

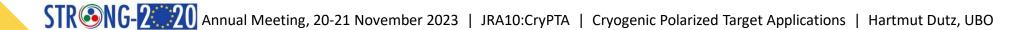
Annual Meeting

JRA10:Cryogenic Polarized Target Application Hartmut Dutz

Physikalisches Institut, Universität Bonn

Plan of the presentation

- 1. Progress achieved by the WP during the last year
 - Recommissioning of the Dubna-Mainz dilution refrigerator (CryPTA:ScM, CryPTA:APT)
 - ii. Design of a combined holding coil system (CryPTA:ScM)
 - iii. Improved light efficiency read out (CryPTA:APT)
- 2. Important highlights of the performed work
- 3. Plans and remaining tasks until the end of the project (31 July 2024)
 - Tilted coil configuration for frozen spin mode (CryPTA:ScM)
- 4. Conclusions


JRA10:CryPTA

Cooperation of four partners

Organization legal name	Short name	Activity leaders
Ruder Boskovic Institute Zagreb	RBI	M. Korolija
Ruhr-Universität Bochum	RUB	G. Reicherz
Rheinische Friedrich-Wilhelms- Universität Bonn	UBO	H. Dutz
Johannes Gutenberg Universität Mainz	UMainz	A. Thomas

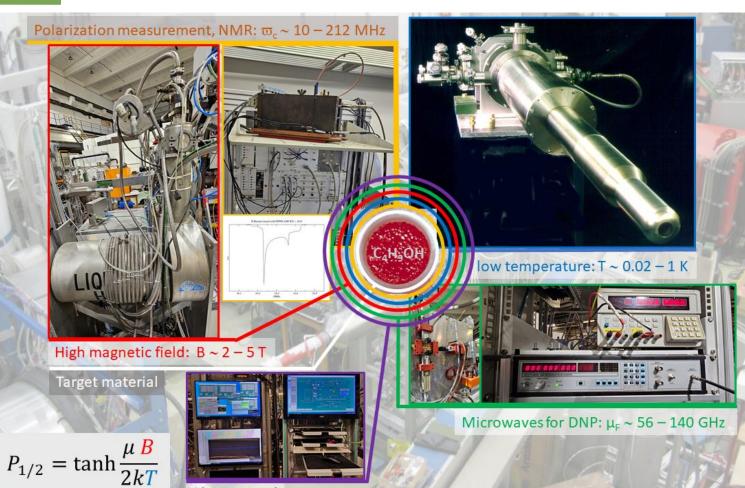
M. Biroth, H. Dutz, St. Goertz, S. Heinz, A. Klotzbücher, M. Korolija, O. Kostikov, V. Lagerquist, G. Reicherz, A. Thomas

→ Develop new polarized target technologies for future polarization experiments

RUB

Ruđer Bošković

JRA10:CryPTA


PT-Ingrediencies and responsibilities

- NMR
- Target material preparation and research

- Target material preparation and research
- Magnet development
- Slow Control
- Cryogenic infrastructure

- Low temperature
- Refrigerator design and operation

- Microwaves
- Active target material preparation and research

Slow control

Recommissioning of the Dubna-Mainz dilution refrigerator

CBELSA/TAPS horizontal frozen spin target with internal transverse or longitudinal holding magnet

Run-time polarized target (cold cryostat)

2017 (long. polarization) \sim 800h b.o.t.

 \rightarrow p_p = 63 %, (butanol, TEMPO), $\tau \sim 1300h$

2018 (transv. polarization) ~ 1000h b.o.t.

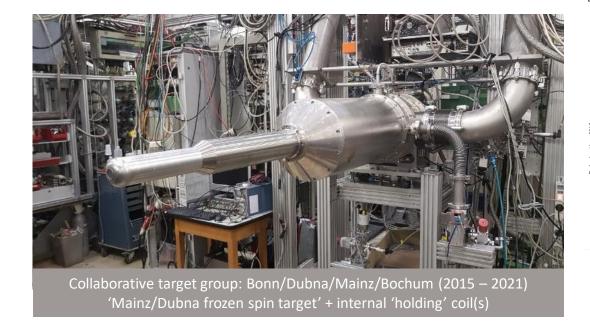
$$\rightarrow$$
 p_p = 87 %, τ ~ 500 h

2018 (transv. polarization) ~ 800h b.o.t.

