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ABSTRACT

Bistable lasing in twin coupled microcavities is demonstrated analytically and numerically, underlying a new principle of a
multiple-wavelength microlaser where the lasing wavelength is switched by locking into the desired mode in a multimode
resonator. The bistability appears due to an interplay between coherent and incoherent mode interaction processes, assisted
by similarity between the spatial intensity distribution of the modes in the gain region. The wavelength switching dynamics
in a model system of twin defects in a photonic crystal is explained on the basis of the theoretical analysis presented.

1. INTRODUCTION

Micro- and nanostructure based photonic devices play a key part in many areas of optoelectronics, integrated optics, and
optical telecommunications. Of these devices, microlasers1, 2 provide an important milestone, facilitating low-threshold,3, 4

integrated, on-chip coherent light sources, which can alsobe utilized for quantum computing and cavity quantum electro-
dynamics studies. Making microlasers capable of multiple-wavelength operation has the obvious advantage in providing
an additional degree of freedom in on-chip light control. However, the small cavity size makes it increasingly difficultto
introduce a tuning element into the laser resonator. Instead, a tunable microlaser is commonly envisaged as a system where
the entire single-mode cavity is subject to a modification byan external process, the most common among them being
thermal, electro-optical, or micromechanical tuning mechanisms.5–7

Aside from the difficulties associated with the need to use external (and often quite slow) means to manipulate optical
circuits, it is also non-trivial to make the cavity in question support single-mode lasing. This two-step process of first
having to suppress multiple-mode operation and then devising a tuning mechanism for the cavity naturally calls forth an
alternative principle: to start with a multimode resonatorand then to lock it into one of its modes on demand, thereby
creating aswitchable(as opposed to tunable) microscopic laser light source. Since the mode locking is widely known to
occur in lasers,8 such switchable lasing provides a viable, potentially all-optical alternative to conventional microcavity
tuning.

There are two problems to be seen on the way to switchable lasing. First, one does not want the locking signal to be
monochromatic Instead, one can use a pulsed locking signal with the spectrum spanning all the modes in question, making
the resonator lock to the signal’s symmetry rather than its frequency. This idea was put forth earlier for coupled dielectric
nanopillar waveguides22 and successfully extended to the lasing regime in our recentinvestigations.9

A more serious and more fundamental problem lies in the nature of mode competition processes. When several modes
interact in a cavity, those with a higherQ-factor tend to win the competition and dominate in lasing; if no mode becomes
dominant, multimode lasing ensues.8 On the contrary, switchable lasing implies that the resonator can have stable, single-
mode lasing for more than one mode. In other words, the laser system in question must bebi- or multistable.

Theoretically, three lasing regimes of two-mode competition exist:8, 10 (i) domination of the mode with the significantly
higherQ-factor; (ii) simultaneous two-mode lasing if the modes areclose inQ and weakly coupled to each other; and
(iii) bistable lasing when the coupling between the modes isstrong. However, despite being a theoretically valid lasing
regime, bistability means that cross-saturation between the modes exceeds their self-saturation, i.e., each mode saturates
its counterpart more readily than it saturates itself. Thiscan be imagined with relative ease in a system of two high-gain,
low-Q coupled lasers11, 12 where the radiation coming out of each laser cavity is directed into the other cavity, and the



cavity finesse as well as feedback are specially weakened so to prevent formation of a compound dual-laser resonator.13 In
a microlaser where both modes coexist in the same cavity the incoherent mode coupling involving the spatial hole burning
effects cannot be made that strong except by resorting to additional effects such as saturable absorbers or carrier diffusion,14

or else to special cases such as counterpropagating modes inring lasers or different polarizations in bistable laser diodes
where the two modes (and two only) are degenerate so that the wavelength of both is the same.

In contrast, the present paper focuses on demonstration of bistable lasing with wavelength switching in coupled cavity
based microlasers. The strong coupling between modes is achieved by coherent (presumably, population pulsation based)
mode interaction processes. Contrary to the recent experimental results on bistable lasing in twin coupled microdisks15

or microrings,16 identical coupled cavities are considered, and a pulsed locking signal is used to switch the operating
wavelength. Instead of being eigenmodes of slightly different cavities,15, 16 the modes in question are supermodes formed
when identical single-mode cavities are coupled. The two-mode system based on twin defects in a 2D photonic crystal
(PhC) lattice proposed in our recent work,17 predicted to be capable of 20 nm wavelength switching on a sub-nanosecond
time scale, has been analyzed in detail. The principle described readily allows extension to the coupled cavity based
systems featuring more modes, as verified elsewhere9 for nanopillar waveguides.

