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1 Bonding in solids

1.1 Introduction

In everyday life matter can be observed in three different states of aggregation: solid,
liquid, and gaseous. Let us take as an example water (H2O) at a pressure of one atmo-
sphere. For temperatures below 0◦ C, H2O molecules condense into crystals. This solid
form of water is known as ice. In the temperature range between 0◦ C and 100◦ C, water
is a liquid while for temperatures above 100◦ C, water can be found in the gaseous phase
(water vapor).

Temperature

Liquid waterIce Water vapour

Figure 1.1: Water in its three state of aggregation encountered in everyday live: Ice, liquid water,
water vapour. (Images taken from Wikipedia.)

Within this course, we will investigate properties of the solid state of aggregation. It is
characterized by structural rigidity, i.e., a solid object keeps its shape without support.
This property results from the strong binding of the atoms in a solid object due to the
electromagnetic interaction of the electrons and the nuclei. A measure of the binding
strength of a solid is the cohesive energy. It is defined as the energy that must be added
to the solid to separate it into atoms at rest, at infinite separation, and with the same
electronic configuration. The cohesive energy strongly depends on the type of bonding.
It ranges between some 10 meV and several eV per atom.
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1 Bonding in solids

In this chapter, we will discuss the five principal types of bonding in solids: Van der Waals
bonding, ionic bonding, covalent bonding, metallic bonding, and hydrogen bonds. Please
note, however, that in many solid materials bonding results from a mixture of these types.

Noble gas crystal Covalent crystal

Metal Hydrogen bond

Ionic crystal

Figure 1.2: Schematic representation of the five principal types of bonding in crystals. The blue
shaded areas correspond to regions with negative charge density while the red regions
correspond to positive charge density. Hydrogen bonds are represented by dashed
black lines.

1.2 Van der Waals bonding

We will start the discussion with Van der Waals bonding. A prototypical realization of
this type of bonding can be found in crystals made from noble gas atoms. These atoms
exhibit a stable closed-shell electronic configuration with spherical symmetry. At very low
temperatures, the attractive dipole-dipole interaction (Van der Waals interaction) of the
atoms overcomes their thermal motion and they form crystals. On this occasion, the face
center cubic (fcc) lattice (see section 2.4) is preferred since this lattice type maximizes
the atomic packaging density.

The dipole-dipole interaction results in an attractive potential which varies as the inverse
sixth power of the inter-atomic separation r (proof: exercise). For small inter-atomic
separations, the wave functions of the electrons start to overlap and the Pauli principle
results in a strong repulsion. A phenomenological ansatz for the potential energy of two

2



1.2 Van der Waals bonding

noble gas atoms that incorporates these two effects is the Lennard-Jones potential:

ϕ(r) = 4E
[(
σ

r

)12
−
(
σ

r

)6
]
. (1.2.1)

Here, E and σ characterize the strength of attraction and the radius of the repulsive core,
respectively. The latter quantity is defined by the condition ϕ(σ) = 0.
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Figure 1.3: Lennard-Jones potential.

In the following, we consider a crystal containing N noble gas atoms. The potential energy
of the m-th atom in the presence of the other atoms is given by

Um =
∑

m ̸=n

ϕ(rmn), (1.2.2)

where rmn is the separation between the m-th atom and the n-th atom. The binding
energy of the whole crystal can be calculated as:

UB = 1
2
∑
m

Um = N

2 Um = 2NE
∑

m ̸=n

[(
σ

rmn

)12
−
(
σ

rmn

)6
]
. (1.2.3)

Here, the factor 1/2 has to be taken into account in order to avoid double-counting of
each pair of atoms. Next, we express the atomic separation as

rmn = αmnR, (1.2.4)

where R is the nearest-neighbor separation and αmn is a dimensionless number. With this
definition, the binding energy of the crystal can be written as

UB = 2NE
[
A12

(
σ

R

)12
− A6

(
σ

R

)6
]
, (1.2.5)
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1 Bonding in solids

with the lattice sums

Aj =
∑

m̸=n

1
αj

mn

. (1.2.6)

The nearest neighbor separation in equilibrium R0 follows from ∂UB/∂R = 0. For a
fcc-lattice with lattice sums A12 = 12.13 and A6 = 14.45, one finds:

R0 = 1.09σ. (1.2.7)

This value is in good agreement with the experimental data (see table 1.1).

Ne Ar Kr Xe
E(eV) 0.0031 0.0104 0.014 0.02
σ(Å) 2.74 3.40 3.65 3.98
Exp. R0(Å) 3.13 3.75 3.99 4.33
R0 = 1.09σ(Å) 2.99 3.71 3.98 4.34

Table 1.1: Lennard Jones parameters and nearest-neighbor distances for solid noble gases.
Source: Ashcroft/Mermin, Solid State Physics.

Van der Waals bonding also plays an important role in many layered materials. These so-
called Van der Walls materials are composed of stacks of atomically thin, two-dimensional
(2D) layers that are weakly bound by dipole-dipole interaction. In contrast, the atoms
within each layer are bound by strong covalent bonds (see section 1.4). A prominent
example of this class of materials is graphite (see Fig. 1.4)). It consist of monoatomar thick
graphene layers, in which carbon atoms are arranged in a two-dimensional honeycomb
configuration.

Graphene
Layer

Figure 1.4: Ball-and-stick model of graphite.
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1.3 Ionic bonding

The anisotropy in bonding strength allows for the preparation of 2D crystalline materials
by mechanical exfoliation. For instance, an adhesive tape can be used to peel off graphene
flakes from a piece of graphite. This so-called Scotch-tape method is also suitable for the
preparation of other 2D materials. Figure 1.5 exemplifies an optical micrograph of a
layered Molybdenum diselenide (MoSe2) sample.

Figure 1.5: Optical micrograph of a piece of MoSe2 prepared by the Scotch-tape method.

1.3 Ionic bonding

Ionic crystals contain positively and negatively charged ions and are predominantly bound
by electrostatic forces. A well known example of an ionic crystal is salt (sodium chloride)
which comprises positively charged Na+ ions and negatively charged Cl− ions. Since
the ions usually exhibit closed shell electronic configurations (e.g., Na+: 1s22s22p6, Cl−:
1s22s22p63s23p6), their charge distributions are (in good approximation) spherical. This
favors a crystal structure with dense packaging of the ions.

Ionic crystals form if the electrostatic attraction between the positive and negative ions
is strong enough to overcome the energetic cost to form the ions from the neutral atoms.
Hence, ionic bonding is preferred if one sort of atom has a low ionization potential while
the other type has a high electron affinity. This is for instance the case for ionic crystals
composed of cations from the groups I and II of the periodic table and anions from the
groups VI or VII. For these ionic crystals, the cohesive energy is typically in the order of
several eV per atom.

In the following, we calculate the reduction of energy due to the electrostatic interaction
of the ions. The potential energy of the m-th ion in the presence of the other ions is given

5



1 Bonding in solids

NaCl

Na
+

Cl
-

Figure 1.6: Left: Image of some sodium-chloride crystals. Right: Spatial arrangement of the
ions in sodium chloride. (Images provided by Wikipedia.)

by:

Um =
∑

n ̸=m

[
C

r12
mn

∓ e2

4πϵ0rmn

]
. (1.3.1)

The first term describes the short-range repulsive interaction of the ions due to the overlap
of the electronic wave functions at small distances while the second term results from
the long-range electrostatic interaction of two ions. With rmn = αmnR, we can rewrite
equation (1.3.1) as

Um =
∑

n̸=m

[
C

[αmnR]12 ∓ e2

4πϵ0αmnR

]

≈ z
C

R12 − A
e2

4πϵ0R
. (1.3.2)

Here, z is the number of nearest neighbors and A is the Madelung constant defined as the
lattice sum

A ≡
∑

n ̸=m

±1
αmn

. (1.3.3)

This sum is mathematically not well-behaved as its value depends critically on the order in
which the summation is performed. This property results from the fact that the energy of
a finite collection of charged particle is strongly influenced by the actual configuration of
its surface. Each order of summation corresponds to constructing the infinite crystal as a
particular limiting form of successively larger finite crystals. Hence, we can have arbitrary
distributions of surface charges at all stages. In order to evaluate the Madelung constant,
we must thus guarantee that there are no appreciable contributions to the energy from
charges at the surface at all stages of the summation.

6



1.4 Covalent bonding

Crystal structure Madelung constant A
Cesium chloride 1.7627
Sodium chloride 1.7476

Zincblende 1.6381

Table 1.2: Madelung constant A for some cubic crystal structures. Source: Ashcroft/Mermin,
Solid State Physics.

The total lattice energy of the crystal containing 2N ions is given by

Ulattice = N

(
z
C

R12 − A
e2

4πϵ0R

)
. (1.3.4)

The equilibrium separation R0 can again be derived from the condition ∂U/∂R = 0.

1.4 Covalent bonding

Covalent crystals such as, for example, diamond or silicon are hard materials with a
high melting point. They typically feature a cohesive energy of a few electron volts per
atom. These properties result from a network of covalent bonds extending throughout the
crystal. In a single covalent bond, two neighboring atoms share two electrons, one from
each atom participating in the bond. The electrons are partially localized in the region
between the two atoms resulting in a reduction of the total electronic energy. Because of
this electron configuration, covalent bonds are of short range and directional.

Many properties of covalent crystals can be already understood by investigating a single
covalent bond. For this purpose, we start by considering a single electron system, i.e., the
hydrogen molecule-ion H+

2 . Subsequently, we will add a second electron and investigate
the H2 molecule.

1.4.1 The hydrogen molecule-ion H+
2

In this section, we will calculate the energy expectation value of the hydrogen molecule-ion
H+

2 . The Hamiltonian of this one-electron system is given by

H = − ℏ2

2m∆ − e2

4πϵ0ra

− e2

4πϵ0rb

+ e2

4πϵ0Rab

. (1.4.1)

The geometrical parameters ra, rb, and Rab are defined in Fig. 1.7. The first term
describes the kinetic energy of the electron, the next two terms are due to the electrostatic
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1 Bonding in solids

interaction of the electron with the two protons, and the last term takes the repulsion of
the two protons into account.

+ +

-

r
a

r
b

R
ab

A B

Figure 1.7: Geometry of the hydrogen molecule-ion H+
2 .

We consider the following ansatz for the electronic wave function of the hydrogen molecule-
ion H+

2 :

ψ = c1φa + c2φb. (1.4.2)

Here, φa and φb are ground state wave functions of isolated hydrogen atoms at positions
A and B, respectively. c1 and c2 are real constants. The expectation value of the energy
can be calculated as

E =
∫
ψ∗HψdV∫
ψ∗ψdV

= c2
1Haa + c2

2Hbb + 2c1c2Hab

c2
1 + c2

2 + 2c1c2S
(1.4.3)

with

Haa =
∫
φ∗

aHφadV, (1.4.4)

Hbb =
∫
φ∗

bHφbdV, (1.4.5)

Hab =
∫
φ∗

aHφbdV =
∫
φ∗

bHφadV (1.4.6)

S = ℜ
∫
φ∗

aφbdV. (1.4.7)

The so-called overlap integral S is a measure for the spatial overlap of the two wave
functions φa and φb.

The energy expectation value of the exact wave function is always smaller than the corre-
sponding expectation value of an approximate solution. We choose the constants c1 and
c2 such that the energy expectation value becomes as small as possible for our ansatz.
With ∂E/∂c1 = 0 and ∂E/∂c2 = 0, we find:

c1(Haa − E) + c2(Hab − ES) = 0,
c1(Hab − ES) + c2(Hbb − E) = 0. (1.4.8)
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1.4 Covalent bonding

After a short calculation, we obtain

E+,− = Haa ±Hab

1 ± S
+ e2

4πϵ0Rab

. (1.4.9)

The corresponding wavefunctions are given by

ψ+ = c(φa + φb), (1.4.10)
ψ− = c(φa − φb). (1.4.11)

The reduction of the energy for the symmetric wave function ψ+ results from an increase
of the electron density between the two atoms (bonding state). The antisymmetric wave
function ψ− is connected with a low electron density between the two atoms which in-
creases the energy of this state (anti-bonding state).

A B

ψ+

A B

ψ-

E
0

E
0

E
+

E
-

Figure 1.8: Symmetric and anti-symmetric wave functions.

1.4.2 The hydrogen molecule H2

Following the preliminary considerations of the previous section, we now turn to the hy-
drogen molecule H2 as a model system for a covalent bond (see Fig. 1.9). Its Hamiltonian
is given by

H = H0 +H1 (1.4.12)

H0 = − ℏ2

2m∇2
e1 − ℏ2

2m∇2
e2 − e2

4πϵ0r1a

− e2

4πϵ0r2b

(1.4.13)

H1 = e2

4πϵ0Rab

+ e2

4πϵ0r12
− e2

4πϵ0r1b

− e2

4πϵ0r2a

. (1.4.14)
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1 Bonding in solids

+ +

-
r2a

r2b

RabA B

e2
e1

-

r1a

r1b

r12

x

y

z

r2r1

Figure 1.9: Geometry of the hydrogen molecule H2.

Due to the their repulsive interaction, it is unlikely that both electrons are simultaneously
located near one of the atoms. The so-called Heitler-London-ansatz for the two-particle
wave function takes this aspect into account:

ψ+,−(r1, r2) = c+,− [φa(r1)φb(r2) ± φb(r1)φa(r2)] . (1.4.15)

Here, c+,− are normalization coefficients, r1 and r2 are the coordinates of electron 1 and
2, respectively, and φa(r) and φb(r) are the ground state single-electron wave functions
of the isolated (Rab → ∞) hydrogen atoms A and B, respectively. In order to fulfill the
Pauli-principle, ψ+(r1, r2) requires an anti-parallel orientation of the two electron spins
(singlet state) while ψ−(r1, r2) is connected with a parallel orientation of the spins (triplet
state).

We assume that φa(r) and φb(r) are normalized. The normalization coefficients are thus
given by

c+,− = 1√
2 ± 2S

(1.4.16)

with the overlapp integral

S =
∫
φ∗

a(r1)φ∗
b(r2)φa(r2)φb(r1)dV1dV2 (1.4.17)

=
∫
φ∗

a(r2)φ∗
b(r1)φa(r1)φb(r2)dV1dV2. (1.4.18)
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1.4 Covalent bonding

The energy expectation value for the singulet and triplet state are given by

E+ = 2E0 + V + A

1 + S
, (1.4.19)

E− = 2E0 + V − A

1 − S
, (1.4.20)

respectively. Here, E0 is the ground state energy of an isolated hydrogen atom, V is the
Coulomb integral, and A is the so-called exchange integral. The latter two are given by

V =
∫
φ∗

a(r1)φ∗
b(r2)H1φa(r1)φb(r2)dV1dV2 (1.4.21)

=
∫
φ∗

a(r2)φ∗
b(r1)H1φa(r2)φb(r1)dV1dV2 (1.4.22)

and

A =
∫
φ∗

a(r1)φ∗
b(r2)H1φa(r2)φb(r1)dV1dV2 (1.4.23)

=
∫
φ∗

a(r2)φ∗
b(r1)H1φa(r1)φb(r2)dV1dV2, (1.4.24)

respectively. Upon evaluation of the integrals one finds that the singulet state is a bound
state with E+ < 2E0 for a proton-proton separation Rab of approximately 1Å. In contrast,
the energy of the triplet state E− is larger than 2E0 for all values of Rab.

2E0

E : triplet-

E : singlet+

Figure 1.10: Scheme of the energy levels of the singlet- and triplet-state of the hydrogen molecule.
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1 Bonding in solids

Hybrid orbitals in carbon compounds

The ground state electronic configuration of carbon is (1s2)(2s2)(2px)(2py). Hence, one
would anticipate that the two unpaired p-electrons give rise of two covalent bonds in
carbon compounds. Since the p-wave functions are oriented, the angle between the two
bonds is expected to be 90◦. Contrary to this expectation, one finds carbon compounds
with bond angles of 180◦, 120◦, and 109.5◦. The reason for this is that the electronic wave
functions of carbon usually mix before they form molecular bonds. Through the formation
of these so-called hybrid orbitals, the overlap of the wave functions of neighboring atoms
is maximized and, consequently, the energy is minimized.

sp-Hybridization

In the case of sp-hybridization, the 2s orbital mixes with one of the 2p orbitals, e.g., 2pz.
The other two 2p-orbitals are unchanged. The normalized sp-hybrid orbitals are given by

ϕsp
1 = 1√

2
[ϕ(s) + ϕ(pz)] , (1.4.25)

ϕsp
2 = 1√

2
[ϕ(s) − ϕ(pz)] . (1.4.26)

The two sp-orbitals are oriented in opposite directions. The bond angle is thus 180◦.

sp2-Hybridization

Mixing of the the 2s orbital with two the 2p orbitals leads to sp2-hybridization. The
corresponding sp2-hybrid orbitals can be written as

ϕsp2

1 = 1√
3
[
ϕ(s) +

√
2ϕ(px)

]
, (1.4.27)

ϕsp2

2 = 1√
3

[
ϕ(s) − 1√

2
ϕ(px) +

√
3√
2
ϕ(py)

]
, (1.4.28)

ϕsp2

3 = 1√
3

[
ϕ(s) − 1√

2
ϕ(px) −

√
3√
2
ϕ(py)

]
. (1.4.29)

This type of hybridization can be found, e.g., in graphene. The corresponding bond angle
is 120◦.
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1.5 Metallic bonding

sp3-Hybridization

sp3-hybridization results from mixing of the the 2s orbital with all three 2p orbitals. The
corresponding sp3-hybrid orbitals are given by:

ϕsp3

1 = 1
2
[
ϕ(s) +

√
3ϕ(pz)

]
, (1.4.30)

ϕsp3

2 = 1
2

ϕ(s) +
√

8
3ϕ(px) −

√
1
3ϕ(pz)

 , (1.4.31)

ϕsp3

3 = 1
2

ϕ(s) −
√

2
3ϕ(px) +

√
2ϕ(py) −

√
1
3ϕ(pz)

 , (1.4.32)

ϕsp3

4 = 1
2

ϕ(s) −
√

2
3ϕ(px) −

√
2ϕ(py) −

√
1
3ϕ(pz)

 . (1.4.33)

This type of hybridization can be found, e.g., in diamond. The corresponding bond angle
is 109.5◦.

Schematic representations of the three different hybrid orbitals can be found below.

180°

C

sp-hybrid orbital

C

120°

sp -hybrid orbital
2

C

109.5°

sp -hybrid orbital
3

1.5 Metallic bonding

Metallic bonding can be qualitatively understood in terms of a simple electron-gas model.
Here, we assume that the outermost electrons are detached from the metal atoms and are
free to move throughout the whole crystal. The remaining atoms are positively charged
and are usually referred to as ion cores. In the following, we assume that the charge of a
single conduction electron is homogeneously smeared over a sphere with radius ra. This so
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1 Bonding in solids

called Wigner-Seitz radius corresponds to one-half of the distance between two adjacent
metal atoms. With this assumption, the electron density in a monovalent metal can be
calculated as

n = 3
4πr3

a

. (1.5.1)

The average kinetic energy of a conduction electron is given by (see section 6.1)

Eav = 3
5E

0
F = 3

5

(9π
4

)2/3 ℏ2

2m
1
r2

a

. (1.5.2)

Next, we calculate the potential energy per conduction electron. On this occasion, we
have to take into account that the positive charge of the ion-cores is partially screened by
the homogeneous negative charge distribution ρ = −en of the conduction electrons. In a
distance r from a given ion-core, the screened Coulomb potential reads

ϕ(r) =
e− e

(
r
ra

)3

4πϵ0r
. (1.5.3)

The negative charge contained in a shell centered around the ion-core with radius r and
thickness dr provides the following contribution to the potential energy:

dEPot = ϕ(r)ρ4πr2dr = − 3e2

4πϵ0

(
r

r3
a

− r4

r6
a

)
dr. (1.5.4)

The total potential energy per conduction electron can be calculated as

EPot =
∫ ra

0
dEPot = − 9e2

40πϵ0

1
ra

. (1.5.5)

With the Bohr radius a0 = 4πϵ0ℏ2/me2, the last equation can be rewritten as

EPot = −9
5

ℏ2

2ma2
B

a0

ra

. (1.5.6)

The total energy per conduction electron is thus given by

Etotal = ℏ2

2ma2
0

[
3
5

(9π
4

)2/3 (a0

ra

)2
− 9

5

(
a0

ra

)]
. (1.5.7)

Its minimum value is reached at

ra

a0
= 2

3

(9π
4

)2/3
, (1.5.8)

which corresponds to a separation between two ion-cores of approximately 2.6 Å. Given
the extreme simplicity of the model, this value is in reasonable agreement with the ex-
perimental data (see Table 1.3).
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1.6 Hydrogen bonds

Metal Nearest neighbor distance (Å) Binding energy (eV/atom)
Li 3.02 1.63
Na 3.66 1.11
K 4.52 0.93
Cs 5.24 0.8

Table 1.3: Nearest neighbor distance and binding energy of alkali metals. Source: Hunklinger,
Festkörperphysik.

1.6 Hydrogen bonds

A hydrogen atom has a single electron and hence can form only a single covalent bond
with another atom. It is thus surprising, that in some materials, e.g. ice, hydrogen can
cause the binding of two atoms.

We can qualitatively understand the formation of a hydrogen bond in a two-step process.
If hydrogen is covalently bond to an electronegative atom like oxygen, nitrogen, or fluorine,
the electron is partially detached from the proton and transferred to the other atom
(step 1). Thus, the hydrogen atom can be effectively treated as a positively charged ion
(“proton”) even though complete ionization of hydrogen is unlikely because of the large
ionization energy (13.6 eV). The “proton” has an attractive effect on a second nearby
electronegative atom (step 2). Because of its small size, the “proton” can mediate an
attractive effect only between two electronegative atoms.
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2 Crystal structure

2.1 Introduction

Solid materials can be categorized according to the spatial arrangement of the constituting
atoms:

• Crystalline solids (or, for short, crystals) are characterized by a strictly periodic
arrangement of the constituting atoms in all three spatial dimensions. Crystals
exhibit long-range order, i.e., the positions of the atoms in different parts of the
crystal are correlated.