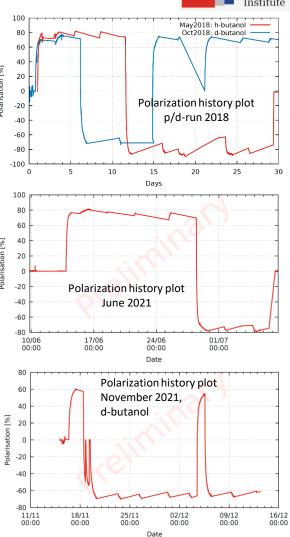
$$\rightarrow$$
 p_d = 76 %, $\tau \sim$ 700 h

2019 (transv. polarization) ~ 500h b.o.t.

$$\rightarrow$$
 p_p = 84 %, $\tau \sim 800 \text{ h}$


2021 (transv. polarization) ~ 440h b.o.t.

$$\rightarrow$$
 p_p = 78 %, $\tau \sim$ 700 h


2021 (transv. polarization) ~ 500h b.o.t.

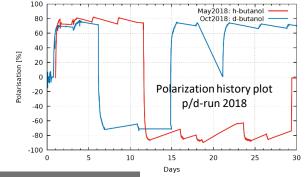
$$\rightarrow$$
 p_d = 75 %, τ ~ 500 h

Five years of successful operation on beam

Dubna/Mainz dilution refrigerator is the working horse for the PT projects

RUB

Bošković


RUB

CBELSA/TAPS horizontal frozen spin target with internal transverse or longitudinal holding magnet

Run-time polarized target (cold cryostat)

2017 (long. polarization) ~ 800h b.o.t.

$$\rightarrow$$
 p_p = 63 %, (butanol, TEMPO), $\tau \sim 1300h$

$$\rightarrow$$
 p_n = 87 %, $\tau \sim 500$

2018 (transv. polarization

$$\rightarrow$$
 p_d = 76 %, $\tau \sim 700$ l

2019 (transv. polarization

$$\rightarrow$$
 p_p = 84 %, $\tau \sim 800$ l

2018 (transv. polarizatic All activities stopped in March 2022, because of the Russian invasion of the Ukraine

- No refrigerator for the CryPTA-project for CryPTA:ScM and CryPTA:APT
- No working refrigerator for the experiment
- No reliable planning was (is) possible
- Since no one (all) of us has operated the refrigerator in the past
- Nevertheless we decided to cool down the system

2021 (transv. polarization) ~ 440h b.o.t.

$$\rightarrow$$
 p_p = 78 %, $\tau \sim 700 \text{ h}$

2021 (transv. polarization) ~ 500h b.o.t.

$$\rightarrow$$
 p_d = 75 %, τ ~ 500 h

Five years of successful operation on beam

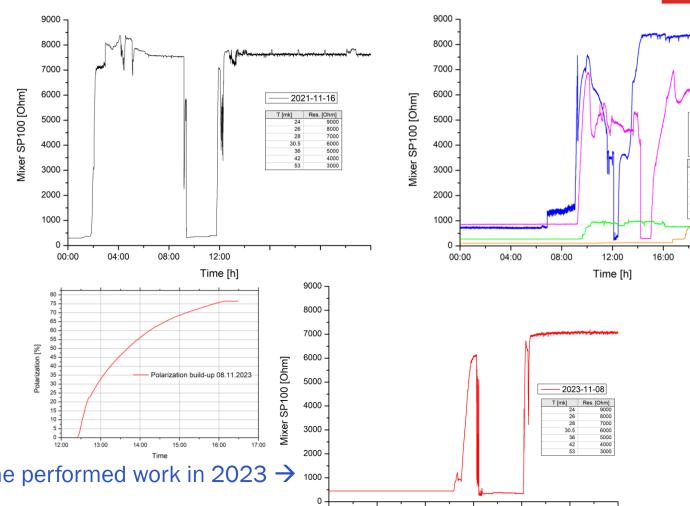
Dubna/Mainz dilution refrigerator is the working horse for the PT projects

n history plot 2021

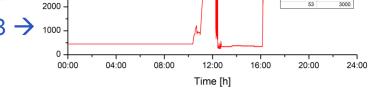
Bošković

20:00

24:00


RUB

After one year of learning to cool down to < 28mK and testing, we could reestablish:

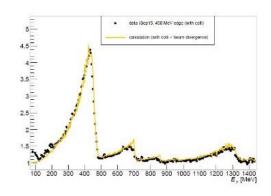

- Reliable cool down procedure
- Stable and reproduceable parameters for DNP
- Good polarization for Butanol (76% in 4h)
- Sufficient low temperatures (< 28 mK) for long relaxation times in frozen spin mode $(\tau \sim 2000h)$

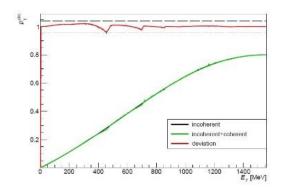
Next:

- Being back in beam beginning next year
- Combined internal coil project is now a highpriority work in progress

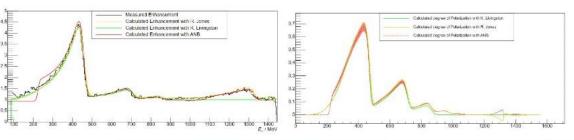
→ Important highlight of the performed work in 2023 →

New experimental approach in double polarized photo production experiments: Longitudinal polarized electrons on a diamond radiator [F. Afzal et al., submitted to PRL. 2023]


Circular polarization degree



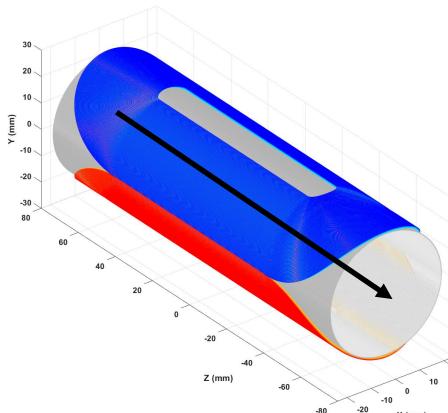
Linear polarization degree - Comparisons between different experiments


- Deviation between (coherent+incoherent) and incoherent below 4%
- · In very good agreement with experimental data!

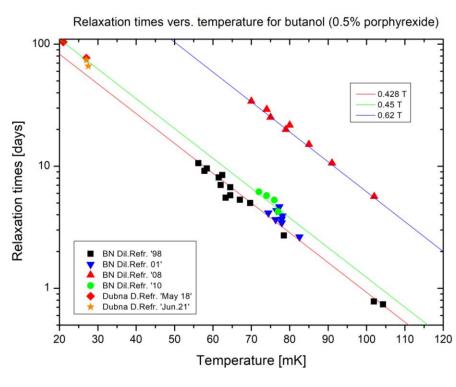
- F. Afzal et al., submitted to PRL
- Advantage of measuring with elliptically polarized photons:
 - Simultaneous measurement of several polarization observables possible
 - Self-consistent set of observables
 - Higher photon flux through coherent edges → high precision data is obtained faster
- Need dedicated tests with elliptically polarized photons at CBELSA/TAPS

- · Linear polarization degree does not depend on electron polarization degree
- Systematic checks between different experiments using different methods:
 - → K. Livingston's method (A2, CLAS), ANB (CBELSA/TAPS), R. Jones's code (GlueX)

photon		target			recoil nucleon			target and recoil			
		X	У	Z	-	-	-	X	Z	X	Z
		-	-	-	x'	y'	z'	x'	×'	z'	z'
-	σ_0	/-	T	1	·-	Р	-	$T_{x'}$	$L_{x'}$	$T_{z'}$	$L_{z'}$
linear	Σ	Н	P	G	$O_{x'}$	T	$O_{z'}$	$L_{z'}$	$T_{z'}$	$L_{x'}$	T_{\times}
circular		F	_	E	$C_{x'}$	_	$C_{z'}$	_	_		_