The structure of the paper is as follows. In Sec. 2 a coupled-mode multiscale analysis is developed for the eigenmodes
of twin coupled microcavities. Starting from the Maxwell-Bloch semiclassical equations, the evolution of the modes and
population inversion is derived. In Sec. 3 the resulting equations are analyzed. Bistable lasing regime has been obtained,
and coherent mode interaction processes are singled out as the most probable cause. In Sec. 4 we investigate the dynamics
of the mode-to-mode switching17 using the models obtained in earlier sections. Finally, Sec. 5 summarizes the paper.

2. COUPLED TWO-MODE EQUATIONS

The small cavity size of microlasers causes their mode structure to show a greater variety compared to bulk cavities. In
order to investigate the effects related to the mode structure, interaction, and dynamics of laser radiation in microstructures,
one can use methods based on the eigenmode decomposition of the cavity field, similar to those developed for bulk reson-
ators.18, 19 In this section, we extend the formalism developed in the work of S. Hodgeset al.18 to the case of two modes
in a defect-based microcavity. Unlike most accounts, we derive the equations for laser dynamics without any specific
assumptions for the mode geometry and simplify them for the case corresponding most closely to the eigenmodes of twin
coupled cavities, i.e., the modes as similar to each other aspossible, but still not identical in frequency.

2.1. Slowly varying envelope equations and two-mode temporal multiscale expansion

The system of basic equations is constructed of three parts:(i) the laser rate equations, reduced to the equation for popula-
tion inversion of the laser transition; (ii) the equation ofmotion for macroscopic polarization density, obtained in amodified
electronic oscillator model, and (iii) the scalar wave equation derived from the Maxwell equations for TM polarizationin
the 2D case. Applying the slowly varying envelope approximation,8 the equations take the form18
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HereW (r, t) has the meaning of population inversion,R is the pumping rate,µ is the dipole moment, and the radiative and
non-radiative decay rates are given byγ⊥ andγ‖, respectively. We consider a resonant system that featurestwo eigenmodes
with decay ratesκ1,2 and frequenciesω1,2 ≡ ω0 ∓ ∆ω with the central frequencyω0 shifted with respect to the lasing
transition frequencyωa by δ = ωa − ω0 (∆ω, δ ≪ ω0). We assume that the eigenmodes have the spatial structure given
by u1,2(r). One can thus decompose the electric fieldE(r, t) into spatially dependent mode profilesu1,2(r) multiplied by
time dependent slowly varying envelope functionsE1,2(t) as

E(r, t) = u1(r)E1(t)e
i∆ωt + u2(r)E2(t)e

−i∆ωt ≡ u1(r)E1(t)e
φ+ + u2(r)E2(t)e
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Here and further,φ± ≡ ±i∆ωt. Eq. (2) implies the use of the rotating wave approximation.Unlike the electric field,
the polarization amplitudesP1,2(t) introduced likewise are not necessarily slowly varying andrequire further multiscale
decomposition,18, 20which in the case of two modes becomes

P (r, t) = u1(r)
[

P 1
1 (t) + P 2

1 (t)e2φ−
]

eφ+ + u2(r)
[
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Finally, the population inversionW (r, t) can only be decomposed in a temporal series at this stage:

W (r, t) = W 1(r, t)eφ+ + W 2(r, t)eφ− . (4)

The modesuj(r) are the solutions of the homogeneous wave equation assumed to form an orthonormal set in the cavity

[

c2∇2 − ǫ(r)ω2
j

]

uj(r) = 0,

∫

C

d3
rǫ(r)u∗

i (r)uj(r) = δij . (5)

