

JRA10:CryPTA Cryogenic Polarized Target Applications

Hartmut Dutz Physikalisches Institut Universität Bonn

Organization legal name	Short name	Activity leaders
Ruder Boskovic Institute	RBI	M. Korolija
Ruhr-Universität Bochum	RUB	G. Reicherz
Rheinische Friedrich-Wilhelms- Universität Bonn	UBO	H. Dutz
Johannes Gutenberg Universität Mainz	UMainz	A. Thomas

Research Objectives

The final goal of CryPTA is to develop groundbreaking s.c. magnet structures and low temperature detector techniques for new and innovative polarization experiments using polarized targets in 4π -detection systems for hadron physics experiments in Europe

PART B – Section 3. Implementation

IMPLEMENTATION

Wo	rk package number	JRAx																
Wo	rk package acronym	CryPTA																
Work package title Cryogenic Polarized Target App				plications														
TAS	KS/Subtasks		Year 1			Year 2			Year 3			Year 4						
			Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
1. De	evelopment of low mass sur	perconducting high field magnet	S															
1.1 High precision winding machine for thin superconducting wires				1														
1.2 Manufacture and test of a small size low mass polarizing solenoid with high homogeneity																		
1.3 Design manufacture and cold test of a prototype low mass, combined field superconducting magnet system										2								
1.4 Magnet field design studies for a low mass large sc. tracking solenoid																		
2. De	evelopment of low mass sup	perconducting passive shielding																
2.1 Magnet field calculations for PANDA low mass superconducting passive shielding										3								
2.2 Design and Manufacture of prototype HTSC shields and test at cryogenic temperatures																		
3. D	etection of recoil particles in	n active polarized targets at cry	ogenic	temper	atures													
3.1		plarized, scintillating target																
3.2	Prototypes of a scintillatin readout	g target stacks with electronic									4							
3.3	Prototype of a new cryog material	enic insert with active target																

Ruđer Bošković **RU**B Institute

RUB

Helmholtz-Institut Mainz

(Timelines are indicate in grey, milestones with black boxes)

List of Milestones in the reporting period (year1, Q1-Q4, 06.2019-06.2020)

Milestone number	Milestone name	Lead beneficiary	Delivery month from Annex I		Actual delivery month	Comments
MS63	High precision winding machine for thin superconducting wires	10 - UBO	9	yes	8	A detailed description of the winding machine is given in: https://www.polarisiertes-target.physik.uni-bonn.de/files/internalreportmilestonewindingmaschine.pdf

Use of human resources in the reporting period (year1, Q1-Q4, year2, Q1-Q2, 06.2019-12.2020)

Beneficiary number	Organization legal name (in italics the Research Units)	Short name	Human effort from Annex I (person-months for 18 months)	Actual human effort in the reporting period (person-months)
9	Johannes Gutenberg-Universitat Mainz	JGU MAINZ	3,40	0,00
10	Rheinische Friedrich-Wilhelms-Universitat Bonn	UBO	7,50	0,00
25	Ruder Boskovic Institute	RBI	0,00	0,00

Use of financial resources in the reporting period: ~ 11K€ for instrumentation at UBO

No Deliverables in the reporting period

List of Milestones in the period 2021/2022 (year3, Q1-Q4)

Milestone number	Milestone name	Lead beneficiary	Delivery month from Annex I	Means of verification	Actual delivery month	Comments
MS64	Design concept of a low mass, combined field superconducting magnet System	10 - UBO	27	Internal Report		
MS65	Magnet field calculations for PANDA low mass superconducting passive Shielding	10 - UBO	27	Internal Report		
MS66	Manufacture of prototype active targets for in beam tests	10 - UBO	27	Internal Report		

Budget corrections:

	JRA10: CryPTA – Cryogenic polarized target applications											
	REQUESTED EC CONTRIBUTION PER BUDGETARY ITEM AND PER BENEFICIARY											
Contr. No	Participant Acronym	Personnel (EUR)	Other costs (durables, consumables, travel, workshops) (EUR)	Total direct costs (EUR)	Indirect costs (EUR) (25%)	Total costs (EUR)	Requested EC contribution (EUR)					
	CUNI	0	0	0	0	0	0					
11	RUB	0	12 000	12 000	3 000	15 000	15 000					
10	UBO	88 000	28 000	116 000	29 000	145 000	145 000					
9	JGU Mainz	40 000	20 000	60 000	15 000	75 000	75 000					
25	RBI	10 000	2 000 12 000	12 000	3 000	15 000	15 000					
	TOTAL	138 000	62 000	200 000	50 000	250 000	250 000					

Research Objectives

The final goal of CryPTA is to develop groundbreaking s.c. magnet structures and low temperature detector techniques for new and innovative polarization experiments using polarized targets in 4π -detection systems for hadron physics experiments in Europe

Despite the currently unfavorable circumstances: the 3 Tasks are on the right track

- Task 1: → completing the magnet test refrigerator.
 - > preparing the manufacture and test of a small size low mass polarizing solenoid with high homogeneity.
- Task 2: → Magnet field calculations for PANDA low mass superconducting passive shielding still ongoing.
- Task 3: → development of low temperature polarized active targets is on the way.
 - → next step is the preparation of an improved target insert implementing the knowledge we have collected in the last years.

But: Corona also seems to slow down (thwart?) JRA10

So: lets hope the best