• Polycrystalline solids are composed of crystallites (small crystals) with varying size
and orientation. Within each crystallite, the positions of the atoms are correlated.
However, there is no long-range order between different crystallites.

• Amorphous solids are solids which do not possess long-range order.

In this course, we will concentrate on crystalline solids.

Crystalline AmorphousPolycrystalline

Figure 2.1: Schematic representation of a crystalline solid, a polycrystalline solid, and an amor-
phous solid. Images taken from Wikipedia.

2.2 Ideal crystals

An ideal crystal is composed of identical groups of atoms which are arranged in an infinite,
periodic array (see Fig. 2.2 for a schematic representation). A set of equivalent points in

17



2 Crystal structure

the array defines the lattice of the crystal. A group of atoms that is attached to every
point of the lattice is called a basis.

Lattice

= +

Crystal structure Basis

Figure 2.2: An ideal crystal can be constructed by attaching the basis to every lattice point.

For instance, graphene consits of a single layer of carbon atoms. Each atom has three
nearest neighbors with 120◦ bond angles resulting from sp2 hybridization (see Fig. 2.3 ).
This honeycomb structure can be described by a triangular lattice with a two-atom basis.

Basis
a

1

a
2

Figure 2.3: In graphene, the carbon atoms are arranged in a triangular lattice (marked by the
blue dots) with a two-atom basis (marked by the red dashed line) .

2.2.1 Translation vectors

A given three-dimensional lattice can be characterized by a set of three primitive transla-
tion vectors a1, a2, and a3. Two arbitrary points of the lattice, R and R′, are connected
through translation by suitable integer multiples mj of the vectors aj:

R′ = R +
3∑

j=1
mjaj. (2.2.1)

For a given lattice, there is more than one set of primitive translation vectors. Moreover,
not every set of vectors that connects a lattice point with three other lattice points defines
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2.2 Ideal crystals

a set of primitive translation vectors. These aspects are exemplified in Fig. 2.4 for the
analogous situation in two dimensions.

a
1

a
2

a
1́
´

a
2́

a
1́

a
2́
´

Figure 2.4: The red and blue arrows represent in each case a set of primitive translation vectors.
In contrast, the two greens arrows do not represent a set of primitive translation
vectors because we cannot construct the complete lattice through translation by
integer multiples of these two vectors.

2.2.2 Unit cells

A unit cell is a volume that fills all space without overlap or leaving voids when translated
through a set of lattice vectors. If this set contains all lattice vectors, the unit cell is called
a primitive cell or primitive unit cell. For a given lattice, there is no unique way of choosing
a primitive cell. Each primitive cell contains one lattice point. Lattice points at the edges
of the primitive cell are equally shared among the adjacent primitive cells.

The parallelepiped spanned by three primitive translation vectors is a primitive cell. Its
volume (and that of every other primitive cell) is given by

Vu = |a1 · a2 × a3|. (2.2.2)

The Wigner-Seitz cell is the region of space that is closer to a given lattice point than to
any other lattice point. By construction, it is a primitive unit cell with the full symmetry
of the lattice.

It is often useful to choose a unit cell which is a parallelepiped with edges parallel to a
suitable set of translation vectors and which displays the full symmetry of the lattice.
This so-called conventional unit cell can contain more than one lattice point.
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2 Crystal structure

Figure 2.5: Primitive unit cell (red), conventional unit cell (blue), and Wigner-Seitz cell (green)
of a 2D lattice. The conventional unit cell contains two lattice points.

2.3 Point groups and space groups

Next, we consider the symmetry operations that transform the crystal structure into itself
while leaving at least one point fixed. These operations form the so-called crystallographic
point groups. In three dimensions, there are 32 distinct crystallographic point-groups.
Possible symmetry operations of a point group are:

• Rotations through multiples of 2π/n about some axis: The axis is called a n-fold
axis. A Bravais lattice (see next section) can contain only 2-, 3-, 4-, or 6-fold axes.

• Reflections: Reflection in a plane that takes every point into its mirror image.

• Inversions: Every point r is taken into −r. The origin is the inversion center.

• Rotation-reflection: Rotation through 2π/n followed by a reflection in a plane per-
pendicular to the rotation axis.

• Rotation-inversion: Rotation through 2π/n followed by an inversion in a point lying
on the rotation axes.

The combination of these symmetry operations with translational symmetries forms the
so-called space group. In three dimensions, there are 230 different space groups.

2.4 Bravais lattices

Often, one is only interested in the symmetry properties of the lattice of a crystal, i.e.,
translations, rotations, reflections, and inversions, that take the lattice into itself. In three
dimensions, there are 14 distinct types of lattices, the so-called Bravais lattices, that can
be grouped in 7 crystal systems. The conventional unit cells of the 14 Bravais lattices are
depicted in Fig. 2.6.
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2.4 Bravais lattices

Primitive Base-centered Body-centered Face-centered

Triclinic

a�b�c

�����

 21 0

Monoclinic

a�b�c

��90°, �=�=90°

Orthorombic

a�b�c

�=�=�=90°

Tetragonal

a=b�c

�=�=�=90°

Rhombohedral

a=b=c

�=�=��90°,<120°

Hexagonal

a=b�c

�=�=90°,�=120°

Cubic

a=b=c

�=�=�=90°

Figure 2.6: Conventional unit cells of the 14 Bravais lattices (adopted from Wikipedia).
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2 Crystal structure

2.5 Lattice planes and Miller indices

A lattice plane of a Bravais lattice is defined by three noncollinear lattice points. Because
of the translational symmetry of the Bravais lattice, the lattice plane will contain infinitely
many lattice points. A family of lattice planes is a set of parallel and equally spaced lattice
planes which together contain all lattice points of the Bravais lattice.

A family of lattice planes can be characterized by a set of three numbers (hkl). The
so-called Miller indices h,k,l are determined in the following way:

• The translation vectors a1, a2, a3 define three crystal axes.

• Determine the intercepts S1 = s1|a1|, S2 = s2|a2|, S3 = s3|a3| of one of the lattice
planes with the axes (see Fig. 2.7).

• The Miller indices are the smallest three integers h, k, l with no common factor that
satisfy

h : k : l = 1
s1

: 1
s2

: 1
s3
. (2.5.1)

• The Miller index is set to 0 if the lattice plane is parallel to the corresponding axis.

• A negative Miller index is denoted by an overbar, e.g., (h,−k, l) → (h, k̄, l).

Note that the set of Miller indices depends on the choice of translation vectors.

a
1

a
2

a
3

S
1

S
2

S
3

lattice plane

Figure 2.7: Lattice plane.
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2.5 Lattice planes and Miller indices

The notation {hkl} represents all families of planes that are equivalent to (hkl) by the
symmetry of the lattice. For example, in a cubic crystal {100} denotes the three families
of planes (100),(010), and (001). Directions in a lattice are denoted by square brackets.
The [hkl]-direction is parallel to the vector ha1 + ka2 + la3.

In the case of hexagonal and rhombohedrical lattice systems one often uses the Miller-
Bravais system with four indices (hkil) to characterize family of planes. Here, h, k and l
are the corresponding Miller indices and the index i obeys the constraint h + k + i = 0.
The advantage of the Miller-Bravais indices is that they make permutation symmetries
apparent which are not obvious in the case of the Miller indices.

a1

a2

a3 (100) or (10 0)1(1 0) or (1 00)11

Figure 2.8: Miller indices and Miller-Bravais indices of two selected planes of the hexagonal
lattice.
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3 Structural analysis

3.1 Introduction

Knowledge of the spatial arrangement of the atoms in a crystal is the key for understanding
many of its physical properties. Scattering techniques such as x-ray scattering and neutron
scattering allow to analyze the crystal structure in a non-destructive way. In this chapter,
we introduce the concept of the reciprocal lattice and discuss a simple classical theory to
analyze the diffraction of a wave by the crystal.

3.2 The reciprocal lattice and Fourier expansion of
periodic functions

Consider a Bravais lattice with primitive translation vectors a1, a2, a3 and lattice vectors

R = n1a1 + n2a2 + n3a3, nj ∈ Z. (3.2.1)

In the following, we will call this lattice the direct lattice. The primitive translation
vectors of the corresponding reciprocal lattice are defined by:

b1 = 2π a2 × a3

a1 · (a2 × a3)
, (3.2.2)

b2 = 2π a3 × a1

a1 · (a2 × a3)
, (3.2.3)

b3 = 2π a1 × a2

a1 · (a2 × a3)
. (3.2.4)

A short calculation shows that the bi satisfy the condition

bi · aj = 2πδij. (3.2.5)

An arbitrary lattice point G of the reciprocal lattice can be written as a linear combination
of the bi with integral coefficients vi:

G = v1b1 + v2b2 + v3b3. (3.2.6)
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3 Structural analysis

If R and G are arbitrary lattice vectors of the direct lattice and the reciprocal lattice,
respectively, it follows from equation (3.2.5) that

R · G = 2π (n1v1 + n2v2 + n3v3)︸ ︷︷ ︸
∈Z

. (3.2.7)

One can easily verify that the reciprocal lattice of the reciprocal lattice is the direct lattice.

The reciprocal lattice vector Ghkl = hb1 + kb2 + lb3 is normal to the lattice plane with
Miller indices (hkl). The separation dhkl between two adjacent lattice planes of this family
is given by

dhkl = 2π
|Ghkl|

. (3.2.8)

Proof: Exercise.

The first Brillouin zone is defined as the Wigner-Seitz cell of the reciprocal lattice centered
at the origin. We will see in the following chapters, that it plays an important role in
condensed matter physics.

Examples

1D lattice

Consider a 1D lattice with lattice constant a. According to equation (3.2.5), the lattice
constant b of the reciprocal lattice is

b = 2π
a
. (3.2.9)

2D square lattice

For a 2D square lattice with lattice spacing a, a set of primitive translation vectors is
given by

a1 = a êx, (3.2.10)
a2 = a êy. (3.2.11)
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3.2 The reciprocal lattice and Fourier expansion of periodic functions

The corresponding primitive translation vectors of the reciprocal lattice are

b1 = 2π
a

êx, (3.2.12)

b2 = 2π
a

êy. (3.2.13)

2D triangular lattice

Next, we consider a 2D triangular lattice with primitive translation vectors

a1 = a

2
(
êx + êy

√
3
)
, (3.2.14)

a2 = a

2
(
êx − êy

√
3
)
. (3.2.15)

With the help of equation (3.2.5), we find the primitive translation vectors of the reciprocal
lattice:

b1 = 2π
a

(
êx + êy/

√
3
)
, (3.2.16)

b2 = 2π
a

(
êx − êy/

√
3
)
. (3.2.17)

3D simple cubic lattice

A set of primitive translation vectors of the simple cubic lattice is given by

a1 = a êx, (3.2.18)
a2 = a êy, (3.2.19)
a3 = a êz. (3.2.20)

(3.2.21)
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3 Structural analysis

Applying equations (3.2.2)-(3.2.4), we obtain the primitive translation vectors of the re-
ciprocal lattice:

b1 = 2π
a

êx, (3.2.22)

b2 = 2π
a

êy, (3.2.23)

b3 = 2π
a

êz. (3.2.24)

We will now consider a periodic function ρ(r) = ρ(r+R) that is invariant under translation
by any lattice vector R. The Fourier expansion of ρ(r) is given by

ρ(r) =
∑
G
ρGe

ıG·r, (3.2.25)

with the expansion coefficients

ρG = 1
Vu

∫
Vu

ρ(r)e−ıG·rdV. (3.2.26)

The sum in equation (3.2.25) runs over all reciprocal lattice vectors G. The domain of
integration in equation (3.2.26) is the primitive unit cell of the direct lattice and Vu is its
volume (Proof: Exercise).

3.3 Scattering of waves by crystals

In the following, we present a classical theory to analyze the scattering of a wave by a
crystal. Originally, this theory was developed to explain x-ray diffraction patterns from
crystals. Since the theory is not specific to the nature of the wave, it can be also applied
to neutron- or electron-scattering.

3.3.1 Wave diffraction

Let us consider a monochromatic plane wave impinging on a crystal. The field of the
incident wave is given by

A(r, t) = A0 e
ı(k0·r−ω0t) (3.3.1)
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3.3 Scattering of waves by crystals

with frequency ω0, wave vector k0 , and amplitude A0. The incident wave interacts with
the atoms of the crystal and creates secondary, spherical waves. The field of a secondary,
spherical waves will vary as eık·R/|R|, where R is the distance from the scattering center.
The distribution of scattering centers in the crystal is characterized by a function ρ(r). It
depends both on the material and the nature of the incident wave. For example, x-rays are
scattered for the most part from the electrons in the crystal while neutrons predominately
interact with the atomic nuclei. In our discussion, we consider only elastic scattering and
assume that the scattered waves do not undergo a second scattering event in the crystal.

Detector

dV

r

R1

R0

k

V
c

k0

A t( , )r dA t
s
( , )r

Figure 3.1: Scheme of the scattering geometry.

The total scattered field at the detector results from the coherent superposition of the
scattered waves emitted from all scattering centers. The contribution dAs of a small
volume dV around the point r is given by

dAs(R0, t) = ρ(r)A(r, t) e
ık·R1

|R1|
dV

= ρ(r)A0 e
ı(k0·r−ω0t) e

ık·R1

|R1|
dV. (3.3.2)

R0, R1, and r are defined according to Fig. (3.1). Integration over the volume of the
crystal Vc yields the total scattered field:

As(R0, t) = A0 e
ı(k·R0−ω0t)

|R0|

∫
Vc

ρ(r) eı(k0−k)·r dV. (3.3.3)

Here, we have used the condition |R0| ≈ |R1|. The factor in front of the integral does not
depend on r. Hence, the spatial arrangement of the atoms is encoded in the scattering
amplitude:

A(K) =
∫

Vc

ρ(r) e−ıK·r dV. (3.3.4)
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3 Structural analysis

Here, we have introduced the scattering vector

K = k − k0. (3.3.5)

The detector signal is proportional to the intensity of the scattered wave:

I(K) ∝ |A(K)|2 =
∣∣∣∣∫

Vc

ρ(r) e−ıK·r dV

∣∣∣∣2 . (3.3.6)

For a crystal, the distribution of scattering centers ρ(r) is a periodic function and can be
expanded according to equation (3.2.25). The intensity of the scattered wave can thus be
written as

I(K) ∝ |A(K)|2 =
∣∣∣∣∣∑

G
ρG

∫
Vc

eı(G−K)·r dV

∣∣∣∣∣
2

. (3.3.7)

For sufficiently large volumes, the integral is a representation of the δ-function:
∫

Vc

eı(G−K)·r dV ≃
{
Vc for G = K
0 for G ̸= K (3.3.8)

According to equation (3.3.8), we can only observe a signal at the detector if the diffraction
condition

G = K (3.3.9)

is fulfilled. In this case, the scattered waves from different unit cells are in phase and
interfere constructively. In contrast, destructive interference results in a negligible signal
at the position of the detector if the diffraction condition is not met.

3.3.2 Ewald construction

The Ewald construction is an elegant geometrical approach to find solutions of the diffrac-
tion condition (see Fig. 3.2). We start with the reciprocal lattice and fix the tip of the
incident wave vector k0 at the origin of the reciprocal lattice. Next, we draw a sphere
(in 2D a circle) with radius |k0| about the tail of k0. This sphere is usually referred to
as the Ewald sphere. The diffraction condition is fulfilled if a reciprocal lattice point G
lies on the the Ewald sphere. The wave vector of the diffracted wave k is constructed by
connecting the tail of k0 with the lattice point G.
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3.3 Scattering of waves by crystals

k
0

k
K

Ewald sphere

O

Figure 3.2: Ewald construction. (Figure adapted from Wikipedia).

3.3.3 Bragg’s law

An intuitive explanation for the occurrence of diffracted beams from a crystal was intro-
duced by William Lawrence Bragg. He assumed, that a crystal is composed of parallel
planes of atoms and that an incident beam is specularly reflected from these planes. The
path difference of two rays reflected from adjacent planes is 2d sin(θ) (see. Fig. 3.3). A
diffracted beam occurs if the reflections interfere constructively, i.e., the path difference
is an integral multiple n of the wavelength λ. This condition leads to Bragg’s law:

2d sin(θ) = nλ. (3.3.10)

q

q
d

d sin( )q

Figure 3.3: Bragg reflection from a particular family of lattice planes.

It can be easily shown that Bragg’s law and the diffraction condition are equivalent. We
start by noting that the diffraction condition requires that the three vectors k0, k, G can
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3 Structural analysis

be arranged in a triangle. We find from inspection of Fig. 3.4

sin(θ) = 1
2
λ

2π |G|. (3.3.11)

Here, we have used that

|k0| = |k| = 2π
λ
. (3.3.12)

The reciprocal lattice vector G can always be written as

G = nGhkl, (3.3.13)

where Ghkl is the shortest reciprocal lattice vector parallel to G and n is an integer. Ghkl

is normal to the family of lattice planes characterized by the Miller indices (hkl) (see last
section). Next, we identify Bragg’s planes of atoms with this family of lattice plane and
obtain together with equation (3.2.8) again Bragg’s law

2dhkl sin(θ) = nλ. (3.3.14)

q

q

k
0

k
G

(hkl) lattice plane
k

0

Figure 3.4: Scattering condition.

3.3.4 Structure factor of the basis and atomic form factor

In the previous sections, we have seen that the reciprocal lattice of a given crystal deter-
mines the directions of the diffracted signals. The intensities of these signals are propor-
tional to |ρG|2 and hence depend on the spatial distribution of scattering centers in a unit
cell. To further investigate this point, we start with equation (3.2.26)

ρG = 1
Vu

∫
Vu

ρ(r)e−ıG·rdV. (3.3.15)

Next, we write the distribution function ρ(r) as the sum of the distribution functions
ρj(r − rj) of the atoms contained in the unit cell:

ρ(r) =
∑

j

ρj(r − rj). (3.3.16)
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3.3 Scattering of waves by crystals

Here, rj is the vector to the center of the j-th atom. Inserting equation(3.3.16) into
equation (3.3.15) yields

ρG = 1
Vu

∫
Vu

ρ(r)e−ıG·rdV

= 1
Vu

∑
j

e−ıG·rj

∫
Vj

ρj(r′)e−ıG·r′
dV ′

= 1
Vu

∑
j

fj(G) e−ıG·rj , (3.3.17)

where r′ = r − rj.

The function fj(G) =
∫

Vj
ρj(r′)e−ıG·r′

dV ′ characterizes the scattering power of the j-th
atom and is called the atomic form factor of this atom. Furthermore, we define the
structure factor of the basis by

SG = ρGVu =
∑

j

fj(G) e−ıG·rj . (3.3.18)

For further analysis, it is useful to express the position vector of the atom j in terms of
the translation vectors of the lattice

rj = uja1 + vja2 + wja3. (3.3.19)

Note that uj, vj, and wj are no integers. With G = hb1 + kb2 + lb3, we obtain

SG =
∑

j

fj(G) e−2πı(huj+kvj+lwj). (3.3.20)

The following example shows that the interference of waves scattered from different atoms
within one unit cell can have a strong influence on the intensity of the diffracted wave.

Example: Structure factor of the bcc lattice

A bcc lattice can be regarded as a simple cubic lattice with a unit cell containing two
atoms located at r1 = 0 and r2 = a

2 (êx + êy + êz), respectively. The corresponding
structure factor is given by

SG = f(G)
[
1 + e−ıπ(h+k+l)

]
=

{
2f(G) for h+ k + l even
0 for h+ k + l odd (3.3.21)
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3 Structural analysis

Since the structure factor vanishes for odd h + k + l, there is, e.g., no Bragg reflex from
the (100)-plane of a bcc crystal.

3.4 X-ray scattering: Experimental methods

3.4.1 Laue method

The Laue method (see Fig. 3.5) uses a collimated x-ray beam with a continuous spectrum
to illuminate a single crystal of fixed orientation. The diffracted beams are recorded with
a photo plate. A Bragg peak can be observed if the diffraction condition is fulfilled
by a wavelength component of the incident spectrum. If the incident beam is parallel
to a symmetry axis of the crystal, the Laue diffraction pattern has the same symmetry.
Hence, the Laue method is often used to determine the orientation of single crystals whose
structure is known.

X-ray
continuum

Collimator

Single
crystal

Photographic
plate

Figure 3.5: Scheme of the Laue method.

3.4.2 Rotating crystal method

In the rotating crystal method (see Fig. 3.6), a single crystal is illuminated with a
monochromatic x-ray beam. The crystal is oriented with one crystal axis perpendicular
to the beam and rotated around this axis. As the crystal rotates, the reciprocal lattice also
rotates by the same amount around this axis. Hence, the reciprocal lattice points move
on circles around the axis and a Bragg reflex occurs whenever a circle intersects the Ewald
sphere. The diffracted beams are recorded with a cylindrical photo plate. The rotating
crystal method can be used to determine the crystal structure of unknown materials.
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Collimator Single
crystal

Rotation
axis

Photographic
plate

Monochromatic
beam

Figure 3.6: Scheme of the rotating crystal method.

3.4.3 Powder or Debye-Scherrer method

The powder or Debye-Scherrer method uses instead of a single crystal a sample which con-
tains many randomly oriented crystallites. As the sample is illuminated with a monochro-
matic x-ray beam, one will always find crystallites with proper orientation to satisfy the
Bragg condition for a given family of lattice planes. The corresponding diffracted beams
all lie on a cone with full opening angle 4θ around the incident beam direction.

