:; » and frequencies; » = wo F Aw with the central frequency, shifted with respect to the lasing
transition frequency, by § = w, — wo (Aw, § K wp). We assume that the eigenmodes have the spatial strudtere g
by u; 2(r). One can thus decompose the electric figla, ¢) into spatially dependent mode profiless(r) multiplied by
time dependent slowly varying envelope functidis; (t) as

E(r,t) = uy (r) By ()2t + uy(r) By (t)e 2% = uy (r) By (t)e®* + ug(r) By (t)e?-. (2)



Here and furtherp. = +iAwt. Eq. (2) implies the use of the rotating wave approximatibimlike the electric field,
the polarization amplitudeB; »(¢) introduced likewise are not necessarily slowly varying aequire further multiscale
decompositiort® 2°which in the case of two modes becomes

P(r,t) = ui(r) [P (t) + PE(t)e*~ | et + ua(r) [Py (£)e*** + P3(t)] e~ 3)
Finally, the population inversio (r, ¢) can only be decomposed in a temporal series at this stage:
W(r,t) = Wh(r,t)e? + W2(r,t)e’-. 4)

The modes:; (r) are the solutions of the homogeneous wave equation asserf@urt an orthonormal set in the cavity
[°V? — e(r)wﬂ uj(r) =0, /Cd3re(r)u;-k (r)u;(r) = 6;j. (5)

One can substitute Egs. (2) and (3) into the equation forlgetre field E(r, t) in (1) with subsequent elimination of
the spatial derivatives using Eq. (5). To disentangle theaigns for each modg};, one typically applies the integration
fd3ru;f to both sides, using the normalization condition in (5) amel Assumption that all time dependencies are slow
enough. However, when the polarization term is presens, deicoupling remains rigorously possible only as long as
Eqg. (5) remains true both with and withogfr) in the integrand. This is automatically true onlyeifis constant (the
bulk-cavity cas&). It remains approximately true if the majority of the modasergy, as well as the laser active medium,
are primarily located in a material with the same dielectanistant. This is often the case in microcavities. A more
complicated case of distributed feedback structures regioth spectral and spatial multiscale analysis. (Sectrtrent
was developed for PhC laséfsthe single-mode case investigated in detail.) Providedigwmupling can be made, one
can further substitute Egs. (2)—(4) into the system (1) artdio the system of equations fﬁ’f in terms of mode overlap
integralse;;" and overlaps between the modes and the population invaremponentwi‘g:

ajjt =€ / &P (r)u;()uy, (ua(r), Wit =e / dBr uf (r)W(r, t)u; (). ©6)
G G

The integration in Egs. (6) is performed over the gain medidmaree(r) is assumed to be constant. The shape of the gain
region itself can be arbitrary and does not have to be cootigu The resulting equations for two modes, coupling two
mode envelopeg’;, four polarization componenB;‘, and eight population inversion projectiows‘g, have the form

GE= -2+ mwF ™
%Pf:“ = —[(yL +16) +iAw] Pf — 1“—; (EAW}e®* + EaWhe?) ®)
%W{Tl’z =R — () £1Aw) W
— 4—171 [Ef (alljl Pl + a}szQq) e~ + E3 (afjl Pl + Oé%-ngq) e‘b*] 9)
o [ (P o (o ).

2.2. Adiabatic polarization elimination (class-B laser equations)

If the radiative decayy, is much faster than both the non-radiative degayand the eigenmode decay » (class-B
laserd®), then the resulting equation system can be further siragliy assuming that polarization follows the field
adiabatically, i.e., thad P} (¢)/dt ~ 0. After some algebra, Eqs. (7)-(9) are transformed to

d K1 w2 ow
=R i
at! g 1t 2¢peh By

d K9 w2 wsy

E 2:_2 2+2606h62

(ExW{ e%t + EaWihe?- ),
(10)

(E\W31e%t + EaWihe?- ),
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wherefs > = (v1 + i) +iAw and the components]; are related taz in the same way a¢’/; to W' [Egs. (4) and (6)]. We
assume constatt in the gain region, but the model allows incorporation oftsglg and/or temporally varying pumping.
More specific knowledge about the modes in question makessiiple to simplify the system (10)—(11) further. If the
modes are identical in intensity in the gain region, one ¢mwsthatWi(jl’2)* = ij’l. This causes Egs. (11) to assume a
simpler form (13):