Lets rotate the target polarization and measure them all

L. Reschke


Combined longitudinal and transverse field for a variable polarization direction in yz-plane or xz-plane

→ Solenoid + 'race-track'

Initial approach:

- → combine solenoid + race track
- → minimize radiation length
- → minimize thickness of the package
- > reduced field strength
- > concept only works as holding field in frozen spin mode
- \rightarrow 0.4 T < B_H to get reasonable relaxation times

Detailed studies and simulations are underway → V. Lagerquist

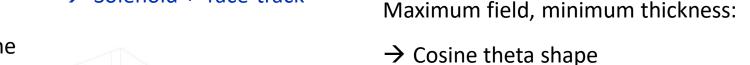
20

-20 -30

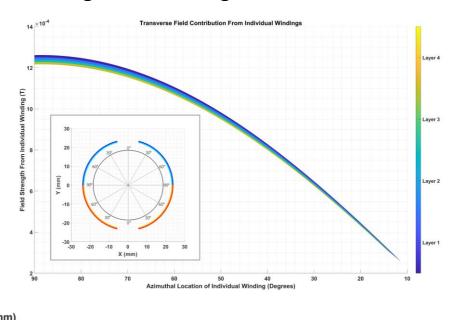
Combined longitudinal and transverse field for a variable polarization direction in yz-plane or xz-plane

Victoria Lagerquist, UBO

→ Solenoid + 'race-track'


Design / simulation boundary condition for the

compount:

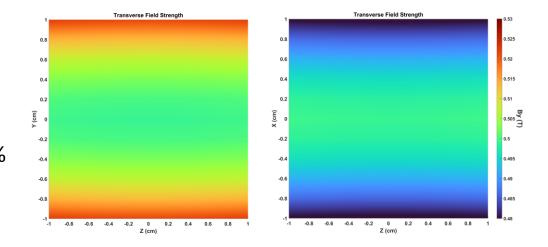

- → field solenoid / race track B > 0.4 T
- \rightarrow I_{nom} \leq 40A
- \rightarrow D = 45 mm / length = 150 mm
- → Almost homogeneous mass distribution

Final goal:

Optimize the compound for minimum thickness with an available wire for the race-track (first) and solenoid (easy task)

- → Equal No. of windings per layer
- → Straight section angle ~ 24°

Z (mm)



Combined longitudinal and transverse field for a variable polarization direction in yz-plane or xz-plane → Solenoid + 'race-track'


Victoria Lagerquist, UBO

Maximum field, minimum thickness:

- → Cosine theta shape
- → Equal No. of windings per layer
- → Straight section angle ~ 24°
- → Price to pay:
- → Field variation in target area ~ 5%
- \rightarrow Corresponding τ variation has to be measured

Field variation in yz-, xz-plane in target area

Field variation on target surface

Combined longitudinal and transverse field for a variable polarization direction in yz-plane or xz-plane

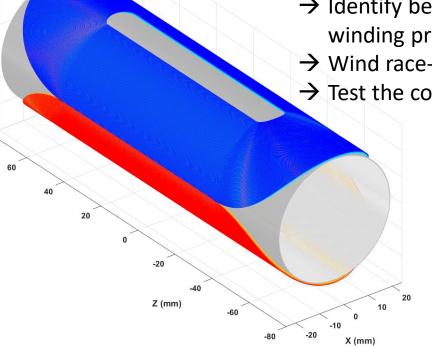
Victoria Lagerquist, UBO

2 compound scenarios possible:

(wire: 0.203/0.229 mm, Cu-support: 0.3 mm + separating foils)

'high current' I = $40 \text{ A} \rightarrow B = 0.4 \text{ T}$

- ⇒ Solenoid: 2 layers, N = 1280 → thickness: 0.45 mm
- \rightarrow Race-track: 3 layers, N = 414 \rightarrow thickness: 0.69 mm
- → Compound thickness: ~ 1.6 mm