Monochromatic
beam

Collimator

Crystal
powder

Photographic
plate

Si powder diffraction
pattern

4q

Figure 3.7: Scheme of the powder or Debye-Scherrer method.
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4 Lattice dynamics

4.1 Introduction

Most physical properties of solid materials can be attributed to either the vibration of
atoms about their equilibrium positions or to the dynamics of the electrons. Because of
the large ratio of nuclear and electronic masses, we can address these two issues separately.
We assume in the so-called Born-Oppenheimer approximation that the light electrons “in-
stantaneously” adapt themselves to the respective positions of the nuclei. The resulting
electron distribution in combination with the position of the nuclei determines the poten-
tial that is responsible for the the comparatively slow dynamics of the crystal lattice.

4.2 Lattice with monoatomic basis

In this section, we will consider the lattice vibrations of a crystal with a monoatomic unit
cell. For the sake of mathematical simplicity, we pick a family of lattice planes which is
oriented normal to a high symmetry direction of the crystal, e.g., the the [100] direction
of a simple cubic lattice. We assume that the planes of atoms are displaced either parallel
or perpendicular to the surface normal. The displacement of the s-th plane from its
equilibrium position will be denoted by us. We will see below, that the displacement
of the planes parallel to the surface normal gives rise to longitudinal waves while the
displacement perpendicular to the surface normal creates transverse waves.

We choose an atom of the s-th plane and consider the force acting on this atom caused
by all the atoms of the s + n-th plane. The components of the force normal to the
relative displacement of the two planes cancel for symmetry reasons (see Fig. 4.1). The
remaining parallel component of the force is proportional to us+n −us in the case of small
displacements. Both aspects can be combined in the so-called linear chain model, in which
each plane of the lattice is represented by one atom of a one-dimensional linear chain (see
Fig. 4.2). The forces between the planes are modeled by adding “springs” to the chain
with effective force constants Cn. The total force acting on the s-th atom in the presence
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Figure 4.1: Displacement of atoms (dark blue) from their equilibrium positions (light blue) in
longitudinal direction (left) and transverse direction (right). The red arrows indicate
the force on an atom due to the relative displacement of the planes of atoms.

of all other atoms is given by:

Fs =
∑

n

Cn [us+n − us] . (4.2.1)

The equation of motion for the s-th atom with mass M can hence be written as:

M
d2us

dt2
=
∑

n

Cn [us+n − us] . (4.2.2)

In the following, we look for solutions of this equation of motion which have the form of
a traveling wave:

us = ũ eı(qsa−ωt). (4.2.3)

Here, ũ is a constant, q is the wave vector, a is the equilibrium separation of atoms in the
chain, and ω is the frequency of the wave. Inserting this ansatz in the equation of motion

u
s+1

u
s

u
s-1

u
s-2

u
s+2

u
s+3

u
s+4

u
s+1

u
s

u
s-1

u
s-2

u
s+2

u
s+3

u
s+4

C
1

a

Figure 4.2: Equivalent one-dimensional linear chain for longitudinal displacement.
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4.2 Lattice with monoatomic basis

(4.2.2) yields:

ω2M =
∑

n

Cn [1 − eıqna] . (4.2.4)

For symmetry reasons, we have Cn=C−n and obtain:

ω2 = 1
M

∞∑
n=1

Cn

[
2 − eıqna − e−ıqna

]
= 2
M

∞∑
n=1

Cn [1 − cos (qna)] . (4.2.5)

In most cases, the interaction between neighboring atoms dominates and we can set Cn = 0
for n > 1. This results in the following dispersion relation of the linear chain:

ω2 = 2C1

M
[1 − cos (qa)] = 4C1

M
sin2

(
qa

2

)
, (4.2.6)

ω = 2
√
C1

M

∣∣∣∣sin(qa2
)∣∣∣∣ . (4.2.7)
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Figure 4.3: Dispersion relation of the linear chain. The first Brillouin zone is highlighted in
white.

Next, we calculate the phase difference between two neighboring atoms:

us+1

us

= ũ e−ıωteıq(s+1)a

ũ e−ıωteıqsa
= eıqa. (4.2.8)

Since the trigonometric functions have a modulus of periodicity of 2π, the range of the
physical meaningful values of the wavevector is restricted to the first Brillouin zone:

−π

a
< q ≤ π

a
. (4.2.9)
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Figure 4.4: Periodic displacement of atoms (black dots) in transverse direction. The wavevectors
of the two waves depicted in red and blue differ by a reciprocal lattice vector 2π/a.

An equivalent statement is that the wavelength λ has to be the same or greater than two
times the lattice constant a. This is easy to understand since the amplitude of the wave
between two neighboring atoms is without any physical significance (see Fig. 4.4).

A wavevector q′ outside of the first Brillouin zone can always be transformed back into
the first Brillouin zone by the addition of an appropriate reciprocal lattice vector G:

q = q′ +G (4.2.10)

with

−π

a
< q ≤ π

a
. (4.2.11)

The velocity of a wave packet is given by the group velocity:

vg = ∂ω

∂q
. (4.2.12)

With the dispersion relation (4.2.7), we find:

vg =
√
C1a2

M
cos

(
qa

2

)
. (4.2.13)

The group velocity vanishes for q → π/a. This situation corresponds to a standing wave
resulting from the superposition of a forward and a backward moving wave.
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4.3 Lattice with diatomic basis

4.3 Lattice with diatomic basis

In the following, we consider a diatomic chain of atoms with masses M1 and M2 (see
Fig. 4.5). The displacements of the atoms from their equilibrium positions are denoted
by us and vs, respectively. We assume that each atom interacts only with its nearest
neighbors and that the force constants are identical between all pairs of atoms.

v
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v
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u
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u
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u
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u
s

M
1

M
2

v
s+2

Figure 4.5: Diatomic chain of atoms with masses M1 and M2.

The dynamics of the atomic motion is described by the coupled equations of motions:

M1
d2us

dt2
= C [vs + vs−1 − 2us] ,

M2
d2vs

dt2
= C [us + us+1 − 2vs] . (4.3.1)

Again, we look for solutions which have the form of a traveling wave:

us = U eı(qsa−ωt), (4.3.2)
vs = V eı(qsa−ωt). (4.3.3)

Inserting equation (4.3.3) in equation (4.3.1) yields:

(
2C − ω2M1

)
U − C

(
1 + e−ıqa

)
V = 0,

−C (1 + eıqa)U +
(
2C − ω2M2

)
V = 0. (4.3.4)

A short calculation yields:

ω2
± = C

( 1
M1

+ 1
M2

)
± C

√( 1
M1

+ 1
M2

)2
− 4
M1M2

sin2
(
qa

2

)
. (4.3.5)

The dispersion relation of the diatomic linear chain exhibits two solutions, ω− and ω+,
for every wavevector q. ω−(q) and ω+(q) are usually referred to as the acoustical branch
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Figure 4.6: Dispersion relation of the diatomic linear chain. The maximum frequency of the

optical branch is given by ωmax =
√

2C
(

1
M1

+ 1
M2

)
.

and the optical branch, respectively. The two branches differ in the relative phase of the
displacement of neighboring atoms. This can be best seen in the long wavelength limit,
i.e., for q → 0. A short calculation yields:

ω2
− ≈ 1

2q
2a2 C

M1 +M2
(acoustical branch), (4.3.6)

ω2
+ ≈ 2C

( 1
M1

+ 1
M2

)
= ω2

max (optical branch). (4.3.7)

Using equation (4.3.4), we can calculate the ratio of the amplitudes:

u

v
≈ 2C

2C − ω2M1
for q → 0. (4.3.8)

For the acoustical branch (ω ≈ 0), we find u ≈ v in the long wavelength limit. Hence,
the two sorts of atoms are oscillating in phase. This behavior corresponds to a sound
wave propagating through the crystal. In contrast, the optical branch is characterized by
u/v ≈ −M2/M1 in the limit q → 0. Thus, the two sorts of atoms vibrate against each
other. If the two sorts of atoms carry opposite charges, e.g. in an ionic crystal, the optical
branch is connected with an oscillating electric dipole moment. Hence, a light wave with
the corresponding frequency can couple to this lattice vibration and is absorbed. This
process typically happens to infrared light and such a crystal is thus called infrared active.
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Figure 4.7: Diatomic linear chain: Acoustical branch and optical branch of a transverse wave in
the long wavelength limit for M2 > M1.

4.4 Lattice with several atoms per unit cell

If we lift our restriction and consider arbitrary propagation directions, the lattice vibra-
tions are in general not purely transverse or longitudinal waves but rather a mixture. De-
pending on which type of displacement dominates, these waves are called quasi-transverse
modes or quasi-longitudinal modes, respectively.

It can be shown, that a crystal with p atoms per unit cell exhibits for every propagation
direction 3 acoustical modes, namely 2 quasi-transverse modes (TA modes) and 1 quasi-
longitudinal mode (LA mode). In addition to the acoustical modes, there are 2(p − 1)
quasi-transverse optical modes (TO modes) and (p − 1) quasi-longitudinal modes (LO
modes). In general, all these modes will be non-degenerate.

4.5 Scattering from time-varying lattices

In the last chapter, we considered scattering of a wave from a static lattice. Here, we will
investigate how lattice vibrations influence the scattering properties of a crystal.

For mathematical simplicity, we assume a lattice with a monoatomic basis and point-
like scatterers at the positions rm. With these assumptions, we obtain the scattering
amplitude:

A(K) ∝
∑
m

e−ıK·rm . (4.5.1)
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The corresponding amplitude of the scattered wave is then given by

As(t) ∝ e−ıω0tA(K) ∝ e−ıω0t
∑
m

e−ıK·rm . (4.5.2)

We now account for the lattice vibrations and write:

rm(t) = Rm + um(Rm, t). (4.5.3)

Here, the lattice vector Rm corresponds to the equilibrium position of the atom and
um(Rm, t) is its time-varying displacement.

Since the displacement amplitudes are small compared to the wavelength of the incident
wave, we can make the expansion:

e−ıK·um(Rm,t) ≈ 1 − ıK · um(Rm, t). (4.5.4)

Next, we choose an ansatz for the displacement um(Rm, t) in the form of a superposition
of plane waves:

um(Rm, t) =
∑

q
Uq e

±ı(q·Rm−ωqt). (4.5.5)

Inserting (4.5.4) and (4.5.5) in (4.5.2) results in

As(t) ∝
∑
m

e−ıK·Rme−ıω0t

︸ ︷︷ ︸
elastic

−
∑
m

∑
q
ıK · Uqe

−ı(K∓q)·Rme−ı(ω0±ωq)t

︸ ︷︷ ︸
inelastic

. (4.5.6)

The scattered wave As(t) has two components. The first term in (4.5.6) is due to elastic
scattering as discussed in the previous chapter. The second term results from lattice
vibrations and describes inelastic scattering. In the following, we will concentrate on the
latter process. A diffracted signal can be only observed for a given scattering vector K
and a given frequency ω if all partial waves scattered from different parts of the crystal
interfere constructively. Upon inspection of (4.5.6), we find that this condition is fulfilled
for

ω0 ± ωq = ω, (4.5.7)
K ∓ q = G. (4.5.8)

In a quantum mechanical sense, lattice vibrations can be regarded as quasiparticles, the
so called phonons, with energy ℏωq and momentum ℏq. With this in mind, we can
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4.6 Inelastic neutron scattering

interpret the last two equations as the conservation of energy (4.5.7) and the conservation
of momentum (4.5.8) in an inelastic scattering process. For example, an incident neutron
with energy ℏω0 and momentum ℏk0 interacts with the lattice and creates (minus sign) or
annihilates (plus sign) a phonon with energy ℏωq and quasimomentum ℏq. This results
in a scattered neutron with energy ℏω and momentum ℏk.

A phonon is not connected with the vibration of a single atom but rather a wave which
is distributed over the whole crystal:

uq(R, t) = Uq e
ı(q·R−ωqt). (4.5.9)

The phonon quasimomentum ℏq is not a real physical momentum as the excitation of
a phonon does not result is a net mass transport. Instead, the momentum ℏq + G
necessary to fulfill momentum conservation in the scattering process is transfered to the
whole crystal. Hence, a phonon is not an elementary particle like, e.g., an electron, but
rather a convenient concept to interpret equations (4.5.7) and (4.5.8).

4.6 Inelastic neutron scattering

Thermal neutrons produced in a fission reactor have a typical energy of about
Eneutron = 0.1 eV . A typical phonon energy is Ephonon = 0.01 eV . Hence, the relative en-
ergy change in an inelastic neutron scattering process is in the order of Ephonon/Eneutron =
10−1. This energy resolution is easily attainable with a three axis neutron spectrom-
eter (see below). In contrast, one would require a much better energy resolution of
Ephonon/Ex−ray = 10−6 in the corresponding inelastic x-ray scattering experiment. Hence,
phonon dispersion curves are usually measured by inelastic neutron scattering.

The scheme of a triple axis neutron spectrometer is shown in Fig. 4.8. Neutrons with a
defined energy are selected from the incident broad neutron spectrum by Bragg scattering
from a single crystal monochromator (first axis). The energy of the diffracted neutrons
depends on the orientation of the monochromator crystal and the monochromator mate-
rial. The sample is then irradiated with the monochromaticed neutron beam. Rotation
of the sample allows to change its orientation with respect to the incident beam (second
axis). Those neutrons which are scattered under a certain scattering angle and which have
a specified final energy are detected in the detector which is placed behind an analyzer
crystal (third axis).

45



4 Lattice dynamics

Thermal neutrons

Monochromator

Sample

Analysator

Detector

Monochromatic
neutron beam

Figure 4.8: Scheme of a triple-axis neutron spectrometer.

46



5 Thermal properties of the lattice

5.1 Thermal energy of a harmonic oscillator

In this chapter, we investigate the thermal properties of the lattice. For this purpose, we
treat the lattice vibrations, i.e., the phonons, as a set of independent harmonic oscillators.
In quantum mechanics, the energy eigenvalues En of a harmonic oscillator with angular
frequency ω are given by

En =
(
n+ 1

2

)
ℏω. (5.1.1)

The occupation number n of the harmonic oscillator can take all positive integer numbers
and zero. The smallest possible energy eigenvalue E0 = 1

2ℏω is the so-called zero-point
energy.

We assume that the harmonic oscillator is in thermal equilibrium with a heat reservoir
at temperature T . The probability Pn for finding the harmonic oscillator in the energy
eigenstate En is then given by:

Pn = e−En/kBT

Z
. (5.1.2)

Here, kB is the Boltzmann constant. The normalizing constant Z can be found from the
condition

∞∑
n=0

Pn
!= 1. (5.1.3)

Inserting (5.1.1) and (5.1.2) in (5.1.3) results in

1
Z

∞∑
n=0

e−En/kBT = 1
Z
e−ℏω/2kBT

∞∑
n=0

(
e−ℏω/kBT

)n

= 1
Z

e−ℏω/2kBT

1 − e−ℏω/kBT

!= 1. (5.1.4)

Solving for Z, we find

Z = e−ℏω/2kBT

1 − e−ℏω/kBT
(5.1.5)
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and thus

Pn = e−nℏω/kBT
(
1 − e−ℏω/kBT

)
. (5.1.6)

The average energy of the harmonic oscillator is given by

E(ω, T ) =
∞∑

n=0
EnPn =

(
1 − e−ℏω/kBT

)
ℏω

∞∑
n=0

(
n+ 1

2

) (
e−ℏω/kBT

)n
. (5.1.7)

With
∞∑

n=0
xn = 1

1 − x
and

∞∑
n=0

nxn = x

(1 − x)2 (5.1.8)

we obtain

E(ω, T ) = ℏω
(1

2 + ⟨n⟩T

)
. (5.1.9)

Here, the average occupation number is given by

⟨n⟩T = 1
eℏω/kBT − 1 . (5.1.10)

Equation (5.1.10) is the Bose-Einstein distribution for the case of a vanishing chemical
potential µ = 0. This corresponds to a situation in which the total number of particles
is not fixed. Based on our assignment of harmonic oscillators and phonons, we can treat
phonons as Bose particles (bosons).

5.2 Density of states of phonons

So far, we have dealt with ideal crystals with infinite extension in all directions. In what
follows, we consider a finite crystal with Volume Vc and Nc = m3 unit cells. For large
Nc, the bulk properties of the finite crystal will not depend on its actual size and we can
neglect the influence of the surfaces on the bulk properties.

Consider the atomic displacement caused by the excitation of phonon with frequency ω
and wavevector q:

uq(R, t) = Uqe
ı(q·R−ωqt). (5.2.1)

Since the interfaces have a negligible influence on the interior of a large crystal, we are
free to choose the boundary conditions according to our convenience. In the following we
assume periodic boundary conditions:

uq(R, t) = uq(R +m a1, t) = uq(R +m a2, t) = uq(R +m a3, t), (5.2.2)
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5.2 Density of states of phonons

where ai, a2, and a3 are the primitive translation vectors of the lattice. By inserting
(5.2.1) in (5.2.2), we find:

mq · ai = 2πhi, i = 1, 2, 3. (5.2.3)

This condition can be only fulfilled, if the wavevector q satisfies the condition

q = 1
m

(h1b1 + h2b2 + h3b3) , (5.2.4)

where b1, b2, and b3 are the primitive translation vectors of the reciprocal lattice. Re-
striction of the wavevector q to the first Brillouin-zone yields:

−m

2 ≤ hi ≤ m

2 . (5.2.5)

This result shows that the wavevector can only take a discrete number of equally spaced
values in a finite crystal. The total number of allowed q-values equals the number of unit
cells Nc = m3. Since the allowed values of the wavevector are equally spaced, we can
assign to each q-value a volume

∆3q = 1
m3 (b1 · b2 × b3) = (2π)3

Vc

(5.2.6)

of the reciprocal space.

The number of phonon states dNω per Volume Vc in a frequency interval dω around the
frequency ω can be written as

dNω

Vc

= D(ω)dω, (5.2.7)

where D(ω) is the density of states of phonons. In order to calculate dNω/Vc, we have to
sum over all phonon modes with frequencies ω(q) in the interval [ω, ω + dω]. For large
Nc, the allowed values of the wavevector form a quasicontinuous distribution. Thus, we
can replace the sum over q-values by an integral. In three dimensions, we obtain:

dNω

Vc

= D(ω)dω = 1
Vc

ω(q)+dω(q)∑
ω(q)

= 1
Vc

1
∆3q

ω(q)+dω(q)∑
ω(q)

∆3q = 1
(2π)3

ω(q)+dω(q)∫
ω(q)

d3q (5.2.8)

To evaluate the integral, we express the volume element d3q as

d3q = dq⊥dSω, (5.2.9)

where dSω is an element of the surface S(ω) defined by ω(q) = const and dq⊥ is the
perpendicular distance between the surfaces S(ω) and S(ω + dω) [see Fig. (5.1)].

49



5 Thermal properties of the lattice
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Figure 5.1: Scheme to calculate the density of states.

With dω = |∇qω(q)|dq⊥, we can write the density of states as

D(ω) = 1
(2π)3

∫
S(ω)

dSω

|∇qω(q)| . (5.2.10)

The density of states D(ω) becomes particularly large if the group velocity |∇qω(q)| is
small or even zero, e.g. at the boundary of the first Brillouin zone. For certain directions
in reciprocal space, the integrand diverges while the integral over the whole surface still
has a finite value. The corresponding peaks in the density of states D(ω) are called
van-Hove singularities.

Example

Consider an elastic isotropic medium with the following dispersion relations for longitu-
dinal and transverse sound waves, respectively:

ωl(q) = |q|cl, (5.2.11)
ωt(q) = |q|ct. (5.2.12)

Here, cl and ct are the corresponding sound velocities of the modes.

The derivatives are given by:

|∇qωj(q)| = cj, j = l, t. (5.2.13)
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5.3 Specific heat capacity of the lattice

The density of states of branch j can be expressed as:

Dj(ω) = 1
(2π)3

∫
S(ω)

dSω

|∇qωj(q)| = 1
(2π)3

∫
S(ω)

dSω

cj

(5.2.14)

= 1
(2π)3

4πq(ω)2

cj

= 1
2π2

ω2

c3
j

. (5.2.15)

The total density of states is thus given by:

D(ω) = Dl + 2Dt = 1
2π2

(
1
c3

l

+ 2
c3

t

)
ω2. (5.2.16)

5.3 Specific heat capacity of the lattice

In the following we investigate the thermal properties of a lattice with a monoatomic unit
cell. We assume that the lattice can be treated as an elastic isotropic medium (Debye
approximation). For an elastic isotropic medium, the number of modes in the j-th branch
with a frequency less than ω is given by:

Nj(ω) = Vc

ω∫
0

Dj(ω′)dω′ = Vc

2π2
1
c3

j

ω3

3 . (5.3.1)

To account for the finite number of modes of a real crystal, we define for the j-th branch
a cutoff frequency ωmax,j such that Nj(ωmax,j) equals the number of unit cells Nc in the
crystal (see previous section). Solving for ωmax,j, we obtain:

ωmax,j =
(

6π2c3
jNc

Vc

) 1
3

. (5.3.2)

The total density of states in the Debye approximation reads:

D(ω) = 1
2π2

(
1
c3

l

+ 2
c3

t

)
ω2 = 3

2π2
ω2

c3
D

. (5.3.3)

Here, we have introduced in the second step the Debye velocity via

3
c3

D

= 1
c3

l

+ 2
c3

t

. (5.3.4)
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5 Thermal properties of the lattice

In general, the cutoff frequency of the longitudinal branch differs from the cutoff frequency
of the two degenerate transverse branches. However, in practice, one often uses a common
cutoff frequency ωD (Debye frequency) defined by

ωD =
(

6π2c3
DNc

Vc

) 1
3

. (5.3.5)

In the framework of the Debye approximation, the internal energy1 U(T ) of the lattice in
thermal equilibrium can be expressed as:

U(T ) = Vc

ωD∫
0

D(ω)E(ω, T ) dω = 9Nc

ω3
D

ωD∫
0

ℏω3

eℏω/kBT − 1 dω. (5.3.6)

Here, ωD is the only material-specific parameter. Next, we introduce the so-called Debye
temperature:

kBΘD = ℏωD. (5.3.7)

The heat capacity of a substance with constant volume is defined by

CV =
(
∂U
∂T

)
V

. (5.3.8)

In the Debye approximation, we obtain with xD = ℏωD/kBT the important result:

CV = 9NckB

(
T

ΘD

)3 xD∫
0

x4ex

(ex − 1)2 dx. (5.3.9)

For large temperatures (T ≫ ΘD), the integral can be approximated by
xD∫
0

x4ex

(ex − 1)2 dx
x→0≈

xD∫
0

x4 · 1
(1 + x− 1)2 dx =

xD∫
0

x2 dx = 1
3

(
ΘD

T

)3

(5.3.10)

1We neglect in this calculation the zero-point energy.