One can substitute Eqs. (2) and (3) into the equation for the electric fieldE(r, t) in (1) with subsequent elimination of
the spatial derivatives using Eq. (5). To disentangle the equations for each modeEj , one typically applies the integration
∫

d3
ru∗

j to both sides, using the normalization condition in (5) and the assumption that all time dependencies are slow
enough. However, when the polarization term is present, this decoupling remains rigorously possible only as long as
Eq. (5) remains true both with and withoutǫ(r) in the integrand. This is automatically true only ifǫ is constant (the
bulk-cavity case18). It remains approximately true if the majority of the modes’ energy, as well as the laser active medium,
are primarily located in a material with the same dielectricconstant. This is often the case in microcavities. A more
complicated case of distributed feedback structures requires both spectral and spatial multiscale analysis. (Such treatment
was developed for PhC lasers,20 the single-mode case investigated in detail.) Provided thedecoupling can be made, one
can further substitute Eqs. (2)–(4) into the system (1) and obtain the system of equations forP q

j in terms of mode overlap
integralsαmn

ij and overlaps between the modes and the population inversioncomponentsW q
ij :
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The integration in Eqs. (6) is performed over the gain mediumwhereǫ(r) is assumed to be constant. The shape of the gain
region itself can be arbitrary and does not have to be contiguous. The resulting equations for two modes, coupling two
mode envelopesEj , four polarization componentsP q

j , and eight population inversion projectionsW q
ij , have the form
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2.2. Adiabatic polarization elimination (class-B laser equations)

If the radiative decayγ⊥ is much faster than both the non-radiative decayγ‖ and the eigenmode decayκ1,2 (class-B
lasers18), then the resulting equation system can be further simplified by assuming that polarization follows the field
adiabatically, i.e., thatdP q

j (t)/dt ≈ 0. After some algebra, Eqs. (7)–(9) are transformed to
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whereβ1,2 ≡ (γ⊥ + iδ)±i∆ω and the componentsRq
ij are related toR in the same way asW q

ij toW [Eqs. (4) and (6)]. We
assume constantR in the gain region, but the model allows incorporation of spatially and/or temporally varying pumping.
More specific knowledge about the modes in question makes it possible to simplify the system (10)–(11) further. If the
modes are identical in intensity in the gain region, one can show thatW (1,2)∗

ij = W 2,1
ij . This causes Eqs. (11) to assume a

simpler form (13):
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Furthermore, considering the case that the modes are orthogonal in the gain region (so thatRij 6=i = 0), as well as that
both modes are equally coupled to the gain (δ = 0), one can show that the population inversion components aregrouped
according to the symmetry of their subscripts:W 1

ii = W 2∗
ii ≡ Ws, W 1

ij 6=i = W 2∗
ij ≡ Wa (“s” and “a” standing for

“symmetric” and “anti-symmetric”). Introducing new variablesNs,a ≡ Ws,aeφ± , after some algebra we get:
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with g ≡ µ/(2ǫ0ǫ~), ξ ≡ µ2/(4~
2), L ≡ β−1

1 + (β∗
2 )−1.

The system (14)–(15) describes the effects pertaining to the interaction between two modes, namely the incoherent
self- and cross-saturation (due to the spatial hole burning), as well as coherent effects like the nearly degenerate four-wave
mixing (owing to the population pulsations). It resembles the two-mode competition equations21 generalized to the pump
levels well above the lasing threshold.

So far, we have been considering the laser model without spontaneously emitted photons or any other signal external
sources. These can be included phenomenologically by adding an explicitly time-dependent term to the field:E(r, t) →
E(r, t) + E(r, t) or to the polarization (which is equivalent as the polarization has been eliminated adiabatically).18 In the
rotating-wave approximation, this additional term will contribute to the slowly varying envelopesEi(t) as:
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where the spatial integration is over the whole cavity and the coarse-graining time integration is overτ > ∆ω−1, intended
to average out all processes faster thanτ . UnlessEj(t) are large enough to cause non-negligible feedback through popula-
tion inversion, one can simply keep Eqs. (15) unchanged and supplement Eqs. (14) withEj(t). A Langevin delta-correlated
random function can be used in place ofE(r, t) to model the noise, or an explicit form of an external signal can be used to
model injection locked lasers.8 In the simplest case when the injected signalfj(t) is designed to primarily excite one of
the modes of the resonator, a solution of the following equation for a driven oscillator can be used:

d2

dt2
Ej(t) + 2κj

d
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Ej(t) + ω2

jEj(t) = fj(t). (17)