(@) =), re@ = ali=dll=a, (12)
d g=1,2 :
Vi = Rl - () Fidw) W
w /1 1 2 ( 1lyrq 121174 2 ( 21117q 221179
RAVH + 3 {|E1| (o Wi + ag; W3h) + [ EBa|” (i Wiy + o W22)}
q
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Furthermore, considering the case that the modes are ortlabin the gain region (so thad;;«; = 0), as well as that
both modes are equally coupled to the gain=( 0), one can show that the population inversion componentgrangped

according to the symmetry of their subscrip8y; = W32* = W, W, = W2 = W, (“s” and “a” standing for

“symmetric” and “anti-symmetric”). Introducing new vabie@s\; , = W; .e?*, after some algebra we get:
d
—F = - ﬂE1 + &AC [El./vs + EQNQ] R
d o K2 gwz ., * *
&Eg— 2E2+ 5 L [ElNa+E2NS],
d
SN = LRy N, - eLa [N (|Eaf + |Bof?) + N, (BT B + B Eze'+)]
ar 2 (15)
SN = = () + 2i80) N, — ELa [Na (|E1|2 + |E2|2) + N, (BfBae- + ElE;)] :

with g = 1/ (2e0eh), & = p?/(4h2), £ = By " + (B5) ™"

The system (14)—(15) describes the effects pertainingddrteraction between two modes, namely the incoherent
self- and cross-saturation (due to the spatial hole bujnasywell as coherent effects like the nearly degeneratavfiane
mixing (owing to the population pulsations). It resemblas two-mode competition equatidhgeneralized to the pump
levels well above the lasing threshold.

So far, we have been considering the laser model withouttapenusly emitted photons or any other signal external
sources. These can be included phenomenologically by gédtirexplicitly time-dependent term to the fielt{r,¢) —
E(r,t) + &(r,t) or to the polarization (which is equivalent as the polaimahas been eliminated adiabaticati)in the
rotating-wave approximation, this additional term wilintabute to the slowly varying envelopés(t) as:

t
E12(t) = / dt'eFidwt’ / dre(r)ui o(r)E(r,t') (16)
t C
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where the spatial integration is over the whole cavity aedcbarse-graining time integration is owver- Aw~!, intended
to average out all processes faster thatnlessg;(¢) are large enough to cause non-negligible feedback throogtla-
tion inversion, one can simply keep Egs. (15) unchanged applement Egs. (14) with; (¢). A Langevin delta-correlated
random function can be used in placefdt, t) to model the noise, or an explicit form of an external sigreal be used to
model injection locked lasefsin the simplest case when the injected sigfidt) is designed to primarily excite one of
the modes of the resonator, a solution of the following eigu&br a driven oscillator can be used:

2

d 2
SEH(E) + 20y E5(0) + wEE (1) = J(8). (17)

2.3. Class-A equations. near-neutrally coupled modes

Here we introduce a further approximation of class-A laggrs> «), which, although not quite valid for the system under
study, is a very illustrative limiting case of Eqgs. (14)-(1®/ithin these assumptions, the componexitsand\, are also
adiabatically following the field enveloped//; ./dt = 0). One can then expand the algebraic equations resultimg fro
Egs. (15) in a perturbative series, so that, in the first tvates,

a ) a 7” “+ 215(4) (18)
R §£aR/2
0) (1) _ 2
N; R/2, N; 0 - (|E1| + | Es| ) .
The Egs. (14) then become
d K1 ngl REEOZ R EEOZ 2
—F=|-——+=-=—"L)E1—=——(|F E E —_— E
ac ( > T3 2 > L2y, (' 1|+|2|) b 27+216w|2| b a9)
d K2 ngg * REE [ R gﬁ* 2
—Fy=|——F+ == Ey——>—|(|FE E Ey ———— |E|" Es.
- ? (2+2 25) 2 (|1|+|2|)2 2y — 216w|1| g
We see that the resulting Egs. (19) have the form of the ummeadiized two-mode competition equati®ni8
d d
&El (Pl — 011 |E1|” — 012 |E2|2) E, EEQ (p2 — 01 | E1|* — 020 |E2|2) Es. (20)