C Si Fe Al Au
ΘD(K) 2230 640 470 430 164

Table 5.1: Debye temperature of selected elements. Source: Festkörperphysik, S. Hunklinger.
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5.4 Anharmonic effects

and the heat capacity reaches the classical value

CV = 3NckB. (5.3.11)

In the limit of small temperatures (T ≪ ΘD), we can set the upper limit of the integral
to infinity and obtain with

∞∫
0

x4ex

(ex − 1)2 dx = 4π4

15 . (5.3.12)

the famous T 3-law for the heat capacity:

CV = 12π4

5 NckB

(
T

ΘD

)3
. (5.3.13)
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Figure 5.2: Heat capacity according to the Debye approximation.

5.4 Anharmonic effects

So far, we have considered the lattice dynamics in the so-called harmonic approximation.
Here, the potential energy is assumed to depend quadratically on the displacement ρ of
an atom from its equilibrium position:

U(ρ) = aρ2. (5.4.1)

In what follows, we will go beyond the harmonic approximation and study several effects
that result from an anharmonic contribution to the potential energy.

53



5 Thermal properties of the lattice

5.4.1 Thermal expansion

Consider that the potential U(ρ) has the following form:

U(ρ) = aρ2 − bρ3, with a > 0, b > 0 and b ≪ a. (5.4.2)

The second term of the potential characterizes the asymmetry of the potential that arises
due to the strong repulsion of two atoms for small separations. To calculate the average
displacement ⟨ρ⟩, we weight each displacement with the corresponding Boltzmann factor
and integrate over all displacements:

⟨ρ⟩ =

∞∫
−∞

ρ e−U(ρ)/kBT dρ

∞∫
−∞

e−U(ρ)/kBT dρ
. (5.4.3)

For a small anharmonic contribution to the potential (b ≪ a), we can expand the inte-
grands as

∞∫
−∞

ρ e−U(ρ)/kBT dρ =
∞∫

−∞

e−aρ2/kBT

(
ρ+ bρ4

kBT

)
dρ

= b (kBT )3/2

a5/2

∞∫
−∞

e−x2
x4 dx = b (kBT )3/2

a5/2
3
4

√
π (5.4.4)

and

∞∫
−∞

e−U(ρ)/kBT dρ =
∞∫

−∞

e−aρ2/kBT

(
1 + bρ3

kBT

)
dρ

= (kBT )1/2

a1/2

∞∫
−∞

e−x2
dx = (kBT )1/2

a1/2

√
π. (5.4.5)

Hence, the average displacement ⟨ρ⟩ is given by

⟨ρ⟩ =
b(kBT )3/2

a5/2
3
4
√
π

(kBT )1/2

a1/2

√
π

= 3bkB

4a2 T. (5.4.6)

Note, that a nonvanishing value of ⟨ρ⟩ corresponds to an expansion of crystal upon heating.
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5.4 Anharmonic effects

Next, we define the coefficient of thermal expansion as

α = d

dT

⟨ρ⟩
r0
. (5.4.7)

With equation (5.4.6), we obtain

α = 3bkB

4a2r0
. (5.4.8)

Thermal expansion is obviously an effect of the anharmonicity of the potential.

5.4.2 Phonon-Phonon interaction

In the harmonic approximation, the equation of motion (4.2.2) which governs the dis-
placement of the atoms is a linear differential equation. The corresponding solutions are
plane waves. Because of the linearity of (4.2.2), the superposition of two waves is another
solution. Hence, within the framework of the harmonic approximation, phonons do not
interact with each other and a phonon distribution once created persists unchanged for
all times. In other words, the phonons will not reach a thermal distribution as discussed
in section 5.1.

In contrast, if we include a small anharmonicity of the potential [see, e.g., equation (5.4.2)],
plane waves are no longer exact solutions of the equation of motion but rather an approx-
imate solution. As a consequence, the lattice waves are no longer independent from each
other and start to mix. We can interpret this effect as the interaction of phonons. The
physics behind this process can be understood as follows: A phonon produces a tempo-
ral and spatial periodic elastic strain which modulates through the anharmonicity of the
potential the elastic properties of the crystal. A second phonon is scattered from this
modulation and thereby produces a third phonon.

It can be shown, that in a three phonon scattering process energy and quasi-momentum
are conserved:

ℏω1 + ℏω2 = ℏω3. (5.4.9)

q1 + q2 = q3 + G. (5.4.10)

At first, we will consider the case that no reciprocal lattice vector (G = 0) is required for
the conservation of the quasi-momentum (see Fig. 5.3, left handside). These processes
are called normal processes or N-process and dominate at low temperatures (T ≪ ΘD).
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5 Thermal properties of the lattice

N-processes do not help to establish thermal equilibrium. To understand this point, we
consider a distribution of phonons with total momentum

J =
∑

q
nqℏq. (5.4.11)

Obviously, J is conserved if we only consider N-processes and the phonon distribution will
propagate through the crystal with no thermal resistance (see next section).

The situation is different, if we also include scattering processes which require reciprocal
lattice vectors G ̸= 0 to fulfill quasi-momentum conservation (see Fig. 5.3, right hand-
side). These processes are called umklapp processes or U-processes and are connected
with a large net change in phonon momentum. U-processes result in a rapid decay of an
initial phonon flux and are thus responsible for the thermal resistance.
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Figure 5.3: Three phonon processes. Left: N-process. Right: U-process.

5.4.3 Thermal conductivity

In the previous sections we have assumed that the whole crystal is characterized by a
uniform temperature T . We will now consider the effect of a temperature gradient. At
this, we will assume that the spatial variation of T is sufficiently small such that all the
relevant quantities, e.g., the phonon occupation number, can be locally defined.

We know from thermodynamics that the thermal current density jt is proportional to the
temperature gradient:

jt = −K∇T, (5.4.12)

where, K is the thermal conductivity.
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5.4 Anharmonic effects

Next, we express the thermal current density in terms of properties of the phonons. The
energy density of a phonon-mode with wavevector q in branch j is given by

E(ω, T )
V

= ℏωq,j⟨nq,j⟩
V

, (5.4.13)

where ⟨nq,j⟩ is the local phonon occupation number. The corresponding energy transport
velocity is the group velocity

vg
q,j = ∇qωq,j. (5.4.14)

Thus, the x-component of the thermal current density2 is given by

jt,x = 1
V

∑
q,j

ℏωq,j⟨nq,j⟩ vg
q,j · êx︸ ︷︷ ︸

vx

. (5.4.15)

In thermal equilibrium, the thermal current density vanishes because the fluxes in positive
and negative direction cancel each other. For isotropic materials, this is a result of the
symmetry of the dispersion relation [vx(q) = −vx(−q)] and the fact that the equilibrium
phonon occupation number ⟨nq,j⟩0 does not depend on the orientation of q. Hence, we
can rewrite3 equation (5.4.15) as:

jt,x = 1
V

∑
q,j

ℏω (⟨n⟩ − ⟨n⟩0) vx. (5.4.16)

A temporal change of the phonon occupation number of a certain phonon mode in a certain
region of the crystal can result either from phonon diffusion or from phonon decay:

d⟨n⟩
dt

= ∂⟨n⟩
∂t

∣∣∣∣∣
diff

+ ∂⟨n⟩
∂t

∣∣∣∣∣
decay

. (5.4.17)

The diffusive term is related to the gradient of the temperature:

∂⟨n⟩
∂t

∣∣∣∣∣
diff

= lim
∆t→0

1
∆t [⟨n(x− vx∆t)⟩ − ⟨n(x)⟩]

= −vx
∂⟨n⟩
∂x

= −vx
∂⟨n⟩0

∂T

∂T

∂x
. (5.4.18)

Here, we have assumed in the last step, that the phonons are in local thermal equilibrium.

For the second term, we introduce a relaxation time ansatz:

∂⟨n⟩
∂t

∣∣∣∣∣
decay

= −⟨n⟩ − ⟨n⟩0

τ
. (5.4.19)

2Every current density can be written as density times the corresponding transport velocity.
3Here, we drop the indices for the sake of brevity.
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In what follows, we consider a steady-state situation with d⟨n⟩/dt = 0 in which the diffu-
sive term exactly balances the decay term. Hence, we obtain:

jt,x = − 1
V

∑
q,j

ℏωq,j τq,j v
2
x

∂⟨nq,j⟩
∂T

∂T

∂x
. (5.4.20)

For an isotropic material, we have

⟨v2
x⟩ = 1

3v
2. (5.4.21)

By comparison of (5.4.20) with (5.4.12), we can express the thermal conductivity of the
lattice as

K = 1
3V

∑
q,j

vq,j Λq,j
∂E(ωq,j, T )

∂T
(5.4.22)

with the phonon mean free path

Λq,j = vq,j τq,j. (5.4.23)

Finally, we want to discuss the temperature dependence of the thermal conductivity. For
this purpose, we assume that the group velocity as well as the phonon mean free path do
not depend on the wave vector or the branch number:

vq,j ≈ v̄, (5.4.24)
Λq,j ≈ Λ̄. (5.4.25)

With theses assumptions, equation (5.4.22) simplifies to

K(T ) = 1
3V v̄ Λ̄(T )CV (T ). (5.4.26)

We can identify three different temperature regimes:

• Low temperature regime: U-processes are “frozen out” so that the mean free
path becomes independent of temperature, Λ̄ ̸= Λ̄(T ). Hence, we expect that the
thermal conductivity varies like the specific heat as K ∝ CV (T ) ∝ T 3.

• Intermediate temperature regime: Here, the temperature dependence of the
thermal conductivity is governed by the onset of U-processes. The phonon-phonon
scattering rate 1/τ is proportional to the number of phonons with which a given
phonon can interact,. For U-processes, the phonon energy must be larger than
approximately kBΘD/2. Hence, we expect that the mean free path is proportional
to Λ ∼ eθd/2T − 1 ≈ eθd/2T .

• High temperature regime: For T ≫ ΘD, the specific heat becomes constant and
the thermal conductivity scales like the mean free path as Λ(T ) ∝ 1/⟨n⟩ ∝ 1/T .
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6 Free electrons in solids

In this chapter, we start with the the analysis of the electronic properties of solids. As a
first step, we treat the conduction electrons in a metal as a gas of free electrons, which is
confined to the solid by an infinite square well potential. The distribution of the electrons
among the available one-electron states is governed by the so-called Fermi statistics.

6.1 Free electrons in a box

We initially consider the case of a single free electron in an infinite square well potential.
The Schrödinger equation reads in that case:

− ℏ2

2m∇2Ψ(r) + V (r)Ψ(r) = E ′Ψ(r). (6.1.1)

with

V (x, y, z) =
{
V0 = const for 0 ≤ x, y, z,≤ L
∞ otherwise (6.1.2)

With E = E ′ − V0, equation (6.1.1) can be rewritten as:

− ℏ2

2m∇2Ψ(r) = EΨ(r). (6.1.3)

The infinite barriers at x, y, z = 0 and L confine the electron to the ‘box’:∫
box

|Ψ(x, y, z)|2 dV = 1. (6.1.4)

Furthermore, the infinite barriers give rise to the boundary condition Ψ(r) = 0 for all
points of the barrier. One can easily confirm, that the wave functions

Ψ(x, y, z) =
( 2
L

)3/2
sin(kxx) sin(kyy) sin(kzz) (6.1.5)

have all the required properties. The corresponding energy eigenvalues are, as expected,
those of a free electron:

E = ℏ2

2mk2 = ℏ2

2m
(
k2

x + k2
y + k2

z

)
. (6.1.6)
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Figure 6.1: First three wave functions of a free electron in a 1D square well potential of length
L with infinite barrier height.

The boundary conditions restrict the components of the wave vector to the values:

kj = π

L
nj, nj = 1, 2, 3, . . . ; j = x, x, z. (6.1.7)

Negative values of nx, ny, nz can be discarded as they do not give rise to new solutions.
Hence, we can assign to each state the k-space volume:

∆3
k =

(
π

L

)3
. (6.1.8)

Next, we calculate the density of electronic states. For this purpose, we proceed as in
the case of phonons (see section 5.2). In three dimensions, the number of states with a
wavevecor of magnitude between k and k + dk is given by:

dNk = 2
8

4πk2

(π/L)3 dk. (6.1.9)

Here, a factor 2 has been introduced to account for the two possible orientations of the
electron spin for each k-value and the factor 1/8 results from the fact that the components
of the wavevector have to be positive [see equation (6.1.7)].

According to equation (6.1.6), the constant energy surface E(k) is a sphere. With

dE = ℏ2k

m
dk (6.1.10)

we find the number of states per volume V = L3 with energy between E(k) and E(k)+dE:

dNE

V
= (2m)3/2

2π2ℏ3 E1/2 dE. (6.1.11)
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Figure 6.2: Free electron gas in three dimensions at T = 0 K.

The density of states of a free electron gas in three dimensions is thus given by:

D(E) = (2m)3/2

2π2ℏ3 E1/2. (6.1.12)

The electron density per unit volume can be calculated from

n =
∞∫

0

D(E) f(E, T ) dE. (6.1.13)

Here, the distribution of the conduction electrons on the available states follows a tem-
perature dependent distribution function f(E, T ).

For the remainder of this section, we consider the case T = 0 K. In this case, the Pauli
exclusion principle requires that f(E, T ) is a step function with

f(E, T = 0 K) =
{

1 for E ≤ E0
F

0 for E > E0
F

(6.1.14)

The energy E0
F , which separates at T = 0 K the occupied from the unoccupied states, is

the so-called Fermi energy. Using equation (6.1.12) and (6.1.14), we can write the electron
density per unit volume as

n =
E0

F∫
0

(2m)3/2

2π2ℏ3 E1/2 dE. (6.1.15)
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6 Free electrons in solids

A simple calculation then yields:

E0
F = ℏ2

2m
(
3π2n

)2/3
. (6.1.16)

The Fermi wavevector kF is the radius of the sphere of occupied states in k-space. Ac-
cording to equation (6.1.6), it is related to the Fermi energy by:

E0
F = ℏ2k2

F

2m . (6.1.17)

The comparison of the last two equations yields:

kF =
(
3π2n

)1/3
. (6.1.18)

Next, we define the Fermi temperature TF as:

TF = E0
F

kB

. (6.1.19)

For typical values of the electron density n in a metal, TF is in the order of several 104 K.
The total energy of the electron gas at T = 0K in the ‘box’ with volume V is given by:

Etotal = V

E0
F∫

0

D(E)E dE = V (2m)3/2

2π2ℏ3

E0
F∫

0

E3/2 dE = 2
5
V (2m)3/2

2π2ℏ3 (E0
F )5/2. (6.1.20)

Using equation (6.1.16), we can simplify the last equation to obtain

Etotal = 3
5NE

0
F , (6.1.21)

where N = nV is the total number of electrons in the ‘box’. The average kinetic energy
of the electrons in the free electron gas is thus given by

Eav = Etotal

N
= 3

5E
0
F . (6.1.22)

6.2 Fermi surface of metals

The Fermi surface is the surface in k-space that separates the occupied from the unoccu-
pied electronic states of a given crystal at T = 0 k. All the states at the Fermi surface are
characterized by E(k) = EF . We will see later that the shape of the Fermi surface plays
an import role in the context of transport phenomena.
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6.3 Fermi-Dirac statistics

In this section, we investigate the Fermi surface of monovalent metals (alkali metals and
noble metals). We start with the alkali metals, which crystallize in a body-centered cubic
lattice. Many of the electronic properties of the alkalis can be traced back to the single
electron in the outermost s-orbital. The other electrons form closed shells and are strongly
bound to the nucleus. In a solid, each alkali atom contributes its one s-electron to the
conduction band. Here, we treat these conduction electrons as a free electron gas with
density

n = 2
a3 , (6.2.1)

where a is the side of the conventional cubic unit cell of the bcc lattice1.

The Fermi surface of a free electron gas has the form of a sphere with radius kF . With
the aid of equation (6.1.18), we find that

kF =
( 3

4π

) 1
3
(2π
a

)
= 0.620

(2π
a

)
. (6.2.2)

The reciprocal lattice of the bcc lattice is the fcc lattice. The shortest distance from the
zone center to the border of the first Brillouin zone is the so-called ΓN direction with

|ΓN | = 2π
a

√(1
2

)2
+
(1

2

)2
+ 02 = 0.707

(2π
a

)
. (6.2.3)

Since the relation kF < |ΓN | holds, we see that the Fermi surface of the alkali metals
is entirely contained within the first zone. Numerical calculations show that the Fermi
surface of sodium is almost spherical and completely contained in the first zone (see Fig.
6.3, left hand side). This result justifies in retrospect our simplistic assumptions about
the treatment of the conduction electrons as gas of free electrons.

In the case of the noble metals (copper, silver, gold), one has to take in addition to the
electron in the outer s-orbital also the electrons in the lower-lying d-orbitals into account.
Numerical calculations show that the Fermi surfaces of the noble metals are contained
within the first zone and are in general closely related to the free electron case. However,
exceptions can be found in the ⟨111⟩ directions, in which the Fermi surface touches the
zone faces and forms necks (see Fig. 6.3, right hand side).

6.3 Fermi-Dirac statistics

In this section, we consider N electrons in thermal equilibrium at a finite temperature T .
Our goal is to find the distribution function f(E, T ) which governs the distribution of the
electrons over the accessible states of the system.

1The conventional cubic unit cell of the bcc lattice contains two lattice points.

63



6 Free electrons in solids

Na Cu

Figure 6.3: Calculated Fermi surfaces of sodium (left hand side) and copper (right hand side).
The black lines indicate the edges of the respective first Brillouin zone. Image source:
http://www.phys.ufl.edu/fermisurface/.

The probability that the system is in a state with energy E is given by:

PN(E) = e−E/kBT∑
α e−EN

α /kBT
. (6.3.1)

Here, EN
α is the energy of the α-th state of the N -electron system. The sum is over

all possible states which are occupied with N -electrons and which are compatible with
Pauli’s exclusion principle2.
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10

N Nelectron state ( )=5

one electron states...

Figure 6.4: Schematic representation of three different N -electron states (N=5). The red dots
symbolize an occupied one-electron state.

The denominator is known as the partition function in statistical mechanics. It is related
to the Helmholtz free energy, F = U − TS (where U is the internal energy and S is the
entropy) by∑

α

e−EN
α /kBT = e−FN /kBT (6.3.2)

2The N electrons must be filled in N different one-electron states.
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6.3 Fermi-Dirac statistics

Inserting (6.3.2) in (6.3.1) results in:

PN(E) = e−(E−FN )/kBT (6.3.3)

We can characterize a given N -electron state by listing the N one-electron levels which are
occupied. The probability, that a particular one-electron state i is occupied, is denoted
by fN

i . We can calculate fN
i by summing the probability of all N -electron states in which

the i-th one-electron state is filled:

fN
i =

∑
α

PN(EN
α ) (6.3.4)

Since electrons obey Pauli’s exclusion principle, we can write fN
i also as one minus the

probability that the i-th one electron state is empty:

fN
i = 1 −

∑
γ

PN(EN
γ ). (6.3.5)

Here, the sum is over all N -electron states without an electron in the i-th one-electron
state.

We can construct any N -electron state without an electron in the i-th one-electron state
by starting with the corresponding N +1-electron state in which all N one-electron states
of the N -electron state plus the i-th one-electron state are filled and then remove the
electron in the i-th one-electron state. The energy difference of the N -electron state and
the N + 1-electron state which are related in that way is given by the energy of i-th
one-electron state, Ei. Based on this argument, we can rewrite equation (6.3.5) as:

fN
i = 1 −

∑
α

PN(EN+1
α − Ei), (6.3.6)

where the sum is over all N + 1-electron states in which the i-th one-electron state is
occupied. With the help of equation (6.3.3), we can express the summand as

PN(EN+1
α − Ei) = e(Ei−µ)/kBT PN+1(EN+1

α ). (6.3.7)

Here, we have introduced the chemical potential

µ = FN+1 − FN . (6.3.8)

For T = 0 K, the chemical potential of the electrons equals the Fermi energy:

µ(T = 0 K) = E0
F . (6.3.9)
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6 Free electrons in solids

For that reason, the notation “Fermi-level” and the symbol EF are often used for the
chemical potential of the conduction electrons. Substituting (6.3.7) into (6.3.6), we find:

fN
i = 1 − e(Ei−µ)/kBT

∑
α

PN+1(EN+1
α ),

= 1 − e(Ei−µ)/kBT fN+1
i . (6.3.10)

For large N , fN
i and fN+1

i are practically identical and we obtain the important result:

fN
i = 1

e(Ei−µ)/kBT + 1 . (6.3.11)

This function is known as the Fermi-Dirac distribution.
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Figure 6.5: Fermi-Dirac distribution for three different temperatures.

The mean number of electrons in the i-th one-electron level is given by fN
i . Thus, the

total number of electrons N can be calculated as

N =
∑

i

fN
i =

∑
i

1
e(Ei−µ)/kBT + 1 . (6.3.12)

We can use this relation to determine N as a function of temperature T and the chemical
potential µ.