'low current' I = 35 A \rightarrow B = 0.5 T

- \rightarrow Solenoid: 3 layers, N = 1920 \rightarrow thickness: 0.63 mm
- → Race-track: 4 layers, N = 552 → thickness: 0.92 mm
- → Compound thickness: ~ 2.2 mm

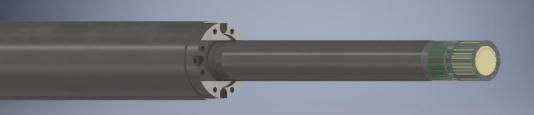
(Plans and remaining tasks until the end of the project (31 July 2024))

- \rightarrow Measure more $\tau(B)$
- → Identify best scenario and winding procedure
- → Wind race-track and solenoid
- → Test the combined coil system

Already strong interest in the technology by a SME for 3D-magnets

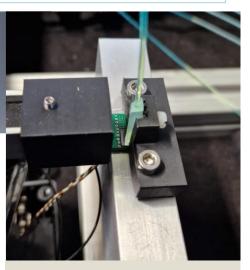
Or picking up an 'old' challenging idea: double helix configuration or canted cosine theta (cct) magnet

Improved light efficiency read out (CryPTA:APT)

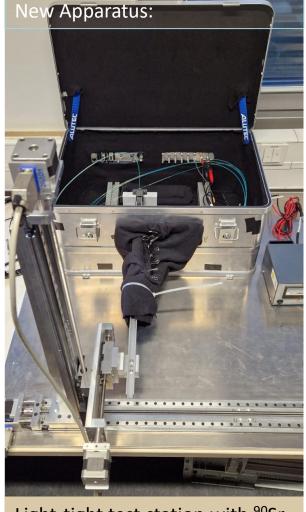

Next Generation Active Target and Polarizable Scintillator

Semi-active Target Concept: A cage of segmented standard plastic-scintillators-surrounds a Teflon container with doped Butanol inside.

- Fiber readout minimizes the intensity attenuation
- Enables carbon subtraction using an carbon foam
- Doped pellets can be H- or D-Butanol


M. Biroth, A.Thomas Students (2023/2024):

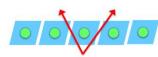
BSc A.Klotzbücher, BSc J.V.Patel

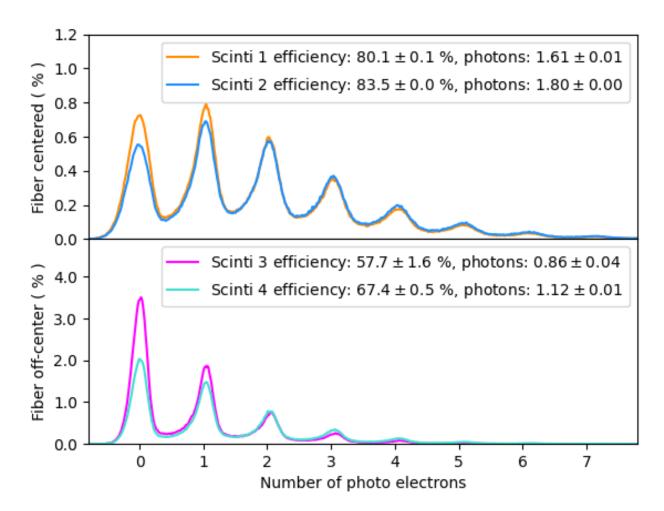


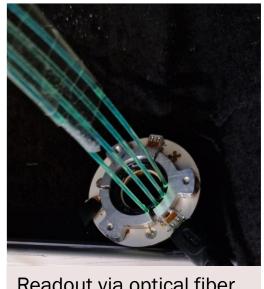
Focus on an improved light efficiency and readout:

- Coupling of the scintillating fibers to the material and SiPMs
- Geometry of the apparatus
- Tests with ⁹⁰Sr-source
- Tests with photon beam planned

Coincidence technique to improve signal to noise ratio.