For each mode, the first term accounts for the net unsaturated gain minus losses, andliBeguent ternt; account for

self- and cross-saturation. One can notice that if the mgist terms in Eqgs. (19) [appearing due to the comp(m/éﬂﬁand
clearly associated with coherent mode interaction ternfig (15)] are neglected, the equations become symmeaeidc, a
the self- and cross-saturation coefficient coincide. Thisesponds to the neutral coupling between the mo@es=(
012021 /611020 = 1). The modes can lase stably in any proportion, provideduhe f their intensities remains the same.
The inclusion of the omitted terms results in the mode cagptionstant slightly exceeding unity:

C =143/ (vﬁ + 4Aw2) . 1)

We see that even in this simplified case the system can exhdale coupling which is slightly stronger than neutral,
and the coherent mode interaction processes are likely taliging such behavior. However,as< Aw, the addition
to C is extremely small, and it is expected that any deviatiomefdystem from the ideal case [such as a slight perturbation
of the mode intensity equality. (12)] will push the systenaloato the weak mode coupling regime.

3. MODE COMPETITION REGIMESAND BISTABILITY

As a model to demonstrate bistability, we have chosen ataneithat closely fits the model developed, namely, a stractu
consisting of twin coupled defects in a 2D PhC square laffiog. 1). The defects are assumed to be identical and contain
a gain medium. The resulting resonator thus exhibits twoenatising from the splitting of the fundamental mode of
a single defect. These two modes (see Fig. 1) are specttafig to each other (the distance dependent on the coupling
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Figure 1. Twin coupled defects in a 2D PhC square lattice with petied 500 nm along with the spectra and schematic field distribution
of the system’s eigenmodes. Also shown are sample pulsedisifseeding, (r, t)] than can selectively excite the desired mode with
a matching phase structure [according to Eq. (17)]. The Pa@guides adjacent to the defects can be used to deliver sigsals, as
well as to guide the output laser radiation out of the resmmat

strength between cavities), and if no losses are assumée itoupling region, they have clogefactors. Their primary
difference is in the phase relations between the fieldslasoi in each cavity: the lower-frequency “bonding” modela
the higher-frequency “antibonding” mode (the notationikinto that used for modes in photonic molecdRsave the
field in the two cavities oscillating in phase and in antighasspectively. Note that thighasedifference, which is what
makes such modes individually excitable by a signal withntlaéching symmetry (as shown in Fig. 1, following an earlier
suggestiof?), does not influence the modestensityprofile, which is nearly identical in the cavities (i.e., whaéhere is the
gain medium) and only differs in the coupling region. Thiskesthe structure in question conform to the condition. (12)
used to obtain Egs. (14)-(15). This system of equations waed numerically for the parameters corresponding to the
structure in Fig. 1, the results compared with the finitéedénce time-domain (FDTD) simulation of lasing in the same
system (the reader is referred to our earlier p&fmrfurther details).

Let us begin by analyzing the mode dynamics as dependentegputimping rate (Fig. 2). Moderate pumping levels
cause the overall mode dynamics to exhibit the known spikiglgavior (Fig. 2a), which disappears when the laser is
operated well above the threshold (Fig. 2b,c). As regarelsrtbde interaction, we see that there is a clear transitam fr
a slow convergence towards simultaneous two-mode lasiigg 28,b), to the case when the weaker mode is quenched
by (instead of catching up with) the stronger mode. By thergjer mode we mean the one which happens to have an
advantage at the period of lasing onset. Hence, either ni@ddnas an initial advantage can become dominant in lasing
(Fig. 2c,d), which is a direct indication of bistable two-dedasing.