6.4 Sommerfeld expansion

In the following sections we will have to evaluate integrals of the form

I =
∫ ∞

0
H(E) f(E) dE, (6.4.1)
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6.4 Sommerfeld expansion

where H(E) is a well behaved function of the energy E and f(E) is the Fermi-Dirac
distribution

f(E) = 1
e(E−µ)/kBT + 1 . (6.4.2)

To evaluate these Integrals, we will use the so-called Sommerfeld expansion. By substi-
tuting

x = E − µ

kBT
, (6.4.3)

we can rewrite I as

I = kBT
∫ ∞

−µ/kBT

H(µ+ kBTx)
ex + 1 dx. (6.4.4)

Next, we divide the range of integration

I = I1 + I2 = kBT
∫ 0

−µ/kBT

H(µ+ kBTx)
ex + 1 dx+ kBT

∫ ∞

0

H(µ+ kBTx)
ex + 1 dx. (6.4.5)

The first term can be rewritten as

I1 = kBT
∫ 0

−µ/kBT

H(µ+ kBTx)
ex + 1 dx = kBT

∫ µ/kBT

0

H(µ− kBTx)
e−x + 1 dx. (6.4.6)

With
1

e−x + 1 = 1 − 1
ex + 1 , (6.4.7)

we obtain

I1 = kBT
∫ µ/kBT

0
H(µ− kBTx) dx− kBT

∫ µ/kBT

0

H(µ− kBTx)
ex + 1 dx. (6.4.8)

The integrand of the second term decreases rapidly with increasing x. We can thus set
the upper limit of the second term to infinity. With this approximation the integral I
reads:

I ≈
∫ µ

0
H(E) dE + kBT

∫ ∞

0

H(µ+ kBTx) −H(µ− kBTx)
ex + 1 dx. (6.4.9)

The nominator in the second term can be approximated as
∆H(µ) = H(µ+ kBTx) −H(µ− kBTx) ≈ 2kBTxH

′(µ). (6.4.10)
so that

I ≈
∫ µ

0
H(E) dE + 2(kBT )2H ′(µ)

∫ ∞

0

x

ex + 1 dx. (6.4.11)

With ∫ ∞

0

x

ex + 1 dx = π2

12 (6.4.12)

we finally obtain

I ≈
∫ µ

0
H(E) dE + π2(kBT )2

6 H ′(µ). (6.4.13)
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6 Free electrons in solids

6.5 Chemical potential of the free electron gas

The chemical potential is an important thermodynamic quantity that characterizes the
energy required to add a particle of a certain species, e.g. an electron, to the system. It
is related to the internal energy by the fundamental thermodynamic relation

dU = TdS − pdV + µdN. (6.5.1)

Here U is the internal energy, T the temperature, S the entropy, µ the chemical potential,
and N the particle number of the corresponding species.

At T = 0 K the chemical potential of the free electron gas is given by the Fermi energy EF .
To calculate the chemical potential for an arbitrary temperature T we use the fact that
the electron number does not depended on T . The electron number N can be expressed
as

N = Vc

∞∫
0

f(E, T ) D(E) dE. (6.5.2)

Using the Sommerfeld expansion, we can rewrite this equation as

N ≈ Vc

µ∫
0

D(E) dE + Vc (kBT )2 π
2

6

(
dD(E)
dE

)
E=µ

. (6.5.3)

With

µ∫
0

D(E) dE =
EF∫
0

D(E) dE +
µ∫

EF

D(E) dE

≈
EF∫
0

D(E) dE + D(EF )(µ− EF ), (6.5.4)

we obtain

N = Vc

EF∫
0

D(E) dE + Vc

D(EF )(µ− EF ) + (kBT )2 π
2

6

(
dD(E)
dE

)
E=µ


= N(T = 0 K) + Ñ . (6.5.5)

The condition that the number of electrons is independent from the temperature implies
that

Ñ = 0 =
D(EF )(µ− EF ) + (kBT )2 π

2

6

(
dD(E)
dE

)
E=µ

 . (6.5.6)
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Solving for µ, we obtain

µ(T ) = EF − (kBT )2 π
2

6

(
dD(E)

dE

)
E=µ

D(EF ) . (6.5.7)

For a 3D electron gas with D(E) = (2m)3/2

2π2ℏ3 E1/2, the chemical potential reads

µ(T ) = EF

[
1 − π2

12

(
T

TF

)2]
. (6.5.8)

As already stated above, the Fermi temperature TF of a typical metal is several 10000 K.
Hence, the ratio T/TF is small under most experimental conditions and we can approxi-
mate the chemical potential by the Fermi energy (see Figure 6.6).
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Figure 6.6: Chemical potential of the free electron gas as a function of temperature.

6.6 Specific heat capacity of metals

In this section we calculate the contribution of the conduction electrons to the specific
heat capacity of a metal. For this purpose, we start with the internal energy of the
conduction electrons:

U(T ) = Vc

∞∫
0

E f(E, T ) D(E) dE (6.6.1)

with the Fermi-Dirac distribution

f(E, T ) = 1
e(E−µ)/kBT + 1 (6.6.2)
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6 Free electrons in solids

and the density of states of a 3D free electron gas

D(E) = (2m)3/2

2π2ℏ3

√
E. (6.6.3)

Using the Sommerfeld expansion, we obtain

U(T ) ≈ Vc

µ∫
0

ED(E) dE + Vc (kBT )2 π
2

6

(
d [ED(E)]

dE

)
E=µ

≈ Vc

EF∫
0

ED(E) dE + Vc

µ∫
EF

ED(E) dE + Vc (kBT )2 π
2

6

[
EF

dD(EF )
dE

+ D(EF )
]

≈ U(T = 0) + VcEF D(EF )(µ− EF ) + Vc (kBT )2 π
2

6

[
EF

dD(EF )
dE

+ D(EF )
]

≈ U(T = 0) + VcEF

[
D(EF )(µ− EF ) + (kBT )2 π

2

6
dD(EF )
dE

]
︸ ︷︷ ︸

Ñ=0

+Vc (kBT )2 π
2

6 D(EF )

≈ U(T = 0) + Vc (kBT )2 π
2

6 D(EF ). (6.6.4)

The specific heat capacity is defined as the derivative of the internal energy with respect
to temperature:

CV = ∂U
∂T

= Vck
2
BT

π2

3 D(EF ). (6.6.5)

In the limit T ≪ TF , the electron density of a 3D free electron gas is given by

N

Vc

= 2
3D(EF )EF . (6.6.6)

With this result, we can express the contribution of the conduction electrons to the specific
heat capacity as:

CV = π2

2 Nk
2
B

T

EF

= π2

2 NkB
T

TF

= γT. (6.6.7)

At low temperatures (T ≪ ΘD, TF ), the total specific heat capacity of a metal can be
expressed as the sum of the electron and lattice contribution:

cV = γT + βT 3. (6.6.8)

Here, γ and β are material specific constants.
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6.7 Electrostatic screening in a Fermi gas

6.7 Electrostatic screening in a Fermi gas

Next, we address the effect of an additional electric point charge which is placed inside the
metal. The point charge produces a potential δU(r) which acts as a local perturbation of
the otherwise constant potential V0 inside of the metal. In thermodynamic equilibrium,
the Fermi-level must be constant throughout the metal. To guarantee this property, the
electron density in the vicinity of the point charge must change compared to case without
the additional point charge by

δn(r) = D(EF )|e|δU(r). (6.7.1)

Here, we have assumed that |eδU | ≪ EF .
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E
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e Ud
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e
-

Figure 6.7: Redistribution of electrons due to a local pertubation potential δU .

In vacuum, the potential of a point charge is given by the Coulomb potential. However,
the redistribution of the electrons results in a screening of the potential δU(r). The change
in the local electron concentration δn(r) causes a space charge density which is related to
the perturbation potential δU(r) via the Poisson equation:

∇2(δU(r)) = e

ϵ0
δn(r) = e2

ϵ0
D(EF )δU(r). (6.7.2)

The Yukawa potential is a solution of this differential equation in spherical coordinates:

δU(r) = ae−λr

r
, (6.7.3)

71



6 Free electrons in solids

where

λ =
√
e2D(EF )/ϵ0. (6.7.4)

The quantity rTF = 1/λ is known as the Thomas-Fermi screening length:

rTF =
√

ϵ0

e2D(EF ) (6.7.5)

For a free electron gas with carrier density n, one obtains:

rTF ≈ 0.5
(
a3

0
n

)1/6

(6.7.6)

with the Bohr radius a0 = 4πh2ϵ0/(me2).

Example - Screening in gold

• Density of conduction electrons in gold: n = 5.9 × 1028/m3

• Bohr radius: a0 = 0.53 × 10−10m

• Thomas-Fermi screening length : rTF = 0.58 × 10−10m.

Fig. 6.8 shows, that the screened potential δU(r) falls off much faster than the bare
Coulomb potential. Hence, the electric field of a defect is only “visible” within a distance
in the order of the Thomas-Fermi screening length.

6.8 Low dimensional electron gases

In the following we consider the case that the motion of the electrons is tightly confined
by a potential V in one or two dimensions. This so-called quantum confinement results
in the formation of a set of sub bands for the electrons. Low dimensional electron gases
play an important role in modern semiconductor physics and technology.

6.8.1 Two-dimensional electron gas

As a first example, we consider an electron gas whose motion is restricted in z-direction
by infinitely high potential barriers at z = ±L

2 . The allowed electron states Ψ(r) are
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Figure 6.8: Unscreened (red) and screened (blue) Coulomb potential for a positive unit charge
in a gas of free electrons.

solutions of the Schrödinger equation[
− ℏ2

2m∇2 + V (z)
]

Ψ(r) = EΨ(r) (6.8.1)

with the potential

V (z) =
{

0 for − L
2 ≤ z ≤ L

2
∞ for |z| > L

2
(6.8.2)

Substitution of the ansatz

Ψ(r) = ϕn(z) eı(kxx+kyy) = ϕn(z) eık||·r (6.8.3)

into the Schrödinger equation (6.8.1) leads to two independent equations:

[
− ℏ2

2m

(
∂2

∂x2 + ∂2

∂y2

)]
eık||·r = E||e

ık||·r, (6.8.4)[
− ℏ2

2m
∂2

∂z2 + V (z)
]
ϕn(z) = enϕn(z). (6.8.5)

Equation (6.8.4) describes the free motion of the electron in the xy-plane. The corre-
sponding energy eigenvalues are

E||(k||) = ℏ2|k|||2

2m . (6.8.6)

The one-dimensional Schrödinger equation (6.8.5) is that of a particle in a box. The
known eigenfunctions have the form

ϕn(z) =
√

2
L

sin
[
πn

L

(
z + L

2

)]
(6.8.7)
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and the corresponding energy eigenvalues are

en = ℏ2

2m
π2

L2n
2. (6.8.8)

The total energy of the electron is thus given by

E(k||, n) = E||(k||) + en = ℏ2|k|||2

2m + ℏ2

2m
π2

L2n
2. (6.8.9)

For further analysis, it is convenient to group these energy levels into 2D sub bands, which
exhibit a parabolic behavior as a function of the in-plane wave number |k|||. Each sub
band is characterized by a designated value of the quantum number n and attains the
minimum value E(0, n) = en for k|| = 0.

The density of states of the n-th sub band is given by:

D(2D)
n (E) =

{
0 for E < en
1

2π
2m
ℏ2 = const for E ≥ en

(6.8.10)

Proof: Exercise.

The total density of states is calculated as the sum of the densities of states of all sub
bands:

D(E) =
∑

n

D(2D)
n (E). (6.8.11)
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Figure 6.9: Left: Sub bands of a two dimensional electron gas. Right: Density of states.
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6.8.2 One-dimensional electron gas

Next, we consider the case that the motion of the electrons is tightly confined in two
dimensions, e.g., the y-direction and the z-direction. In this way we retain a so-called
quantum wire. The corresponding energy eigenvalues are given by:

E(kx, ny, nz) = ℏ2k2
x

2m + eny ,nz = ℏ2k2
x

2m + ℏ2

2m
π2

L2
y

n2
y + ℏ2

2m
π2

L2
z

n2
z, (6.8.12)

where Ly and Lz are the separations of the potential barriers in y- and z-direction, re-
spectively. The energy levels can be grouped into 1D sub bands with parabolic profile.
Each sub band is characterized by the two quantum numbers ny and nz.

The density of states of a 1D sub band can be calculated to be

D(1D)
ny ,nz

(E) =
 0 for E < eny ,nz

1
2π

(
2m
ℏ2

) 1
2
(
E − eny ,nz

)− 1
2 for E ≥ eny ,nz

(6.8.13)

Proof: Exercise.

The total density of states is given by the sum of the densities of states of all sub bands:

D(E) =
∑

ny ,nz

D(1D)
ny ,nz

(E). (6.8.14)
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Figure 6.10: Left: Sub bands of a one dimensional electron gas. Right: Density of states.
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7 Electronic band structure

In the previous chapter, we considered the properties of free electrons in a square-well
potential. Despite of its extreme simplicity, the model allowed us to derive a number of
important features of metals, e.g., the specific heat capacity of the electron gas. In this
chapter, we will investigate the effect of a periodic potential on the electrons in a crystal.
We will again restrict ourselves to the one electron approximation, i.e., all electron-electron
interactions are neglected that can not be expressed in terms of a local potential for the
single electron under consideration.

7.1 Bloch’s Theorem

Consider the Schrödinger equation for a single electron subjected to a periodic potential:

HΨ(r) = − ℏ2

2m∇2Ψ(r) + V (r)Ψ(r) = EΨ(r) (7.1.1)

with
V (r) = V (r + R), R = n1a1 + n2a2 + n3a3. (7.1.2)

Bloch’s theorem states (proof: see below) that the corresponding solutions can be written
as the product of a plane wave and a lattice periodic function:

Ψk(r) = uk(r) eık·r, (7.1.3)
with

uk(r) = uk(r + R). (7.1.4)
The wavefunctions Ψk(r) are often called Bloch waves or Bloch functions.

Since the Bloch functions Ψk(r) are eigenfunctions of the Hamilton operator, they form
a complete set of orthogonal functions. Hereafter, we assume that the normalization is
chosen such that∫

Ψ∗
k′(r)Ψk(r)dV = δk′,k. (7.1.5)

In the following two sections, we will present two different derivations of Bloch’s theorem.
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Figure 7.1: A Bloch wave Ψk(r) (bottom) can be expressed as the product of a lattice periodic
function u(r) (top) and a plane wave eık·r (middle).

7.1.1 First Proof of Bloch’s theorem

In the first step, we introduce the translation operator TR that shifts the argument of any
function f(r) by a lattice vector R:

TRf(r) = f(r + R). (7.1.6)

Because the potential V (r) exhibits the periodicity of the lattice, the Hamiltonian H and
the translation operator TR commute:

[H, TR] = 0. (7.1.7)

Moreover, the translation operator TR commutes with any other translation operator.
Hence, we can find a simultaneous eigenbasis of the Hamilton operator and the set of
translation operators which shift the argument of a function by a lattice vector. For
example, assume that Ψ(r) is an eigenfunction of the Hamiltonian H. Applying TR to
Ψ(r) creates another eigenfunction of H with the same eigenvalue E:

H [TRΨ(r)] = TR [HΨ(r)] = TR [EΨ(r)] = E [TRΨ(r)] . (7.1.8)

Let Ψ(r) be a common eigenfunction of the Hamilton operator

HΨ(r) = EΨ(r) (7.1.9)
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and the set of translation operators

TRΨ(r) = Ψ(r + R) = f(R)Ψ(r). (7.1.10)

The last equation holds for every lattice vector R. Hence, for R = R1 + R2, we find:

Ψ(r + R1 + R2) = f(R1 + R2)Ψ(r). (7.1.11)

Since Ψ(r) is an eigenfunction of both TR1 and TR2 , we obtain:

Ψ(r + R1 + R2) = f(R1)Ψ(r + R2) = f(R1)f(R2)Ψ(r). (7.1.12)

A comparison of equation (7.1.11) and (7.1.12) yields:

f(R1 + R2) = f(R1)f(R2). (7.1.13)

This condition can be fulfilled for any two lattice vectors R1 and R2 by setting

f(R) = eık·R. (7.1.14)

Hence, the common eigenfunctions of the Hamilton operator and the set of translation
operators satisfy the condition:

Ψk(r + R) = eık·RΨk(r). (7.1.15)

By writing Ψk(r) = uk(r) eık·r, we can easily verify that equation (7.1.15) is equivalent to
the Bloch theorem (7.1.3).

7.1.2 Second Proof of Bloch’s theorem

According to equation (3.2.25), the periodic potential V (r) can be expanded in a Fourier
series:

V (r) =
∑
G
VGe

ıG·r. (7.1.16)

Furthermore, we can write the wavefunction Ψ(r) as a superposition of plane waves

Ψ(r) =
∑

k
Cke

ık·r, (7.1.17)

where the wavevectors k must be compatible with the applied boundary conditions. Sub-
stituting the expansions of Ψ(r) and V (r) in the one electron Schrödinger equation (7.1.1)
yields:

∑
k

ℏ2k2

2m Cke
ık·r +

∑
k′,G

Ck′VGe
ı(k′+G)·r = E

∑
k
Cke

ık·r. (7.1.18)
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With k = k′ + G, the last equation can be rewritten as:

∑
k
eık·r

[(
ℏ2k2

2m − E

)
Ck +

∑
G
Ck−GVG

]
= 0 (7.1.19)

Since this equation must hold for any position r, we obtain:(
ℏ2k2

2m − E

)
Ck +

∑
G
Ck−GVG = 0. (7.1.20)

Note that this set of equations only couples those expansion coefficients Ck, whose k-
values differ by some reciprocal lattice vector G. Hence, each k-value within the first
Brillouin zone leads to a different solution of the Schrödinger equation.

For a given k-value, we can restrict the set of expansion coefficients of Ψk(r) to
Ck, Ck−G, Ck−G′ , . . . and rewrite equation (7.1.17) as

Ψk(r) =
∑
G
Ck−Ge

ı(k−G)·r =
∑
G
Ck−Ge

−ıG·r

︸ ︷︷ ︸
uk(r)

eık·r = uk(r)eık·r. (7.1.21)

The function uk(r) is by construction a lattice periodic function. Hence, we have shown
again that the solutions Ψk(r) of the Schrödinger equation (7.1.1) obey Bloch’s theorem.

With the help of equation (7.1.21), it is easy to verify that the Bloch wave Ψk(r) is a
periodic function in reciprocal space:

Ψk+G(r) =
∑
G′
Ck+G−G′e−ıG′·reı(k+G)·r

=
(∑

G′′
Ck−G′′e−ıG′′·r

)
eık·r = Ψk(r). (7.1.22)

Substituting Ψk(r) and Ψk+G in the Schrödinger equation yields

HΨk(r) = E(k)Ψk(r) (7.1.23)

and

HΨk+G(r) = E(k + G)Ψk+G(r), (7.1.24)

respectively. With Ψk(r) = Ψk+G(r), the last equation can be rewritten as:

HΨk(r) = E(k + G)Ψk+G(r). (7.1.25)
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7.1 Bloch’s Theorem

A comparison of (7.1.23) and (7.1.25) finally yields:

E(k) = E(k + G). (7.1.26)

Hence, the energy eigenvalue E(k) of the Bloch wave Ψk(r) is a periodic function in
reciprocal space.

7.1.3 Wannier functions

So far, we have considered Bloch waves Ψk(r) as functions in real space and k was treated
as an index that characterizes the respective Bloch wave. However, equation (7.1.22)
suggests that we can also consider Bloch waves as functions Ψ(k, r) in reciprocal space.
For this purpose, we expand Ψ(k, r) in a Fourier series:

Ψ(k, r) = 1√
N

∑
R
cR(r)eık·R. (7.1.27)

Here, the summation is taken over all lattice vectors R and N is the number of unit cells
in the crystal. Since k can only assume discrete values, the expansion coefficients cR(r)
can be written as

cR(r) = 1√
N

∑
k

Ψ(k, r) e−ık·R = 1√
N

∑
k
uk(r) eık·(r−R) = w(r − R). (7.1.28)

Here, we have introduced in the last step the Wannier functions w(r − R). The Bloch
waves can be written in terms of the Wannier functions as

Ψ(k, r) = 1√
N

∑
R
w(r − R) eık·R. (7.1.29)

The Wannier functions tend to be localized around the lattice points. Moreover, they form
a complete set of orthogonal functions (proof: exercise). The combination of these two
properties make Wannier functions useful for the theoretical description of phenomena in
which the spatial localization of electrons plays an important role (see e.g. section 7.3).

7.1.4 Crystal momentum

Consider a Bloch wave Ψk(r) = uk(r) eık·r with wave vector k. In analogy to a free
electron, one could be tempted to identify ℏk as the momentum of the crystal electron.
However, it is easy to show that Ψk(r) is not an eigenfunction of the momentum operator:

p̂Ψk(r) = ℏ
ı
∇
(
uk(r) eık·r

)
= ℏkΨk(r) + ℏ

ı
eık·r∇uk(r) ̸= const Ψk(r). (7.1.30)
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7 Electronic band structure

Hence, ℏk is not the “real” momentum of the crystal electron but has to be rather consid-
ered as a generalized momentum. For that reason, ℏk is usually called crystal momentum.
We will see in the next chapter that the crystal momentum plays an important role in
the context of the semi-classical transport theory.

7.2 Quasi-free electrons

In this section we consider the effect of a weak periodic potential on the conduction elec-
trons. We start with a discussion of the so-called empty lattice approximation. Here, we
assume that all the Fourier coefficients VG vanish but require nonetheless that the condi-
tion E(k) = E(k + G) is fulfilled, i.e., we take the periodicity of the lattice into account.
The dispersion relation of the conduction electrons in the empty lattice approximation
reads:

E(k) = E(k + G) = ℏ2

2m |k + G|2. (7.2.1)

The corresponding wavefunctions are plane waves:

Ψk ∼ eık·r. (7.2.2)
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Figure 7.2: Dispersion relation of a conduction electron for a one dimensional empty lattice.

