Welcome to the webpage of the research group of Prof. Dr. Simon Stellmer.

"Quantum metrology": that's the art of measuring using phenomena from quantum physics. Specifically, we aim to increase measurement sensitivity beyond of what would be possible in classical systems, and we do this in an interdisciplinary approach.

Latest News

Our work on isotope shift spectroscopy in Zinc is finally submitted and now on the arXiv. Together with our friends in Berlin, London, and Haifa, we used laser-induced fluorescence spectroscopy on a cryogenic beam of Zinc atoms to nail down the isotope shifts of the 214-nm transitions. Team work makes a dream work... thanks and congratulations to everyone! The manuscript, of which David is the first author, can be found here.

Congratulations to Jonas and John for handing in their master theses! Jonas set up the hardware to import and save environmental parameters that are relevant to our gyroscopes: our dust contamination log is now referenced to the GPS signal! John advanced our three-dimensional passive gyroscope through new locking technology. Both Jonas and John will stay with us and work on the gyroscopes.

We are welcoming two new team members. Andreas Reuß joins us after a master thesis with Stefan Linden and will now be leading the Calcium experiment. Sascha Heider will do a summer internship with us and continue as a master student in the fall. Welcome Andreas and Sascha!

The Quantum Metrology research group offers six exciting master thesis projects. These projects span a wide range between laser development, precision measurements, quantum information, and outreach activities and cut across atomic physics, optics, and electronics. Find out more

Prof. Dr. Simon Stellmer has been awarded a Proof of Concept Grant by the European Research Council (ERC) as part of a program designed to help researchers translate their ideas from previous ERC projects into commercial applications. The grant is endowed with €150,000. Find out more

Mahdi did his Bachelor thesis work on the Quantum Freuency Conversion project and just handed in his thesis. Say good bye to the dark lab, welcome back to the lecture hall!

Today, John Gutsche joined the Gyroscope team to do his Bachelor thesis with us. John will set up a tetrahedral 3D passive ring laser gyroscope, likely the world’s first of this kind. Good luck with your work!

Apart from a range of open PhD and PostDoc positions, we can offer a permanent researcher position. Candidates should contact Prof. Stellmer, please find the job posting here, deadline is May 5.

Spring time is DFG meeting time! Anica, Lukas, Thorsten, and Ali went to Hannover to present our research in a number of talks and posters.

Julian is the first-ever Bachelor student in our group, and it seems he did not only survive his stay with us, but he also enjoyed it. Julian set up the heterolithic tetrahedral gyroscope, a massive steel construction that will last a long time. Congratulations Julian!

Highlight of the year! Together with Ulli Schreiber from Wettzell and Andreas Brotzer from LMU Munich, we installed the GeoSensor ring laser gyroscope in our underground lab. This 4-by-4 meter device was previously installed at a geodetic observatory in the desert of Nevada, dismantled there, and re-configured in our lab. We are grateful for this amazing collaboration.

Priyanka recently came to Bonn as a BCGS student for her master studies. She joins the Quantum Frequency Conversion team to explore frequency conversion in high-pressure hydrogen. Welcome Priyanka!

The European UVQuanT project has officially started! This week's kick-off meeting in Berlin will see a gathering of all partners, as well es guests from academia and industry alike. The goal of this 4-year project is an improvement in the reliability of UV lasers and optics, with a focus on the wavelength range between 200 and 230 nm.

Congratulations to Lara Becker and Marc Vöhringer Carrera for having submitted their master theses! Lara worked on the setup of a calcium beam clock, while Marc worked on spectroscopy of Zinc using transitions deep in the ultraviolet. Good luck for your next career steps!

The beginning of the winter term often marks the beginning of a bachelor or master thesis. This year, three students join the group: Lukas Möller (who already did his summer internship with us) will do his master thesis work on the Calcium project, Julian Spanier will do his bachelor thesis in the gyroscope project, and Mahdi Razavi Tabar will start his bachelor thesis on quantum frequency conversion.

Frequency conversion often employs a nonlinear crystal, especially if it comes to conversion processes at the single-photon level. However, crystals come with a certain set of material properties, some of which are good (e.g. large nonlinearities) and some of which are bad (e.g. absorption and phase matching conditions). As an alternative approach, we employ a dense gas of diatomic molecules (hydrogen in this case) as the nonlinear medium. We demonstrate frequency upconversion, downconversion, and show that polarization is conserved: check out the manuscript on the arXiv here.

Since a couple of weeks, the state of NRW has its new state government (Landesregierung). Today, the new minister for culture and science (MKW), Mrs Ina Brandes, paid her inaugural visit to the University of Bonn to learn about our various excellence initiatives. Simon Stellmer gave a brief introduction to our beloved research topics... optical clocks, gyroscopes, quantum computing, and so forth. We are looking forward to jointly promote research and science in NRW! See the press release here.

We are hiring! Currently, we can offer three PhD positions with our mercury and zinc projects. The mercury project is our oldest and largest experiment, devoted to searches for physics beyond the standard model with ultracold mercury atoms, with a side project on quantum simulation. This project is funded through the ERC, the SFB OSCAR, and the EU project UVQuanT. Within the zinc project, we will develop a novel optical clock based on zinc, and aim to study entanglement and decoherence processes of single atoms trapped in optical tweezers. This project is funded through various DFG grants and is part of the ML4Q Cluster of Excellence. For all of these positions, some experience in a cold atom or laser lab is certainly a bonus. Please enquire with Prof. Stellmer.


Prof. Dr. Simon Stellmer

Stellmer quMercury.jpg
© University of Bonn




+49 228 73 3720


Physikalisches Institut der Universität Bonn
Nussallee 12
53115 Bonn


Room 0.016 (ground floor), easiest access via Wegelerstraße 10


U1.011 (basement), easiest access via Wegelerstraße 10

Wird geladen