This transition from two-mode to bistable lasing can be axm@d by qualitative analytical considerations. Let us
suppose that one mode lases in a stationary sfaiét) = 0, E»(t) = F, from Egs. (15) it follows thatV(t) = nE,
N, (t) = 0. Suppose that a slight perturbation is present, so that

El —>5E, E2—>E—5E, Na—>5N. (22)

Such perturbation, while keepiny; unperturbed, assures that only the balance between thesrwsleifted but not the
overall lasing intensity £, |* + | E,|®, so that its dynamics, which is always stable above thedatsireshold, does not
obscure the mode interaction dynamics, which we are tryniguestigate. The equations for small variations are:

d
S6E = — S5E + g2 L (nESE + ESN)
at 2 2 23)
d

SN = — () +2iAw) N — €aL (|E|2 SN + nEE*(SE) .

Assuming that botld £ andé\ are varying as*?, and thab A" = né E, we write the secular equatidfor s
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Figure 2. The evolution of the mode amplitud¢r, (¢)| and|E-2(t)| (solid and dashed line, respectively), normalized to thiesusf
cavity field, for(a) R = 10%; (b) R = 10°%; (c,d) R = 10'° (in arbitrary units). The shaded graph shows the cavity fisldbtained by
FDTD calculations for comparison. The insets show timelkes intermode beatings in FDTD cavity field (shaded) anthecavity
field reconstructed from¥; (¢)| (solid). The modes were initially excited with proportién : £2 equal to(a, b,c) 1 : 3 and(d) 3 : 1.

s+£/2—g(w/2)LnE —g(w/2)nE
2 . 2 | =0. (24)
Eal |E| s+ (v + 2iAw) + EaLl |E|

The resulting quadratic equation fohas two characteristic cases: for smaligthere can be solutions witke s > 0,
suggesting that one-mode lasing can be unstable. Vifhisrincreased, it can be shown tii s < 0, which means that
one-mode lasing regime is stable. This marks the tranditem simultaneous to bistable lasing. Inserting the patarse
for the model system in Fig. 1 into Eq. 24, one obtains thécatitzalue of R to be between(0° and10°, consistent with
the observations in Fig. 2.

The limiting case dealt with in Sec. 2.3 has shown that in tveel orders of expansiaiV; and N, correspond to
incoherent (hole-burning) and coherent (population-gtigs)) mode interaction processes, respectively. It hes laden
shown that hole burning alone cannot bring the mode coupbmgtant past unity. This is intuitively clear: when two red
coexist in the same resonator and have the same intenshy isaime volume (as is our case), the incoherent, intensity-
related effects will not discriminate between these two esa@nd each mode will equally be saturating both itself tnd i
counterpart, which is exactly the case of neutral mode ¢ogpln any real resonator, the intensity distribution diqya
(12) is expected to be perturbed even without taking intoantthe adverse effects of material or fabrication impeite
losses. So each mode is likely to interact with its counteipightly weaker than with itself, making neutral coupginet
alone bistability, unattainable in coupled cavity basesigleby merely incoherent mode interaction.

On the contrary, population pulsation assisted coheremteniteraction is capable of taking into account the phase
structure of the modes in question. Hence, it is the cohenexle interaction that can bring the cross-saturation kewe
modes past the self-saturation. On the other hand, theidesatical intensity distribution (12) within the gain medi takes
care that spatial hole burning brings the mode coupling@sedo neutral as possible. So, an interplay between caheren
and incoherent mode interaction processes is the causstabliity in coupled-cavity laser resonators. It remain®pen
guestion whether such “constructive” interplay is a gehgraperty of coupled cavities, and what cavity parametees a
responsible for achieving the optimum in that interplayisTib a promising subject of future investigations.
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Figure 3. (a) The time diagram of numerical simulation for— 2 — 1 mode switching, the insets showing the spatial distrilsutio
of cavity field in the steady-state lasing regifig(b) The schematic phase diagram of bistable laser describedfy(F4)—(15), with
illustration of successful and unsuccesgful> 1 mode switching (see text for details).

4. MODE SWITCHING DYNAMICS

Having established that bistability is possible in couptadity based microlasers, we proceed to investigate theatipg
dynamics of the proposed laser in a mode-to-mode switchéggme. The idea of mode switching proposed edrlier
consists of two phases. First, the pumping is turned off foergain timet..; secondly, the laser is re-seeded (i.e., locked
into a different mode) simultaneously with turning the pungpback on. As shown in earlier numerical simulations,
switching between the two modes is indeed possible on agiécosl time scale (Fig. 3a). Using the theory presented in
previous sections, we can analyze the dynamics of the swijgirocess further.