2.3. Class-A equations: near-neutrally coupled modes

Here we introduce a further approximation of class-A lasers(γ‖ ≫ κ), which, although not quite valid for the system under
study, is a very illustrative limiting case of Eqs. (14)–(15). Within these assumptions, the componentsNs andNa are also
adiabatically following the field envelopes (dNs,a/dt ≈ 0). One can then expand the algebraic equations resulting from
Eqs. (15) in a perturbative series, so that, in the first two orders,
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The Eqs. (14) then become
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We see that the resulting Eqs. (19) have the form of the usual linearized two-mode competition equations8, 10
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2 − θ22 |E2|

2
)
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For each mode, the first termρj accounts for the net unsaturated gain minus losses, and the subsequent termsθij account for

self- and cross-saturation. One can notice that if the rightmost terms in Eqs. (19) [appearing due to the componentN
(1)
a and

clearly associated with coherent mode interaction terms inEqs. (15)] are neglected, the equations become symmetric, and
the self- and cross-saturation coefficient coincide. This corresponds to the neutral coupling between the modes (C ≡
θ12θ21/θ11θ22 = 1). The modes can lase stably in any proportion, provided the sum of their intensities remains the same.
The inclusion of the omitted terms results in the mode coupling constant slightly exceeding unity:

C = 1 + 3γ2
‖/

(

γ2
‖ + 4∆ω2

)

. (21)

We see that even in this simplified case the system can exhibitmode coupling which is slightly stronger than neutral,17

and the coherent mode interaction processes are likely to becausing such behavior. However, asγ‖ ≪ ∆ω, the addition
to C is extremely small, and it is expected that any deviation of the system from the ideal case [such as a slight perturbation
of the mode intensity equality. (12)] will push the system back into the weak mode coupling regime.

3. MODE COMPETITION REGIMES AND BISTABILITY

As a model to demonstrate bistability, we have chosen a structure that closely fits the model developed, namely, a structure
consisting of twin coupled defects in a 2D PhC square lattice(Fig. 1). The defects are assumed to be identical and contain
a gain medium. The resulting resonator thus exhibits two modes arising from the splitting of the fundamental mode of
a single defect. These two modes (see Fig. 1) are spectrally close to each other (the distance dependent on the coupling
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Figure 1. Twin coupled defects in a 2D PhC square lattice with perioda = 500 nm along with the spectra and schematic field distribution
of the system’s eigenmodes. Also shown are sample pulsed signals [seedingjy(r, t)] than can selectively excite the desired mode with
a matching phase structure [according to Eq. (17)]. The PhC waveguides adjacent to the defects can be used to deliver those signals, as
well as to guide the output laser radiation out of the resonator.

strength between cavities), and if no losses are assumed in the coupling region, they have closeQ-factors. Their primary
difference is in the phase relations between the fields oscillating in each cavity: the lower-frequency “bonding” mode and
the higher-frequency “antibonding” mode (the notation similar to that used for modes in photonic molecules15) have the
field in the two cavities oscillating in phase and in antiphase, respectively. Note that thisphasedifference, which is what
makes such modes individually excitable by a signal with thematching symmetry (as shown in Fig. 1, following an earlier
suggestion22), does not influence the modes’intensityprofile, which is nearly identical in the cavities (i.e., where there is the
gain medium) and only differs in the coupling region. This makes the structure in question conform to the condition. (12)
used to obtain Eqs. (14)–(15). This system of equations was solved numerically for the parameters corresponding to the
structure in Fig. 1, the results compared with the finite-difference time-domain (FDTD) simulation of lasing in the same
system (the reader is referred to our earlier paper9 for further details).

Let us begin by analyzing the mode dynamics as dependent on the pumping rate (Fig. 2). Moderate pumping levels
cause the overall mode dynamics to exhibit the known spikingbehavior (Fig. 2a), which disappears when the laser is
operated well above the threshold (Fig. 2b,c). As regards the mode interaction, we see that there is a clear transition from
a slow convergence towards simultaneous two-mode lasing (Fig. 2a,b), to the case when the weaker mode is quenched
by (instead of catching up with) the stronger mode. By the stronger mode we mean the one which happens to have an
advantage at the period of lasing onset. Hence, either mode that has an initial advantage can become dominant in lasing
(Fig. 2c,d), which is a direct indication of bistable two-mode lasing.