Light-tight test station with 90Sr-Source and 3d-positioning


Improved light efficiency read out (CryPTA:APT)


Segmentation provides ϕ -resolution. Efficiency gaps are avoided by dovetailing of the scintillator bars.

Spectra for different geometrical configurations to specify the optimum with respect to the small dimensions (target 2cm x 2cm diameter) and the way of the fibers to the SiPMs in the cryostat.

Readout via optical fiber

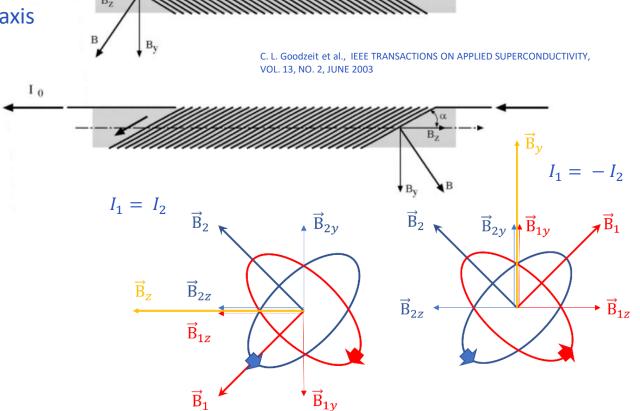
Tilted coil configuration for frozen spin mode (CryPTA:ScM)

Tilted coil configuration (TCC) for the new dilution refrigerator for a variable polarization direction in plane 'canted cosine theta (CCT) magnet'

independent tilted coil (solenoid N) wound with a to z-axis

$$B_z = B_S \sin \alpha$$
 $B_y = B_S \cos \alpha$ $B_S \sim \frac{NI}{l}$

- For a = 45°, symmetric case, 2 independent coils
- 'transverse case' : $I_1 = -I_2$


$$B_{\mathcal{V}} = \sqrt{2} * B_{\mathcal{S}} \qquad B_{\mathcal{Z}} = 0$$

- 'longituinal case' : $I_1 = I_2$

$$B_y = 0 \qquad B_z = \sqrt{2} * B_S$$

In between: any field direction possible

$$B_{min} = B_S$$

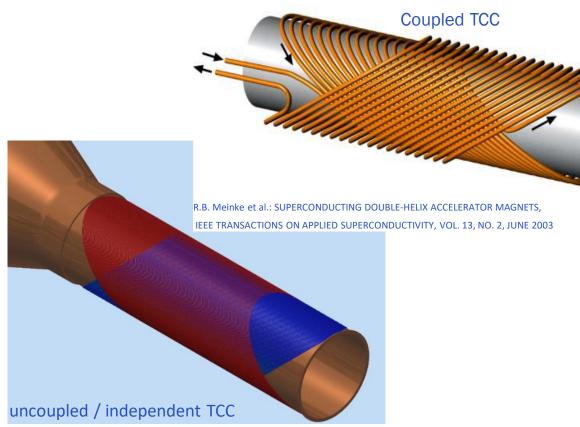
Tilted coil configuration for frozen spin mode (CryPTA:ScM)

Tilted coil configuration (TCC) for the new dilution refrigerator for a variable polarization direction in plane 'canted cosine theta (CCT) magnet'

TCC Perfect solution for polarized target experiments:

- homogeneous long. or transv. magnetic field
- adjustable field direction
- homogeneous mass distribution around the target

For a required B in a polarized target:


- TCC needs to be longer than a standard solenoid
- TCC needs more windings/layers or current

The real challenge:

- Winding a 250 μm wire to a tilted coil

Our next task:

- Full simulation needed (B, I, N, n_L, s.c.)
- Wind (etching) a demonstrator coil (one layer)

Conclusions

Despite the unfavorable circumstances in the last 3 years

- The complete target set-up is again available for experiments and the CryPTA project
- the combined holding magnet for the dilution refrigerator and the near future data taking campaign is in progress. CryPTA:ScM \rightarrow
- CryPTA:APT → detailed design concepts for low temperature polarized active targets are defined.
 - the preparation of an improved target insert with optical fiber readout is on the way.

The extension gives us the opportunity to complete the project