Figure 3b schematically depicts the phase diagram of tlee, lasing the normalized mode amplituqiés,ﬂ2 as phase
variables. Any state of the laser corresponds to a pointgtim@oral evolution represented by phase trajectory liSexe
the system is bistable, the phase trajectories convergardswone of the two stable fixed points of single-mode lasing:
(0;1) or (1;0), depending on the initial state of the resonator, broughbttine equations (14)—(15) by the pulsed locking
(calledseeding) via non-homogeneous terms (16). The line between theroagd the unstable fixed poifd.5;0.5)
divides the space into two domains. In each of them, all gdint themselves on trajectories that converge to the stable
fixed point lying in that domain. Hence, giving one mode anaadage at the onset of lasing corresponds to placing the
resonator into the corresponding domain. One can see in Fig8 that the shape of phase trajectories should depend
on R, but the idea is not changed as longiass large enough to achieve bistability.

As soon as the pumping is turned off & 0), the phase diagram is drastically altered. Only the orgii®) remains
as a stable fixed point, and ify, ~ ko, the phase trajectories are straight lines convergingth&his corresponds to
the exponential mode decay with rates[see, e.g., Eq. (19)] from the steady-state amplitj.ld?‘t}2 towards the origin,
described as

Ej(t) = E5™exp[— (k;/2)1], (25)

shown as a dashed line in Fig. 3b. The signal that is suppodedk the laser into the other mode by giving it a “boost” can
be schematically represented by shifting the resonatte stathe phase diagram perpendicularly to the decay toaject
(dotted line). If the pumping is turned on immediately aftards, the system will follow the lines of the phase diagram
for a system with gain. The critical factor in the furthertgys evolution is whether the re-seeding has succeededfto shi
the resonator state past the dividing line into the othereisodomain. If this is the case, switching is seen to occur. If
not, e.g., if re-seeding occurred prematurely and the e#somemains in the same domain, then lasing simply resuimes a
the original mode (see Fig. 3b). As a result, there is a simgiion between the minimum decay tinfé", the relative
amplitude of re-seeding signal = Ei/EJS-at, and the mode decay rategfor j — ¢ mode switching:

e; = exp [~ (k;/2) trcnin} . (26)



This relations is in agreement with earlier numerical peédins!’ The phase diagram approach allows to analyze the
effect of mode switching in more detalil, e.g., taking inte@ant the finite duration of the re-seeding signal, as wetbas
consider the effects resulting from temporal mismatch ketwe-seeding and turning the pumping on.

5. CONCLUSIONS

We have shown that bistable lasing is possible in a coupleitydaased microresonator without the need for a saturable
absorbeY* or very low Q-factor~13 By expanding the earlier thedfto the case of two modes of arbitrary geometrical
structure, we have shown that bistability is the result ofraerplay between incoherent and coherent mode interactio
Incoherent effects alone cannot bring the modes coexistiagavity to stronger-than-neutral coupling. Furtheeesion

of the formalism developed, e.g., to include spatial as wasltemporal multiscale analy€&will allow to extend the
conclusions of the present paper not only to defect-basedl$o to distributed feedback based microlasers.

The reported bistability is a prerequisite to a new prireijpl multiple-wavelength microlaser design based on de-
liberate mode selection by locking into the chosen mode irutiimode resonat8r'’ rather than externally tuning the
entire cavity>~" Analytical predictions agree with FDTD numerical simubatiof lasing in twin coupled defects in a 2D
photonic crystal latticé’ Contrary to earlier account8;'®both coupled cavities are identical, which makes the intetah
frequency splitting controllable, e.g., by varying theeintavity distance, and even tunable by conventional meaise
mode switching dynamics has been studied in detail usinthiaretical analysis developed. The tolerance of the Bwitc
able lasing to the adverse effects of fabricational imptid@s remains an interesting subject of future invesiiget
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