This transition from two-mode to bistable lasing can be explained by qualitative analytical considerations. Let us
suppose that one mode lases in a stationary state:E1(t) = 0, E2(t) = E, from Eqs. (15) it follows thatNs(t) = ηE,
Na(t) = 0. Suppose that a slight perturbation is present, so that

E1 → δE, E2 → E − δE, Na → δN . (22)

Such perturbation, while keepingNs unperturbed, assures that only the balance between the modes is shifted but not the
overall lasing intensity|E1|

2
+ |E2|

2, so that its dynamics, which is always stable above the lasing threshold, does not
obscure the mode interaction dynamics, which we are trying to investigate. The equations for small variations are:
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Assuming that bothδE andδN are varying asest, and thatδN = ηδE, we write the secular equation8 for s



Figure 2. The evolution of the mode amplitudes|E1(t)| and |E2(t)| (solid and dashed line, respectively), normalized to the units of
cavity field, for(a) R = 108; (b) R = 109; (c, d) R = 1010 (in arbitrary units). The shaded graph shows the cavity fieldas obtained by
FDTD calculations for comparison. The insets show time-resolved intermode beatings in FDTD cavity field (shaded) and inthe cavity
field reconstructed from|Ej(t)| (solid). The modes were initially excited with proportionE1 : E2 equal to(a, b, c) 1 : 3 and(d) 3 : 1.

∣

∣

∣

∣

s + κ/2 − g(ω/2)LηE −g(ω/2)ηE

ξαL |E|2 s +
(

γ‖ + 2i∆ω
)

+ ξαL |E|2

∣

∣

∣

∣
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The resulting quadratic equation fors has two characteristic cases: for smallerR, there can be solutions withRes > 0,
suggesting that one-mode lasing can be unstable. WhenR is increased, it can be shown thatRe s < 0, which means that
one-mode lasing regime is stable. This marks the transitionfrom simultaneous to bistable lasing. Inserting the parameters
for the model system in Fig. 1 into Eq. 24, one obtains the critical value ofR to be between109 and1010, consistent with
the observations in Fig. 2.

The limiting case dealt with in Sec. 2.3 has shown that in the lower orders of expansionNs andNa correspond to
incoherent (hole-burning) and coherent (population-pulsation) mode interaction processes, respectively. It has also been
shown that hole burning alone cannot bring the mode couplingconstant past unity. This is intuitively clear: when two modes
coexist in the same resonator and have the same intensity in the same volume (as is our case), the incoherent, intensity-
related effects will not discriminate between these two modes, and each mode will equally be saturating both itself and its
counterpart, which is exactly the case of neutral mode coupling. In any real resonator, the intensity distribution equality
(12) is expected to be perturbed even without taking into account the adverse effects of material or fabrication imperfection
losses. So each mode is likely to interact with its counterpart slightly weaker than with itself, making neutral coupling, let
alone bistability, unattainable in coupled cavity based design by merely incoherent mode interaction.

On the contrary, population pulsation assisted coherent mode interaction is capable of taking into account the phase
structure of the modes in question. Hence, it is the coherentmode interaction that can bring the cross-saturation between
modes past the self-saturation. On the other hand, the near-identical intensity distribution (12) within the gain medium takes
care that spatial hole burning brings the mode coupling as close to neutral as possible. So, an interplay between coherent
and incoherent mode interaction processes is the cause of bistability in coupled-cavity laser resonators. It remains an open
question whether such “constructive” interplay is a general property of coupled cavities, and what cavity parameters are
responsible for achieving the optimum in that interplay. This is a promising subject of future investigations.



Figure 3. (a) The time diagram of numerical simulation for1 → 2 → 1 mode switching, the insets showing the spatial distribution
of cavity field in the steady-state lasing regime.17 (b) The schematic phase diagram of bistable laser described by Eqs. (14)–(15), with
illustration of successful and unsuccessful2 → 1 mode switching (see text for details).