For simplicity reasons, we first consider the case of an one dimensional empty lattice
with period a. According to condition (7.2.1), the parabolic energy curve of a conduction
electron is repeated in reciprocal space with period G = 2π/a [see Fig. 7.2]. Because of
the periodicity of the problem, we can restrict the dispersion relation to the first Brillouin
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7.2 Quasi-free electrons

zone (−π/a ≤ k ≤ π/a). Here, we find for every k value an infinite number of energy
eigenvalues En(k) with

En(k) = ℏ2

2m

(
k + n

2π
a

)2
;n = 0,±1,±2, . . . . (7.2.3)

The set of energy levels En(k) with the same value of n is called the n-th energy band.

In three dimensions, the dispersion relation of a conduction electron in the empty lattice
approximation reads:

En(k) = ℏ2

2m (k + G)2 = ℏ2

2m
[
(kx +Gx)2 + (ky +Gy)2 + (kz +Gz)2

]
. (7.2.4)

Figure 7.3 exemplifies the dispersion relation of a conduction electron in an empty fcc-
lattice. The large number of bands results from folding back of the dispersion relation to
the first Brillouin zone along different directions.
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Figure 7.3: Left: 1st Brillouin zone of the fcc lattice with high symmetry points. Right: Dis-
persion relation of a conduction electron for an empty fcc lattice. (Adopted from
Wikipedia)

Next, we want to discuss qualitatively the effect of a small but finite periodic potential.
For this purpose, we switch back to the one dimensional case. According to Fig. 7.2, the
two dispersion curves E(k) and E(k −G) intersect at the boundary of the first Brillouin
zone. To a first approximation, the states of the electron at the intersection point k = π/a
can be thus described by the superposition of a forward propagating wave and a counter-
propagating Bragg-reflected wave (eıG/2 and e−ıG/2). The relative phases of the plane
waves have to be chosen such that the resulting standing waves are compatible with the
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7 Electronic band structure

symmetry of the lattice:

Ψ+ ∼
(
eıGx/2 + e−ıGx/2

)
∼ cos

(
π
x

a

)
(7.2.5)

Ψ− ∼
(
eıGx/2 − e−ıGx/2

)
∼ sin

(
π
x

a

)
(7.2.6)

The probability density |Ψ+|2 has maxima at the positions of the positive cores (Rm =
ma;m = 0,±1 ± 2, . . .) and minima in between. The opposite is true for the probability
density |Ψ−|2 [see Fig. 7.4 (a)]. Hence, an electron in the state Ψ+ interacts stronger with
the positive cores as compared to an electron in state Ψ−. Consequently, the energies of
the two states are different. In the dispersion relation, the two states are separated by
a band gap, i.e., an energy interval for which no solutions of the Schrödinger equation
exists [see Fig. 7.4 (b)].
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Figure 7.4: (a) Probability density distributions of the electron states at the boundary of the first
Brillouin zone. (b) Dispersion relation of a conduction electron for a one dimensional
lattice with a weak potential.
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7.2 Quasi-free electrons

After this qualitative discussion, we derive the magnitude of the band gap in a formal
calculation. For this purpose, we start with equation (7.1.20):(

E − ℏ2|k − G|2

2m

)
Ck−G =

∑
G′′

Ck−G−G′′VG′′ =
∑
G′
Ck−G′VG′−G (7.2.7)

Solving for Ck−G, we obtain:

Ck−G =
∑

G′ Ck−G′VG′−G

E − ℏ2|k−G|2
2m

. (7.2.8)

In the following, we concentrate on the boundary of the first Brillouin zone. For weak
potentials, we obtain an approximate solution for Ck−G, if we replace the true energy
eigenvalue E by the energy of a free electron:

Ck−G ≈
∑

G′ Ck−G′VG′−G
ℏ2

2m
(|k|2 − |k − G|2)

. (7.2.9)

We will only take the dominant expansion coefficients into account. Inspection of equation
(7.2.9) shows that those expansion coefficients Ck−G are particularly large, for which the
condition

|k|2 ≈ |k − G|2 (7.2.10)

is fulfilled. Hence, we can limit the expansion to the two coefficients Ck and Ck−g, where,
g is a primitive translation vector of the reciprocal lattice.

With V0 = 0, we obtain the following system of equations:

(
E − ℏ2

2mk2
)
Ck − VgCk−g = 0 (7.2.11)(

E − ℏ2

2m |k − g|2
)
Ck−g − V−gCk = 0. (7.2.12)

A non-trivial solution requires that the corresponding determinant vanishes:∣∣∣∣∣∣
(

ℏ2

2m
k2 − E

)
Vg

V−g
(

ℏ2

2m
|k − g|2 − E

) ∣∣∣∣∣∣ = 0. (7.2.13)

With

E0
k−g = ℏ2

2m |k − g|2 (7.2.14)
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we obtain after a short calculation two solutions with the energies

E± = 1
2
(
E0

k−g + E0
k

)
±
√

1
4
(
E0

k−g − E0
k

)2
+ |Vg|2 (7.2.15)

Here, we have used that the potential is real and hence V−g = V ∗
g . At the zone boundary,

the band gap has a value

∆E = E+ − E− = 2|Vg|. (7.2.16)

7.3 Tight binding approximation

In this section, we turn our attention to the strongly bound core electrons and discuss the
effect of atom-atom interaction on the core electronic states. Our starting point is the
Schrödinger-equation for an isolated atom at the position Rn:

HA(r − Rn)Φi(r − Rn) = EiΦi(r − Rn). (7.3.1)

Here, HA is the atomic Hamiltonian. Φi and Ei are the corresponding eigenfunction and
energy eigenvalue, respectively, of the ith atomic state. In what follows, we assume that
Φi and Ei are known.

The Hamiltonian for an electron in the crystal can be expressed as:

H = − ℏ2

2m∇2 +
∑

l

VA(r − Rl). (7.3.2)

Here, the total potential is given by the superposition of the potentials of all atoms in the
crystal.

In what follows, we take the n-th atom at the position Rn as our reference. Then, we
rewrite the crystal Hamiltonian as the sum of the atomic Hamiltonian HA(r − Rn) and a
perturbation potential v(r − Rn):

H(r − Rn) = HA(r − Rn) + v(r − Rn) = − ℏ2

2m∇2 + VA(r − Rn) + v(r − Rn). (7.3.3)

where the perturbation potential is given by the sum of the potentials of all atoms apart
from the reference atom:

v(r − Rn) =
∑

m ̸=n

VA(r − Rm). (7.3.4)

Electronic states in the crystal are Bloch waves Ψk(r) and obey the Schrödinger equation

HΨk(r) = E(k)Ψk(r). (7.3.5)
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Figure 7.5: The potential V (r) of the crystal can be expressed as the sum of the atomic potential
VA(r) and the perturbation potential v(r).

The energy eigenvalues are given by

E(k) = ⟨Ψk|H|Ψk⟩
⟨Ψk|Ψk⟩

(7.3.6)

where

⟨Ψk|Ψk⟩ =
∫

Ψ∗
k(r)Ψk(r) dr and ⟨Ψk|H|Ψk⟩ =

∫
Ψ∗

k(r)HΨk(r) dr. (7.3.7)

The exact eigenfunctions Ψk(r) of the crystal Hamiltonian are not known. However, we
expect that an approximate solution Φk(r) can be constructed from an appropriate linear
combination of atomic eigenfunctions:

Ψk(r) ≃ Φk(r) =
∑

n

anΦi(r − Rn). (7.3.8)

To determine the expansion coefficients an, we require that Φk(r) is a Bloch wave. One
can easily show that the ansatz

Φk(r) =
∑

n

eık·RnΦi(r − Rn) (7.3.9)

has all the required properties. A comparison of the last equation with equation (7.1.29)
shows, that in this ansatz the Wannier functions w(r−Rn) are approximated by the atomic
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orbitals Φi(r−Rn). Next, we substitute Φk(r) in equation (7.3.6). The denominator then
reads:

⟨Φk|Φk⟩ =
∑
n,m

eık·(Rn−Rm)
∫

Φ∗
i (r − Rm)Φi(r − Rn) dr. (7.3.10)

For strongly localized electrons, the electronic wavefunctions of different atoms do hardly
overlap. Hence, we can neglect all terms in which Rn ̸= Rm and obtain:

⟨Φk|Φk⟩ ≃
∑

n

∫
Φ∗

i (r − Rn)Φi(r − Rn) dr = Nc, (7.3.11)

where NC is the number of atoms in the crystal. An approximate solution of the energy
eigenvalue is given by

E(k) ≃ 1
Nc

∑
n,m

eık·(Rn−Rm)
∫

Φ∗
i (r−Rm) [HA(r − Rn) + v(r − Rn)] Φi(r−Rn) dr. (7.3.12)

With

Ai = −
∫

Φ∗
i (r − Rn)v(r − Rn)Φi(r − Rn) dr (7.3.13)

and

Bi,m = −
∫

Φ∗
i (r − Rm)v(r − Rn)Φi(r − Rn) dr, (7.3.14)

we can rewrite equation (7.3.12) as

E(k) ≃ Ei − Ai −
∑
m

eık·(Rn−Rm)Bi,m. (7.3.15)

Here, we have tacitly assumed that the overlap of wavefunctions from different atoms
plays no role for the calculation of the atomic energy eigenvalues Ei.

7.3.1 Band structure of a simple cubic crystal

The atom-atom interaction in a crystal has two effects on the energy eigenvalues. Ai

describes the lowering of the atomic levels in a solid due to the potential of the neighboring
atoms. The last term shows that the overlap of the wavefunctions causes a splitting up of
the sharp atomic energy levels into an electronic band in a crystal. To further investigate
the latter point, we consider in what follows a simple cubic crystal and atomic s-states.
The atomic s-states posses spherical symmetry such that the coefficients Bi,m only depend
on the separation |Rn − Rm|. Furthermore, we assume that only nearest neighbors play
a role in the evaluation of the last term of equation (7.3.15). With

Rn − Rm = (±a, 0, 0); (0,±a, 0); (0, 0,±a), (7.3.16)
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7.3 Tight binding approximation

we obtain

E(k) ≃ Ei − Ai − 2Bi [cos(kxa) + cos(kya) + cos(kza)] . (7.3.17)

The energy width of the electronic band is 12Bi. It increases as the overlap between the
relevant wavefunctions of neighboring atoms becomes larger. Consequently, bands which
evolve from low lying and thus strongly localized atomic states are narrower than those
band which originate from less tightly bound atomic states.
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E1

E2
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Figure 7.6: Formation of electronic bands in the tight-binding model.

7.3.2 Band structure of graphene

In this section, we consider the band structure of graphene as an example for the applica-
tion of the tight-binding method to a crystal with a nontrivial basis. The corresponding
crystal structure is depicted in Fig. 7.7. It consists of a two-dimensional triangular lattice
with two carbon atoms per unit cell. Primitive translation vectors of the triangular lattice
can be chosen as

a1 = a

2
(
êx

√
3 + êy

)
, (7.3.18)

a2 = a

2
(
−êx

√
3 + êy

)
, (7.3.19)

where a = 0.142 nm is the separation between two neighboring atoms. We select the
center of the unit cell (b1 = (0, 0)) as the position of the first atom. The second atom is
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displaced by

b2 = a

2

(
êx√

3
+ êy

)
. (7.3.20)

As in the case of a monoatomic basis, we construct an approximate solution Φk(r) from
a linear combination of atomic eigenfunctions that is compatible with Bloch’s theorem:

Φk(r) =
∑

n

eık·Rn [c1Φi,1(r − Rn) + c2Φi,2(r − b2 − Rn)] . (7.3.21)

Here, Φi,1(r) and Φi,2(r) are the atomic eigenfunction for the atomic energy eigenvalue Ei

of the first and second atom, respectively, and c1 and c2 are constant coefficients. With
this ansatz , the time-independent Schrödinger equation of the crystal reads

HΦk(r) = E(k)Φk(r) =
∑

n

eık·RnH [c1Φi,1(r − Rn) + c2Φi,2(r − b2 − Rn)]

= E(k)
∑

n

eık·Rn [c1Φi,1(r − Rn) + c2Φi,2(r − b2 − Rn)] (7.3.22)

Next, we calculate ⟨Φi,1|H|Φk⟩:

⟨Φi,1|H|Φk⟩ = c1
∑
R
eık·R

∫
Φ∗

i,1(r)HΦi,1(r − R) dr

+c2
∑
R
eık·R

∫
Φ∗

i,1(r)HΦi,2(r − b2 − R) dr

= c1E(k)
∑
R
eık·R

∫
Φi,1(r)Φi,1(r − R) dr

+c2E(k)
∑
R
eık·R

∫
Φ∗

i,1(r)Φ∗
i,2(r − b2 − R) dr. (7.3.23)

If only the overlap with the nearest neighbors gives rise to a significan contribution to the
integrals, the last equation simplifies to

⟨Φi,1|H|Φk⟩ = c1

∫
Φ∗

i,1(r)HΦi,1(r) dr + c1
∑
n.n

eık·R
∫

Φ∗
i,1(r)HΦi,1(r − R) dr

+c2
∑
n.n.

eık·R
∫

Φ∗
i,1(r)HΦi,2(r − b2 − R) dr

= c1E(k). (7.3.24)

Here, the sums run over the lattice points closest to the origin. In the case of graphene,
the nearest neighbors of the atom at the origin are located at b2, at b2 − a1, and at
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Figure 7.7: Left: Crystal structure of graphene. The nearest neighbors of the atom at the origin
are marked by green dashed circles. Right: Band structure of graphene.

b2 − a1 − a2 (see green dashed circles in Fig. 7.7). With this, we can rewrite equation
(7.3.24) as

c1E0 + c2U
(
1 + e−ık·a1 + e−ık·(a1+a2)

)
= c1E(k) (7.3.25)

with

E0 =
∫

Φ∗
i,1(r)HΦi,1(r) dr, (7.3.26)

U =
∫

Φ∗
i,1(r)HΦi,2(r − b2) dr

=
∫

Φ∗
i,1(r)HΦi,2(r − b2 + a1) dr

=
∫

Φ∗
i,1(r)HΦi,2(r − b2 + a1 + a2) dr. (7.3.27)

In an analogous calculation for ⟨Φi,2|H|Φk⟩ we obtain

c1U
(
1 + eık·a1 + eık·(a1+a2)

)
+ c2E0 = c2E(k). (7.3.28)

Equations (7.3.25) and (7.3.28) can be combined and written in matrix form as
 E0 U

(
1 + e−ık·a1 + e−ık·(a1+a2)

)
U
(
1 + eık·a1 + eık·(a1+a2)

)
E0

( c1
c2

)
= E(k)

(
c1
c2

)
.
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(7.3.29)

From this, we can easily calculate the energy eigenvalues

E(k) = E0 ± U

√√√√3 + 4 cos
(
kx

√
3a

2

)
cos

(
kya

2

)
+ 2 cos (kya). (7.3.30)

The corresponding band structure is depicted in Fig. 7.7. The overlap of the atomic
orbitals results in the formation of two bands. For six points on the boundary of the first
Brillouin zone the gap between the two bands closes and the energy dispersion in the
vicinity of these k-points is approximately linear. The corresponding cone like structures
are commonly denoted as Dirac cones and the touching points as Dirac points.

7.4 Metals, semiconductors, and insulators

We have seen in the previous section, that the sharp electronic states of isolated atoms
evolve into electronic bands when the atoms are assembled in a crystal. In this process,
no electronic states are lost or created. For example, the s- and p-states of an isolated
atom can be each filled with 2 and 6 electrons, respectively. In a crystal with Nc atoms,
the corresponding electronic bands can hold 2Nc and 6Nc electrons, respectively.

In the one-electron approximation at T = 0K, the electronic bands are filled with the
available electrons from bottom to top according to the Pauli exclusion principle. The
highest completely filled band is the so-called valence band. The lowest unoccupied or
partially filled electronic band is the so-called conduction band.

• Materials with a partially filled conduction band are metals. For a metal, the Fermi
level is located in the conduction band. The situation is particularly simple in the
case of the monovalent metals, i.e., the alkali metals and the noble metals. For these
elements, the conduction band evolves from an atomic s-state and is only half filled.

• In a semiconductor, the conduction band is empty and the valence band is com-
pletely filled. Hence, the Fermi level is in between these two bands. The so-called
band gap between valence band and conduction band is smaller than 4 eV. Typical
semiconductors are the group IV elements Si and Ge or the compound GaAs.

• Insulators exhibit by definition a band gap that is larger than 4 eV. Examples of
insulators are diamond or NaCl.
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Figure 7.8: Schematic band structures (Occupied states: blue. Empty states: white. CB: Con-
duction band. VB: Valence band. EF : Fermi level. Eg: Band gap energy.)

7.5 Photoemission Spectroscopy

Photoemission spectroscopy is an important experimental method to investigate the band
structure and the density of states of solid materials. It is based on the external pho-
toeffect. The material under investigation is irradiated with UV or x-ray photons with
photon energy ℏω. Absorption of the photons results in the excitation of electrons from
occupied states of the electronic band structure, i.e., states below the Fermi energy EF

to empty states of the quasi continuum of states above the vacuum level Evac. Electrons
which have been excited near the interface of the sample (typically within a few Å) can
leave the the solid with a kinetic energy given by:

Ekin = ℏω − Φ − EB, (7.5.1)

where Φ = Evac −EF is the work function of the solid and EB is the binding energy of the
electrons relative to the Fermi level. These electrons are collected by an energy resolving
detector. Since the photoexcitation probability of an electron depends only weakly on its
binding energy, we can use the number of detected electrons with a certain kinetic energy
to map the density of states at the corresponding binding energy (see Fig. 7.10).
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Figure 7.9: Scheme of a photoemission spectroscopy setup. Image source: Wikipedia.
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Figure 7.10: Principle of photoemission spectroscopy.

94



8 Electronic transport

8.1 Classical prelude

8.1.1 Drude model

We start our discussion of electronic transport in solids with the classical Drude model.
This model was introduced to explain the conductivity of metals. It is based on the
following assumptions:

• When metal atoms are brought together to form a solid, the weakly bound valence
electrons become detached and are free to move in the solid. Each metal atom
contributes Z electrons to these so-called conduction electrons. The nuclei and the
tightly bound core electrons form the metallic ions.

• A conduction electron does not interact with other conduction electrons (indepen-
dent electron approximation) or with the metallic ions (free electron approximation)
between collisions.

• The mean time between successive collisions of a conduction electron is given by
the relaxation time τ . Each collision results in an abrupt change of the velocity of
the corresponding conduction electron.

In the absence of an external electric field, the conduction electrons perform an undirected
thermal motion that results in a vanishing net current. By applying an external electric
field E , the conduction electrons acquire an additional velocity component v which is
superimposed on the random thermal motion. This effect is described in the framework
of the Drude model by the following classical equation of motion:

mv̇ + 1
τ
mv = −eE(t). (8.1.1)

Here, m is the electron mass and −e is the electron charge. In the following, we consider
an AC field E(t) = E e−ıωt. Upon substitution of the ansatz

v(t) = ṽe−ıωt. (8.1.2)
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into equation (8.1.1) and solving for v(t), we obtain:

v(t) = −e
m

1
1
τ

− ıω
Ee−ıωt. (8.1.3)

Next, we calculate the density of conduction electrons in the metal. Each mole of the
metal contains NA = 6.022 × 1023 atoms (Avogadro’s number). The number of moles per
cm3 is given by ρm/A, where ρm is the mass density (in g/cm3) and A is the atomic mass
(in atomic mass units1) of a metal atom. The number of conduction electrons per cm3 is
thus given by:

n = NA
Zρm

A
. (8.1.4)

Example - Density of conduction electrons in gold,

• Number of valence electrons per gold atom: Z = 1.

• Mass density of gold: ρm = 19.3 g/cm3.

• Atomic mass of gold: A = 196, 97 u.

• Density of conduction electrons: n = 5.9 × 1022/cm3.

The electric current density can be expressed as:

j = −e nv. (8.1.5)

By inserting (8.1.3) in (8.1.5), we find:

j = e2 n

m

1
1
τ

− ıω
Ee−ıωt. (8.1.6)

The factor of proportionality between the current density and the electric field is the
AC-conductivity:

σ(ω) = e2 n

m

1
1
τ

− ıω
. (8.1.7)

The resistivity is defined as the inverse of the conductivity. For zero frequency, we obtain:

ρDC = m

τ e2 n
. (8.1.8)

11u = g/mol
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8.1 Classical prelude

We can use this equation to calculate the relaxation time τ :

τ = m

ρDC e2 n
. (8.1.9)

Example - Relaxation time in gold

• Density of conduction electrons in gold: n = 5.9 × 1022/cm3.

• DC-resistivity of gold: ρDC = 2.44 × 10−8 Ω m

• Electron mass: m = 9.11 × 10−31 kg

• Electron charge: q = 1.60 × 10−19 C

• Relaxation time in gold: τ = 2.47 × 10−14 s

It is instructive to consider the mean free path which is defined as the average distance
that a conduction electron travels between two successive collisions:

ℓ = v̄τ, (8.1.10)

where v̄ is the average velocity of a conduction electron. The theorem of equipartion of
energy provides a classical estimate of the average electron velocity:

1
2mv̄

2 = 3
2kBT. (8.1.11)

Therefore, at room temperature, v̄ is in the order of 107 cm/s. Hence, the mean free
path is in the order of a few Å which corresponds to typical interatomic distances. This
agreement seems to suggest that the collisions are due to the electrons smashing into the
metal ions. However, it turns out that this picture is wrong! The mean free path in
carefully prepared samples at low temperatures can be in the order of centimeters! The
flaws present in the classical treatment of electron conduction will be addressed below in
the context of the Boltzmann transport theory.