4. MODE SWITCHING DYNAMICS

Having established that bistability is possible in coupledcavity based microlasers, we proceed to investigate the operating
dynamics of the proposed laser in a mode-to-mode switching regime. The idea of mode switching proposed earlier17

consists of two phases. First, the pumping is turned off for acertain timetc; secondly, the laser is re-seeded (i.e., locked
into a different mode) simultaneously with turning the pumping back on. As shown in earlier numerical simulations,
switching between the two modes is indeed possible on a picosecond time scale (Fig. 3a). Using the theory presented in
previous sections, we can analyze the dynamics of the switching process further.

Figure 3b schematically depicts the phase diagram of the laser, using the normalized mode amplitudes|E1,2|
2 as phase

variables. Any state of the laser corresponds to a point, thetemporal evolution represented by phase trajectory lines.Since
the system is bistable, the phase trajectories converge towards one of the two stable fixed points of single-mode lasing:
(0; 1) or (1; 0), depending on the initial state of the resonator, brought into the equations (14)–(15) by the pulsed locking
(calledseeding8) via non-homogeneous terms (16). The line between the origin and the unstable fixed point(0.5; 0.5)
divides the space into two domains. In each of them, all points find themselves on trajectories that converge to the stable
fixed point lying in that domain. Hence, giving one mode an advantage at the onset of lasing corresponds to placing the
resonator into the corresponding domain. One can see in Figs. 2–?? that the shape of phase trajectories should depend
onR, but the idea is not changed as long asR is large enough to achieve bistability.

As soon as the pumping is turned off (R = 0), the phase diagram is drastically altered. Only the origin(0; 0) remains
as a stable fixed point, and ifκ1 ≈ κ2, the phase trajectories are straight lines converging there. This corresponds to
the exponential mode decay with ratesκj [see, e.g., Eq. (19)] from the steady-state amplitude

∣

∣Esat
j

∣

∣

2
towards the origin,

described as
Ej(t) = Esat

j exp [− (κj/2) t] , (25)

shown as a dashed line in Fig. 3b. The signal that is supposed to lock the laser into the other mode by giving it a “boost” can
be schematically represented by shifting the resonator state on the phase diagram perpendicularly to the decay trajectory
(dotted line). If the pumping is turned on immediately afterwards, the system will follow the lines of the phase diagram
for a system with gain. The critical factor in the further system evolution is whether the re-seeding has succeeded to shift
the resonator state past the dividing line into the other mode’s domain. If this is the case, switching is seen to occur. If
not, e.g., if re-seeding occurred prematurely and the resonator remains in the same domain, then lasing simply resumes at
the original mode (see Fig. 3b). As a result, there is a simplerelation between the minimum decay timetmin

c , the relative
amplitude of re-seeding signalεi ≡ Ei/Esat

j , and the mode decay ratesκj for j → i mode switching:

εi = exp
[

− (κj/2) tmin
c

]

. (26)



This relations is in agreement with earlier numerical predictions.17 The phase diagram approach allows to analyze the
effect of mode switching in more detail, e.g., taking into account the finite duration of the re-seeding signal, as well asto
consider the effects resulting from temporal mismatch between re-seeding and turning the pumping on.

5. CONCLUSIONS

We have shown that bistable lasing is possible in a coupled cavity based microresonator without the need for a saturable
absorber14 or very lowQ-factor.11–13 By expanding the earlier theory18 to the case of two modes of arbitrary geometrical
structure, we have shown that bistability is the result of aninterplay between incoherent and coherent mode interaction.
Incoherent effects alone cannot bring the modes coexistingin a cavity to stronger-than-neutral coupling. Further extension
of the formalism developed, e.g., to include spatial as wellas temporal multiscale analysis,20 will allow to extend the
conclusions of the present paper not only to defect-based, but also to distributed feedback based microlasers.

The reported bistability is a prerequisite to a new principle in multiple-wavelength microlaser design based on de-
liberate mode selection by locking into the chosen mode in a multimode resonator9, 17 rather than externally tuning the
entire cavity.5–7 Analytical predictions agree with FDTD numerical simulation of lasing in twin coupled defects in a 2D
photonic crystal lattice.17 Contrary to earlier accounts,15, 16both coupled cavities are identical, which makes the intermodal
frequency splitting controllable, e.g., by varying the inter-cavity distance, and even tunable by conventional means.5 The
mode switching dynamics has been studied in detail using thetheoretical analysis developed. The tolerance of the switch-
able lasing to the adverse effects of fabricational imperfections remains an interesting subject of future investigations.
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