8.1.2 Hall effect

In this section, we consider electronic transport under the combined influence of a static
electric field and a static magnetic field. The corresponding classical equation of motion
reads:

mv̇(t) + 1
τ
mv(t) = (−e) [E + v(t) × B] . (8.1.12)

97



8 Electronic transport

Under steady-state conditions (v̇ = 0), the velocity is given by

v = −eτ
m

[E + v × B] . (8.1.13)

In the following we consider the Hall bar geometry depicted in Fig. 8.1. We assume that
the magnetic field is oriented along the z-axis. The Cartesian components of the velocity
vector then read:

vx = −ωcτ
(Ex

Bz

+ vy

)
(8.1.14)

vy = −ωcτ
(Ey

Bz

− vx

)
(8.1.15)

vz = −ωcτ
( Ez

Bz

)
(8.1.16)

(8.1.17)

with the cyclotron frequency

ωc = eBz

m
. (8.1.18)

The corresponding current density can be written as jx

jy

jz

 = − σ0

1 + ω2
cτ

2

 1 −ωcτ 0
ωcτ 1 0
0 0 1 + ω2

cτ
2


 Ex

Ey

Ez

 (8.1.19)

where

σ0 = ne2τ

m
(8.1.20)

is the DC conductivity.

If the external electric field is applied along the x-axis, the moving electrons would be
deflected under the influence of the magnetic field in negative y-direction. In steady state,
this effect is however exactly compensated by an electric field Ey that results from the
surplus charges at the sides of the Hall bar (see Fig. 8.1). This is the so-called Hall effect
and the field Ey is the Hall field. The condition jy = 0 implies:

ωcτEx + Ey = 0. (8.1.21)

Together with equation (8.1.19), we find

Ey = −eτBz

m
Ex = −eτBz

m

jx

σ0
= RH Bz jx. (8.1.22)
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8.2 Semiclassical equation of motion and the effective mass

Here, we have introduced in the last step the Hall coefficient

RH = −1
ne
. (8.1.23)

The Hall effect can used to determine the charge carrier concentration in a solid (known
magnetic field) or to measure the magnetic field strength (Hall sensor with known charge
carrier concentration).
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Figure 8.1: Scheme of a Hall bar.

8.2 Semiclassical equation of motion and the effective
mass

According to section 7.1, the solutions of the one-electron Schrödinger equation of a crystal
are Bloch waves:

Ψk,n(r, t) = uk,n(r) eık·re−ıωn(k)t. (8.2.1)

Here, k is the wave vector of the Bloch wave and n is the index of the corresponding
band. The frequency ωn(k) is proportional to the energy eigenvalue En(k):

En(k) = ℏωn(k). (8.2.2)

A single Bloch wave Ψk,n(r, t) describes an electronic state in which the electron is com-
pletely delocalized over the whole crystal. Obviously, this description is unsuitable for
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the discussion of transport phenomena in solids. To describe a localized electron, we
construct a wave packet composed of Bloch waves:

Ψ(r, t) =
∑

k
g(k)Ψk,n(r, t). (8.2.3)

Here, g(k) characterizes the weight of a Bloch wave Ψk,n(r, t) in the wave packet. The
real-space localization diameter δx and the wavevector spread δk of the wave packet fulfill
the following inequality, which expresses a general property of the Fourier transform:

δx ℏδk ≥ ℏ. (8.2.4)
In what follows, we assume that δk is much smaller than the diameter of the Brillouin
zone. Equation (8.2.4) implies, that the real-space diameter of the wave packet is then
larger than the lattice constant a. Hence, an electron is “spread” over several unit cells.

a

|y|

dx

E r( ,t)

l

Figure 8.2: Electron wavepacket.

The expectation value of the velocity of the electron is given by the group velocity of the
wave packet:

ṙ = vn = ∇kωn(k) = 1
ℏ

∇kEn(k) = 1
ℏ
∂En(k)
∂k

. (8.2.5)

Next, we consider the effect of an external electromagnetic field on the electron. At this,
we assume that the wavelength λ of the field is much larger than δx (see Fig. 8.2). In that
case, the temporal evolution of the wave vector is governed by the following semiclassical
equation of motion:

ℏk̇ = F = −e [E (r, t) + vn × B (r, t)] . (8.2.6)

In analogy to classical mechanics, we expect that the electron is accelerated in the external
field. The time derivative of the expectation value of the electron velocity is given by:

v̇n,j = ∂

∂t

[
1
ℏ
∂En(k)
∂kj

]
= 1

ℏ
∑

l

∂

∂kl

[
1
ℏ
∂En(k)
∂kj

]
ℏk̇l

= 1
ℏ2

∑
l

∂2En(k)
∂kj∂kl

Fl =
∑

l

( 1
m∗

)
jl
Fl. (8.2.7)
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8.3 Bloch oscillations

Here, we have introduced in the last step the effective mass tensor element m∗
jl through

the relation:( 1
m∗

)
jl

= 1
ℏ2
∂2En(k)
∂kj∂kl

. (8.2.8)

We can rewrite equation (8.2.7) in vectorial form:

v̇ =
[ 1
m∗

]
F = −e

[ 1
m∗

]
[E (r, t) + vn × B (r, t)] . (8.2.9)

This equation has the same form as Newton’s equation of motion in classical mechanics if
one formally replaces the scalar mass m by the effective mass m∗. However, the effective
mass m∗ is a second order tensor whose elements are functions of the wavevector k. Note,
that the elements of the effective mass tensor can have both positive and negative values.
All these aspects result from the fact, that only the external fields are explicitly included
in equation (8.2.9). The effect of the crystal potential V (r) on the electron is implicitly
taken into account by the effective mass m∗.
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Figure 8.3: Effective mass m∗ for the case of a 1D tight-binding model.

8.3 Bloch oscillations

The wavevector dependence of the effective mass can lead to counterintuitive effects.
Consider a DC electric field with field strength E that is applied to a perfect crystal. An
electron experiences in the presence of this field a constant force F = −eE . As a result,
the magnitude of the wavevector changes with a constant rate:

|k̇| = eE
ℏ

= const. (8.3.1)
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The motion of the electron in reciprocal space is schematically depicted in Fig. 8.4. When-
ever the wavevector reaches the boundary of the first Brillouin zone, we can add an ap-
propriate reciprocal lattice vector such that the electron enters the first Brillouin zone at
the other side. Since the effective mass changes its sign as k varies (see Fig. 8.3), the
electron is periodically accelerated and decelerated. This results in an oscillatory motion
(Bloch oscillation) of the electron with period:

TB = 2π/a
eE/ℏ

= h

aeE
. (8.3.2)

Hence, we have the surprising result that an ideal crystal exhibits a vanishing DC con-
ductivity in the absence of scattering events!

So far we have neglected scattering events which disturb the motion of the electron. For
typical parameters (E = 1 kV/m and a = 2Å), the period of the Bloch oscillation is
TB ≈ 20 ns. This value is much larger than the characteristic relaxation time derived in
section 8.1.1 (τ ≈ 20 fs). Hence, electrons in metals will complete only a small part of an
oscillation period before they undergo a scattering event. For that reasons, real metallic
crystals exhibit a finite DC conductivity. Note however, that Bloch oscillation have been
observed experimentally in artificial periodic semiconductor heterostructures.

-eE

k

1BZ

p/a-p/a
-p/a

p/a

0

0
kx

ky

Figure 8.4: Motion of an electron in reciprocal space due to an applied DC electric field.

8.4 Currents in bands: Electrons and holes

The current density caused by the electrons of a single band is given by:

j = −e
Vc

∑
occupied

v(k)

= −e
4π3

∫
v(k)f(E, T ) d3k. (8.4.1)
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8.4 Currents in bands: Electrons and holes

For simplicity, we consider the case of low temperatures (kBT ≪ EF ) such that the Fermi-
function can be approximated by a step-function. In this limit, we can rewrite equation
(8.4.1) as:

j = −e
4π3

∫
occupied

v(k) d3k = −e
4π3ℏ

∫
occupied

∇kE(k) d3k. (8.4.2)

For crystals with inversion symmetry, the energy eigenvalues for the wavevectors k and
−k are identical:

E(k) = E(−k). (8.4.3)

In contrast, the corresponding electron velocities have opposite signs:

v(−k) = 1
ℏ

∇−kE(−k) = −1
ℏ

∇kE(k) = −v(k). (8.4.4)

The situation is a little bit more complicated in the case of a crystal without inversion
symmetry. In that case, we have to take the spin of the electron explicitly into account.
For reasons of time reversal of the Schrödinger equation, one has:

k → −k and | ↑⟩ → | ↓⟩; | ↓⟩ → | ↑⟩. (8.4.5)

Hence, we obtain:

E(k, ↑) = E(−k, ↓);E(k, ↓) = E(−k, ↑). (8.4.6)

Applying the gradient in reciprocal space yields:

v(k, ↑) = −v(−k, ↓); v(k, ↓) = −v(−k, ↑). (8.4.7)

In both cases, one can easily see that a fully occupied band results in a vanishing current
density. For each electron with wavevector k there always is a corresponding electron
with wavevector −k in the first Brillouin zone (1st BZ) which exactly compensates the
contribution of the former electron to the current density.

From this observation, we can draw the important conclusion that a finite current density
requires a partially filled electronic band in which the electrons are distributed unsym-
metrically with respect to k = 0. Next, we rewrite equation (8.4.2) as:

j = −e
4π3

∫
occupied

v(k) d3k = −e
4π3ℏ


∫

1stBZ

∇kE(k) d3k

︸ ︷︷ ︸
0

−
∫

empty

∇kE(k) d3k


= +e

4π3ℏ

∫
empty

∇kE(k) d3k. (8.4.8)
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We can formally interpret this equation in two different ways. In the first interpretation,
we take the view that the current density is caused by the negatively charged electrons
in the occupied states of the band. Alternatively we can also say that the current density
results from the motion of positively charged particles which we assign to the empty states
in the band. These positively charged particles are usually called holes. A hole can be
created, e.g., by transfer of an electron from the fully occupied valence band to the empty
conduction band after optical absorption of a photon (see Fig. 8.5).

The following relationships between electron properties and hole properties can easily be
proven as an exercise 2:

• Quasi-Momentum:

kh = −kn. (8.4.9)

• Spin:

|s⟩h = −|s⟩n. (8.4.10)

• Energy:

Eh(kh) = −En(kn). (8.4.11)

• Velocity:

vh(kh) = vn(kn). (8.4.12)

• Effective mass:

m∗
h = −m∗

n. (8.4.13)

A combination of the above results yields the following equations of motion for electrons
and holes, respectively:

ℏk̇n = −e (E (r, t) + vn × B (r, t)) , (8.4.14)
ℏk̇h = +e (E (r, t) + vh × B (r, t)) . (8.4.15)

(8.4.16)

2Here, we use the indices n and p to distinguish between properties of electrons and holes, respectively.
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8.5 Motion of electrons in a static magnetic field
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Figure 8.5: Optical absorption of a photon creates a hole in the otherwise occupied valence band
(state A) and an electron in the otherwise empty conduction band (state B).

8.5 Motion of electrons in a static magnetic field

Next, we discuss how a static magnetic field affects the motion of the crystal electrons.
On this occasion, we assume that no additional electric field is applied to the crystal. In
this case, the the semi-classical equation of motion reads:

ℏ
dk
dt

= F = (−e) [v × B] = e

ℏ
[B × ∇kE(k)] , (8.5.1)

with

v = 1
ℏ

∇kE(k). (8.5.2)

In the following, we consider the electron trajectories in k-space. Because of the properties
of the vector product, we find from equation (8.5.1) that the component of the wave vector
parallel to the magnetic field is conserved:

dk∥

dt
= 0. (8.5.3)

Furthermore, we can easily show that the energy of the electrons does not change with
time:

dE

dt
= dE

dk
· dk
dt

= F · v = (−e) [v × B] · v = 0. (8.5.4)

Hence, the electron trajectories in k-space are the intersections of the surface of constant
energy E(k) = const with the plane defined by k∥ = const (perpendicular to B).

Depending on the shape of the surface of constant energy E(k) = const, one can dis-
tinguish between several different cases. Fig. 8.6 (a) depicts an open trajectory in the
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periodic zone scheme while Fig. 8.6 (b) and (c) correspond to closed trajectories. The
circumferential direction is determined by the relative orientation of the magnetic field B
and the gradient of energy in k-space ∇kE(k).

Next, we calculate the period of revolution of the electrons on a closed trajectory. For this
purpose we consider an element dk of the trajectory. With the help of equation (8.5.1),
we find that

dk = e

ℏ2 [B × ∇kE(k)] dt = e

ℏ2 B
(
dE(k)
dk

)
⊥
dt. (8.5.5)

Here,
(

dE(k)
dk

)
⊥

is the component of ∇kE(k) that is oriented perpendicular to B. Integra-
tion over one cycle of the motion yields the period of revolution

T =
∫ T

0
dt = ℏ2

eB

∮ 1
(dE/dk)⊥

dk (8.5.6)

To evaluate this integral, we consider the area dSE enclosed by the curves with constant
energy E and E + dE. Inspection of Fig. 8.7 shows that

dSE(k) =
∮
δk⊥(k) dk =

∮ 1
(dE/dk)⊥

dE dk. (8.5.7)

The derivative of the last equation with respect to energy yields

dSE(k)
dE

=
∮ 1

(dE/dk)⊥
dk. (8.5.8)

Hence, the period of revolution of the electrons can be written as.

T (E,k) = ℏ2

eB

dSE(k)
dE

. (8.5.9)
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Figure 8.6: Electron motion in k-space under the influence of a static magnetic field. (a) Open
trajectory. (b) Closed trajectory (electron like). (c) Closed trajectory (hole like)
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The corresponding angular frequency is the so-called cyclotron frequency. It reads

ωc = 2π
T

= eB
mc

, (8.5.10)

with the cyclotron mass

mc = ℏ2

2π
dSE(k)
dE

. (8.5.11)
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Figure 8.7: Motion of an electron on a closed loop in k-space in the presence of a static magnetic
field.

Example: Free electrons in a magnetic field
For free electrons, the trajectory in k-space is a circle and SE(k) = πk2. With dSE(k)

dE
= 2πm

ℏ2

we find that ωc = eB
m
.

The cyclotron frequency can be measured by the resonant absorption of an incident mi-
crowave electric field. A prerequisite for these experiments is that the electrons can
perform several periods before being scattered. For that reason, cyclotron resonance
experiments require strong magnetic fields and the cooling of the sample to low tempera-
tures. The microwave has to be polarized perpendicular to the magnetic field. Resonant
absorption of energy from the microwave occurs if its frequency coincides with the cy-
clotron frequency. A discussion of this method is given by G. Dresselhaus et al. in Phys.
Rev. 98, 368 (1955).

8.6 Boltzmann transport theory

In thermal equilibrium, the distribution of the electrons over the available electronic states
is governed by the Fermi-Dirac distribution function:

f0[E(k)] = 1
e[E(k)−µ]/kBT + 1 . (8.6.1)

107



8 Electronic transport

By applying either an external electric field E , an external magnetic field B, a tempera-
ture gradient ∇rT , or a gradient of the chemical potential ∇rµ to the sample, the state
of equilibrium is disturbed. Consequently, the electron distribution function f(r,k, t) de-
viates from the equilibrium distribution function f0. This is a prerequisite for transport
of carriers.

8.6.1 Linearized Boltzmann equation

To derive the electron distribution function f(r,k, t), we neglect in the first instance
scattering of the electrons. In that case, the phase space coordinates of an electron
change during the time dt from (r − vdt,k + e

ℏ (E + v × B) dt) to (r,k). As a result, the
electron distribution function has to satisfy the condition

f(r,k, t) = f
(

r − vdt,k + e

ℏ
(E + v × B) dt, t− dt

)
. (8.6.2)

In the next step, we account for scattering processes by adding a correction term:

f(r,k, t) = f
(

r − vdt,k + e

ℏ
(E + v × B) dt, t− dt

)
+
(
∂f

∂t

)
s

dt. (8.6.3)

Expansion of f
(
r − vdt,k + e

ℏ (E + v × B) dt, t− dt
)

up to linear order in dt leads to the
so-called Boltzmann equation:

∂f

∂t
+ v · ∇rf − e

ℏ
(E + v × B) · ∇kf =

(
∂f

∂t

)
s

. (8.6.4)

In the following, we restrict ourselves to the stationary state (∂f/∂t = 0) and assume
that the corresponding distribution function f(r,k) does not significantly differ at each
position r from the value of the equilibrium distribution function f0(E(k), T (r), µ(r)).
For further analysis, it is convenient to define

g(r,k) = f (r,k) − f0 (E(k), T (r), µ(r)) . (8.6.5)

Upon substitution of g(r,k) in the Boltzmann equation (8.6.4), we obtain

(
∂f

∂t

)
s

= v ·
(
∂f0

∂T
∇rT + ∂f0

∂µ
∇rµ

)
+ v · ∇rg

− e

ℏ
(E + v × B) · ∇kf0 − e

ℏ
(E + v × B) · ∇kg. (8.6.6)

The term e
ℏE · ∇kg leads to deviations from Ohm’s law [O(E2)] and is hence neglected in

the following. With ∇kf0 = ∂f0
∂E

∇kE = ∂f0
∂E

ℏv, ∂f0
∂T

=
(
−∂f0

∂E

)
E−µ

T
, and ∂f0

∂µ
=
(
−∂f0

∂E

)
, we
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obtain the linearized Boltzmann equation
(
∂f

∂t

)
s

=
(
∂f0

∂E

)
v ·

[
−e

(
E + ∇rµ

e

)
− E − µ

T
∇rT

]
+v · ∇rg − e

ℏ
(v × B) · ∇kg. (8.6.7)

For the scattering term, we introduce a relaxation time ansatz:(
∂f

∂t

)
s

= −f (r,k) − f0 (E(k), T (r), µ(r))
τ(k) = −g(r,k)

τ(k) . (8.6.8)

Here, τ(k) characterizes the time it takes for the electronic distribution function to return
to the equilibrium value once the external perturbation is switched off.

As an instructive example, we consider the case of a homogeneous medium to which we
apply an external electric field E . We assume that there is no external magnetic field and
that both the temperature as well as the chemical potential are constant. With these
assumptions (∇rg = ∇rT = ∇rµ = B = 0), equation (8.6.7) simplifies to:

g(k) =
(
∂f0

∂E

)
e τ(k) v · E (8.6.9)

Solving for f(k), we find:

f(k) = f0(k) + e

ℏ
τ(k)E · ∇kf0. (8.6.10)

This equation can be regarded as an expansion of f(k) about the point k:

f(k) ≃ f0

(
k + e

ℏ
τ(k)E

)
. (8.6.11)

Under the influence of the external electric field, the electron distribution function becomes
a Fermi distribution shifted by δk = − e

ℏτ(k)E from the origin (see Fig. 8.8).

8.6.2 Transport equations

In this section we consider transport phenomena which result from deviations of the
electronic distribution function from its equilibrium value. On this occasion, we restrict
ourselves to homogeneous media and assume that no external magnetic field is applied
(∇rg = B = 0). In this case, the linearized Boltzmann equation can be written as:

g(k) =
(

−∂f0

∂E

)
τ(k) v(k) · A, (8.6.12)

with

A = −e
(

E + ∇rµ

e

)
− E − µ

T
∇rT = −eE ′ − E − µ

T
∇rT. (8.6.13)
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Figure 8.8: Effect of an electric field on the electron distribution function.

Current density

According to equation (8.4.1), the current density is given by:

jq = −e
4π3

∫
v(k)f(k) d3k

= −e
4π3

∫
v(k)g(k) d3k

= −e
4π3

∫ ∫ [
−∂f0

∂E

]
τ(k) v(k) [v(k) · A] dSE

ℏ|v(k)|dE. (8.6.14)

Here, we have replaced in the last step
∫
d3k by

∫ ∫ dSE

ℏ|v(k)|dE. Substitution of equation
(8.6.13) into equation (8.6.14) yields:

jq =
(

e2

4π3ℏ

∫ ∫ [
−∂f0

∂E

]
τ(k) v(k)v(k)

|v(k)| dEdSE

)
· E ′ +(

−e
4π3ℏ

∫ ∫ [
−∂f0

∂E

]
[E(k) − µ] τ(k) v(k)v(k)

|v(k)| dEdSE

)
· −∇rT

T

= L̂11E ′ + L̂12 −∇rT

T
, (8.6.15)

In the last step, we have introduced for later reference the transport coefficients L̂11 and
L̂21, respectively. In general, these transport coefficients are second-order tensors.

For kBT ≪ EF , the Fermi distribution f0 can be approximated by a step function and
we obtain:

∂f0(k)
∂E

≈ −δ(E − EF ). (8.6.16)
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Hence, equation (8.6.15) simplifies to a surface integral over the Fermi surface

jq =
(

e2

4π3ℏ

∫
EF

τ(k) v(k)v(k)
|v(k)| dSE

)
· E ′

+
(

−e
4π3ℏ

∫
EF

[E(k) − µ] τ(k) v(k)v(k)
|v(k)| dSE

)
· −∇rT

T
. (8.6.17)

In what follows, we restrict our analysis to homogeneous media with constant temperature
(∇rT = 0) and consider that the electric field is applied in the êx-direction [E ′ = (E ′

x, 0, 0)].
The êx-component of the current density is then given by:

jq,x =
(

e2

4π3ℏ

∫
EF

τ(k) v2
x(k)

|v(k)| dSE

)
E ′

x. (8.6.18)

In general, vx(k) and τ(k) vary over the Fermi surface. However, for reasons of mathe-
matical simplicity, we assume that these quantities are only weakly dependent on k such
that we can take an average value v(EF )τ(EF )/3 outside the integral. Furthermore, we
assume that the conduction band is parabolic such that

v(EF ) = ℏkF

m∗ , (8.6.19)

where m∗ is the effective mass of the electrons in the conduction band. The integral over
the Fermi surface yields:∫

EF

dSE = 4πk2
F . (8.6.20)

For kBT ≪ EF , the Fermi wavevector is connected with the density of electrons via

k3
F = 3π2n. (8.6.21)

This finally allows us to write the current density as

jq,x = σE ′
x, (8.6.22)

with

σ = e2τ(EF )
m∗ n. (8.6.23)

Note that this result formally agrees with the result of the Drude model. However, there
is an important difference: In the Drude model, all conduction electrons are equally
important for the electric current density. Here however, only the electrons at the Fermi
level are relevant.
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Thermal current density

Next, we consider the thermal current density. The heat transported by an electron is
given by the difference between its inner energy E(k) and the chemical potential µ. Hence,
the thermal current density can be written as

jt = 1
4π3ℏ

∫
[E(k) − µ] v(k)g(k) d3k

=
(

−e
4π3ℏ

∫ ∫ [
−∂f0

∂E

]
[E(k) − µ] τ(k) v(k)v(k)

|v(k)| dEdSE

)
· E ′ +(

1
4π3ℏ

∫ ∫ [
−∂f0

∂E

]
[E(k) − µ]2 τ(k) v(k)v(k)

|v(k)| dEdSE

)
· −∇rT

T

= L̂21E ′ + L̂22 −∇rT

T
, (8.6.24)

where L̂21 and L̂22 are the corresponding transport coefficients. The last equation shows
that the thermal current density is driven either by an external electric field or by a
gradient of the temperature.

8.6.3 Thermoelectric effects

In the following, we want to take a closer look at effects that allow for a direct conversion
of a temperature difference into an electric voltage and vice versa. Historically, such
thermoelectric effects are described by the following set of equations:

E ′ = ρ̂jq + Ŝ∇rT, (8.6.25)
jt = Π̂jq − κ̂∇rT. (8.6.26)

Here, ρ̂ is the electric resistivity, Ŝ is the so-called Seebeck coefficient, Π̂ is the so-called
Peltier coefficient, and κ̂ is the thermal conductivity. In general, all these quantities are
second-order tensors.

The transport equations derived within the the framework of the Boltzmann transport
theory read (see equations (8.6.15) and (8.6.24)):

jq = L̂11E ′ + L̂12 −∇rT

T
, (8.6.27)

jt = L̂21E ′ + L̂22 −∇rT

T
. (8.6.28)
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One can easily show that the following relations between the different coefficients hold:

ρ̂ =
(
L̂11

)−1
, (8.6.29)

Ŝ = 1
T

(
L̂11

)−1
L̂12. (8.6.30)

Π̂ = L̂21
(
L̂11

)−1
, (8.6.31)

κ̂ = 1
T

[
L21

(
L̂11

)−1
L̂12 + L̂22

]
. (8.6.32)

Seebeck effect

Consider the thermocouple circuit depicted in Fig. 8.9. A wire made from metal A is
connected to two wires made from metal B. The temperature at the contact points 1 and 2
is T1 and T2, respectively. The free ends of the two wires both have the same temperature
T0 and are connected to a voltage meter.

T
0

T
0

U

T
2

T
1

Metal A

Metal B

Metal B

1

2

Figure 8.9: Thermocouple circuit to demonstrate the Seebeck effect.

The reading of the voltage meter is given by the integral of the electric field along the
circuit:

U =
∫ 1

0
EBds+

∫ 2

1
EAds+

∫ 0

2
EBds =

∫ 1

2
EBds+

∫ 2

1
EAds. (8.6.33)

Since the voltmeter has a very large resistance, there is no current flowing in the circuit
(jq = 0). In this case, the electric fields can be written as

EA = SA
∂T

∂s
and EB = SB

∂T

∂s
. (8.6.34)

Here, SA and SB are the Seebeck coefficients of metal A and metal B, respectively.

Substitution of EA and EB in equation (8.6.33) yields

U =
∫ 1

2
SB

∂T

∂s
ds+

∫ 2

1
SA

∂T

∂s
ds =

∫ T2

T1
(SA − SB)dT. (8.6.35)

113
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Hence, the voltage U is a function of the temperature difference of the two contact points
and the difference of the Seebeck coefficients of the two metals.

This so-called Seebeck effect can be used for temperature measurements. In that case, one
of the contacts of the thermocouple is kept at a fixed, known temperature. The voltage
U then depends only on the temperature of the other contact.

Peltier effect

Next, we discuss the so-called Peltier effect. For this purpose we consider the circuit
depicted in Fig. 8.10. Unlike to the previous section, we assume that the temperature
is initially constant throughout the circuit. A battery drives an electric current through
the wires. According to equation (8.6.26), the electric current density jq is accompanied
by a thermal current density jt,A = ΠAjq in the wire made from metal A and a thermal
current density jt,B = ΠBjq in the wires made from metal B. Hence, the thermal current
density is discontinuous at the contacts. This jump results in the liberation of heat at
one contact point and absorption of heat at the other one. In other words, one contact
becomes hot while the other one cools down.

Metal A

Metal B

Metal B

1

2

jqjq

j =( - )t BΠ ΠA qj

j =( - )t A BΠ Π jq

Figure 8.10: Circuit to demonstrate the Peltier effect.

In practice, Peltier elements are usually not made from metals but doped semiconductors
(see next chapter). They can be used for example to cool CCD chips in scientific grade
cameras.

Wiedemann-Franz law

The thermal conductivity κ̂ can be written in terms of the transport coefficients as

κ̂ = 1
T

[
L21

(
L̂11

)−1
L̂12 + L̂22

]
. (8.6.36)
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Figure 8.11: Peltier element (image source: Wipipedia).

In typical metals, the second term is much larger than the first one. Hence, we can
approximate the thermal conductivity of metals by

κ̂ = L̂22

T
. (8.6.37)

The transport coefficient L̂22 is defined by an integral of the form
∫
K(E) (−∂f0/∂E) dE.

With the Sommerfeld expansion

∫
K(E)

(
−∂f0

∂E

)
dE = K(µ) + (kBT )2π

2

6

(
∂2K(E)
∂E2

)
E=µ

+ O
(
kBT

µ

)4

, (8.6.38)

we find that

L̂22 ≈ π2

3
(kBT )2

e2 σ̂. (8.6.39)

Here, σ̂ is the electric conductivity of the metal. Substitution of equation (8.6.39) into
(8.6.37) leads to the so-called Wiedemann-Franz law:

κ̂ = π2

3
k2

BT

e2 σ̂. (8.6.40)

8.7 Scattering of electrons

In this section we qualitatively discuss the different electron scattering processes, i.e.,
scattering from static defects in the lattice, electron-phonon scattering, and electron-
electron scattering. We assume that the different scattering processes are independent
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from each other. Since the scattering probability of a process is inversely proportional to
the corresponding relaxation time, we obtain for the total relaxation time τ :

1
τ

= 1
τdef

+ 1
τph

+ 1
τee

. (8.7.1)

Here, τdef , τph, and τee are the average times between scattering from defects, from
phonons, and from other electrons, respectively.

• The scattering of an electron from a static defect is an elastic process. Hence, the
wavevector of the electron changes its direction (from k to k′) but not its magnitude
(|k| = |k′|). In an elastic scattering process, the momentum is conserved:

ℏk = ℏk′ + ℏK. (8.7.2)

Here, ℏK is the momentum that is transferred to the whole crystal during the
scattering process. Electron scattering from a static defect results in a temperature
independent relaxation time τdef .

• The scattering of an electron from a phonon is an inelastic process. Quasi-
momentum conservation requires, that

ℏk = ℏk′ ± ℏq + ℏG. (8.7.3)

Here, q is the wavevector of the phonon and G is a reciprocal lattice vector. Scatter-
ing events with G = 0 are normal processes while G ̸= 0 corresponds to an umklapp
process (compare with section 5.4.2 ). For temperatures T > ΘD, the scattering
probability is proportional to the number of phonons. Hence, the relaxation time
τph scales as 1/T .

• Electron-electron scattering is an effect which goes beyond the one-electron approx-
imation. Because of the high density of electrons, one might assume that electron-
electron scattering is a very efficient process in metals. However, we will see below
that because of the Pauli exclusion principle, the probability of electron-electron
scattering is very small.

Let us consider a metal with N electrons inside the Fermi sphere plus a single
electron in state |1> with quasi momentum k1 and energy E1(k1) = EF + δE,
where δE ≪ EF . Next, we assume that this electron scatters with another electron
in state |2> with quasi momentum k2 and energy E2(k2). Since only states with
E(k2) ≤ EF are occupied, we find that E2(k2) ≤ EF . In contrast, the states |3> and
|4> in which the two electrons scatter must be unoccupied so that E3(k3) > EF and
E4(k4) > EF . Furthermore, energy conservation and quasi moment conservation
dictate that

E1(k1) + E2(k2) = E3(k3) + E4(k4) (8.7.4)
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kx

ky

kF

E(k)=EF

|4>

|1>

|2>
|3>

k4

k3

k2 k1

Figure 8.12: Electron-electron scattering process.

and

k1 + k2 = k3 + k4 + G, (8.7.5)

respectively.

Since E3 +E4 > 2EF , we can conclude that the energy of state |2> must be in the
interval ]EF − δE,EF ], i.e., state |2> lies in a shell with width δE below the Fermi
level. The fraction of electrons δN/N , whose energy falls in this interval, is given
by

δN

N
= 4πk2

F δk
4
3πk

3
F

∝ δk

kF

. (8.7.6)

With δk = 2m
ℏ2

δE
kF

, we find that only the fraction δN
N

= δE
EF

of all occupied electron
states comes into question as scattering partner of electron |1>. Furthermore, energy
conservation requires that the energies of states |3> and |4> must fall in the interval
]EF , EF + δE]. An analog argument shows that only the fraction δN

N
= δE

EF
of all

states with energy smaller than or equal to EF + δE fulfills this condition. All in
all, we can conclude that the scattering rate of electron-electron scattering reads

1
τee

= 1
τ 0

ee

(
δE

EF

)2

, (8.7.7)

where 1
τ0

ee
is the scattering rate that would be effective without validity of the Pauli

principle. Since δE is in the order of kBT , we can conclude that the Pauli principle
extremely reduces the probability of electron-electron scattering.
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The resistivity is given by:

ρ = 1
σ

= m∗

e2nτ
. (8.7.8)

With equation (8.7.1), we get:

ρ = ρdef + ρph = m∗

e2nτdef

+ m∗

e2nτph(T ) . (8.7.9)

This formula is known as the Matthiesen’s rule. For low temperatures, one expects a
constant resistivity due to scattering from static impurities.

Figure 8.13: Relative resistivity (ρ(T )/ρ(290K))) of sodium for three different samples. Adopted
from: D. K. C. MacDonald and K. Mendelssohn, Proceedings of the Royal Society
of London. Series A, Mathematical and Physical Sciences, 202, 103 (1950).

8.8 Electron transport in a quantum wire

In the following, we consider electric transport along a quantum wire (x-axis), which
connects two electron reservoirs with chemical potentials µ1 and µ2, respectively. At this,
we assume that the free mean path of the electrons is much longer than the length of
the quantum wire such that the transport within the quantum wire is ballistic. Hence,
all electrons which enter the quantum wire from the left or the right are transmitted
with unity probability. The drop in the chemical potential ∆µ = µ1 − µ2 happens at the
contacts of the quantum wire with the reservoirs. In this situation, the right-moving and
the left-moving electrons have different chemical potentials. Furthermore, we assume that
the confinement in y- and z direction is such that only the states E(kx, ny = 1, nz = 1)
in the lowest subband contribute to the transport (see section 6.8).
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Figure 8.14: Top: Scheme of a quantum wire attached to two electron reservoirs with chemical
potentials µ1 and µ2, respectively. Bottom: Chemical potential as a function of the
coordinate x.

The current in the wire is given by

Iq = −e 2
L

∑
occupied

ℏ (kr − kl)
m

, (8.8.1)

where kr and kl are the wave vectors of the electrons moving to the right and to the left,
respectively. Next we replace the sum by an integral and write

Iq = − 2e
2π

∫ ∞

0

ℏk
m

[fr(k) − fl(k)] dk. (8.8.2)

Here, the factor 2 takes the spin degree of freedom into account. fr(k) and fl(k) are the
occupation functions of the right- and left-moving electrons, respectively. Using dk =
dE/ℏvk and vk = ℏk/m, the current through the wire can be expressed as

Iq = − 2e
2πℏ

∫ ∞

0
[f(E − µ1) − f(E − µ2)] dE. (8.8.3)

With
∫∞

0 [f(E − µ1) − f(E − µ2)] dE = µ1 − µ2 = (−e)U , we finally obtain

Iq = 2e
2

h
U. (8.8.4)

This results shows that the ballistic transport through a quantum wire leads to a finite
resistance of

R = 1
2
h

e2 . (8.8.5)
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The quantity RQ = 2R = h
e2 = 25812.807557Ω is called the resistance quantum.

Despite of its simplicity, this model can be used to describe for example the electronic
transport through a single carbon nanotube [S. Frank et al., Carbon Nanotube Quantum
Resistors, Science 280, 5370 (1998)].

120



9 Semiconductors

Semiconductor materials are of great technological importance. A distinct feature is that
the conductivity of semiconductor materials can be altered in a wide range by introducing
impurities in a controlled way. This forms the basis for semiconductor junctions such as
diodes, transistors and integrated circuits.

9.1 Band structure of direct and indirect semiconductors

The characteristic feature of a semiconductor is the energy gap EG that separates the
valence band (VB) from the conduction band (CB). The size of the band gap is in the
range of EG = 0.1 . . . 4 eV . Materials with a larger band gap are by definition insulators.
Depending on the respective positions of the maximum of the valence band and the
minimum of the conduction band in the Brillouin zone, semiconductors can be divided in
two groups:

• Direct semiconductor (e.g. GaAs): Minimum of the CB and maximum of the VB
are at the same position in the Brillouin zone.

• Indirect semiconductor (e.g. Si): Minimum of the CB and maximum of the VB lie
at different positions in the Brillouin zone.

In the vicinity of the extrema of the CB and VB, respectively, the band structure E(k)
can be expressed in the parabolic approximation (only terms up to oder k2 are kept).
The surfaces of constant energy are ellipsoids. Within the parabolic approximation the
dispersion of the conduction band can be written as:

ECB(k) = Ec + ℏ2
[
k2

x + k2
y

2m∗
t

+ k2
z

2m∗
l

]
. (9.1.1)

Here, m∗
t and m∗

l are the so-called transverse and longitudinal effective mass, respectively.
Ec is the energy of the conduction band minimum. For Si, the ratios of the effective masses
and the free electron mass m are given by m∗

t

m
= 0.19 and m∗

l

m
= 0.98, respectively.

The bandstructure in the vicinity of the VB maximum is usually more complicated than
suggested by Fig. 9.1. Two bands with different curvatures meet at the VB maximum.
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Figure 9.1: Scheme of the bandstructure of (a) GaAs and (b) Si. Adopted from Wikipedia.

These bands are called the heavy hole band and the light hole band. The corresponding
effective masses are given by m∗

hh and m∗
lh, respectively (see Fig. 9.2). A third band,

the so-called split-off band, with effective mass m∗
soh is lowered by the split-off energy ∆

from the other two bands due to spin-orbit interaction. The values for Si and GaAs are
presented in table 9.1.

m∗
hh/m m∗

lh/m m∗
soh/m ∆(eV )

Si 0.49 0.16 0.23 0.044
GaAs 0.45 0.082 0.17 0.34

Table 9.1: Effective masses and split-off energy of Si and GaAs. Source: Hunklinger, Festkör-
perphysik.

9.2 Charge carrier density in intrinsic semiconductors

In what follows, we assume that the dispersion relations in the vicinity of the CB minium
and the VB maximum, respectively, are given by:

ECB(k) = Ec + ℏ2k2

2mc

(9.2.1)

EV B(k) = Ev − ℏ2k2

2mv

. (9.2.2)
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Figure 9.2: Scheme of the bandstructure in the vicinity of the VB maximum.

Here, Ec is the energy of an electron at the CB minimum, Ev is the energy of an electron
at the VB maximum, mc is the effective mass of an electron near the CB minimum, and
mv is the effective mass of an electron near the VB maximum.

The densities of states of the conduction band and the valence band are given by

Dc = (2mc)3/2

2π2ℏ3

√
E − Ec with E ≥ Ec, (9.2.3)

Dv = (2mv)3/2

2π2ℏ3

√
Ev − E with E ≤ Ev. (9.2.4)

The density of states within the energy gap is zero.

In thermal equilibrium, the occupation of the electronic states is governed by the Fermi-
Dirac distribution:

f(E) = 1
exp [(E − EF ) /kBT ] + 1 . (9.2.5)

For undoped semiconductors, the Fermi energy EF lies within the energy gap (see below).
For E−EF ≫ 2kBT , the Fermi-Dirac distribution can be approximated by the Boltzmann
distribution:

f(E) = 1
exp [(E − EF ) /kBT ] + 1 ≈ exp

(
−E − EF

kBT

)
≪ 1. (9.2.6)

The density of electrons in the conduction band follows from

n =
∫ ∞

Ec

f(E)Dc(E)dE. (9.2.7)
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With equations (9.2.3) and (9.2.6), the electron density n can be written as

n = (2mc)3/2

2π2ℏ3 e
EF

kBT

∫ ∞

Ec

√
E − Ec e

− E
kBT dE. (9.2.8)

Substituting X = (E − Ec)/kBT , we obtain:

n = (2mc)3/2

2π2ℏ3 (kBT )3/2 e
− Ec−EF

kBT

∫ ∞

0

√
X e−X dX︸ ︷︷ ︸

√
π

2

, (9.2.9)

= 2
(
mckBT

2πℏ2

)3/2

e
− Ec−EF

kBT . (9.2.10)

The corresponding density of holes in the valence band is given by:

p =
∫ Ev

−∞
Dv(E) [1 − f(E)] dE. (9.2.11)

After a short calculation, we find:

p = 2
(
mvkBT

2πℏ2

)3/2

e
Ev−EF

kBT . (9.2.12)

Next, we define the so-called effective densities of states for the electrons and holes,
respectively:

Nc = 2
(
mckBT

2πℏ2

)3/2

, (9.2.13)

Nv = 2
(
mvkBT

2πℏ2

)3/2

. (9.2.14)

The product of the electron and hole concentrations is given by the so-called law of mass
action:

np = n2
i = NcNve

−
(

Eg
kBT

)
= 4

(
kBT

2πℏ2

)3

(mcmv)3/2 e
−
(

Eg
kBT

)
. (9.2.15)

For an intrinsic semiconductor, charge neutrality demands that

n = p. (9.2.16)

The intrinsic charge carrier concentration can be thus calculated as:

ni = pi =
√
NcNv e

−
(

Eg
2kBT

)
= 2

(
kBT

2πℏ2

)3/2

(mcmv)3/4 e
−
(

Eg
2kBT

)
. (9.2.17)
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For Si at room temperature (300 K), the intrinsic carrier concentration is ni = 1.5 ×
1010cm−3.

The Fermi-level EF (T ) takes the value for a given temperature T such that the charge
neutrality condition is fulfilled. With

n = p = Nc e
− Ec−EF

kBT = Nv e
Ev−EF

kBT , (9.2.18)

we obtain

EF (T ) = Ec + Ev

2 + kBT

2 ln
(
Nv

Nc

)
= Ec + Ev

2 + 3kBT

4 ln
(
mv

mc

)
. (9.2.19)

9.3 Optical absorption in semiconductors

Optical absorption spectroscopy provide access to many essential electronic properties of
semiconductors. In particular, it can be utilized to determine the size of the electronic
band gap EG. Below, we discuss electronic transistions in a semiconductor between the
valence and the conduction band caused by light absorption. In doing so, we assume that
the temperature is low enough such that valence band is essentially completly filled and
the conduction band is empty.

ħω

k

E(k) CB

VB

ħΩ

k

E(k)
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k

E(k)
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q

(a) (b) (c)

EVB

ECB

EVB EVB

ECB ECB

Figure 9.3: Near-band gap transitions in (a) a direct semiconductor, (b) in an indirect semicon-
ductor with phonon absorption, and (c) in an indirect semiconductor with phonon
emission.

9.3.1 Direct semiconductors

We first consider interband transitions in the case of direct semiconductor. In the funda-
mental transition process, a photon with energy ℏω of the incident light field is absorbed
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9 Semiconductors

and an electron is excited from a state with energy EV B in the valence band to a state
with energy ECB in the conduction band (see Fig. 9.3 (a)). We can consider this process
as the creation of an electron-hole pair, where the hole corresponds to the now empty
electronic state in the valence band and the electron occupies a state in the conduction
band. Conservation of energy demands that

ECB − EVB = ℏω. (9.3.1)

Obviously, light can only be absorbed if ℏω ≥ EG. For smaller photon energies, the
semiconductor is transparent.

A second condition follows from the conservation of momentum:

ℏkCB − ℏkVB = ℏkγ. (9.3.2)

Here, ℏkVB and ℏkCB are the crystal momentum of the electron before and after the
transition, respectively, and ℏkγ is the photon momentum. For optical frequencies, the
photon wave vector is much smaller than the size of the Brillouin zone. Hence, we can
neglect the photon momentum and the crystal momentum of the electron essentially does
not change during a direct interband transition:

ℏkCB = ℏkVB. (9.3.3)

In the E−k diagram, interband transitions are therefore represented by vertical arrows.

Herafter, we assume that the bands have parabolic shapes in the vicinity of the conduction
band minium and the valence band maximum. In this case, we can rewrite equation (9.3.1)
as:

ℏω = ECB(k) − EVB(k) = Ec + ℏ2|k|2

2mc

− Ev + ℏ2|k|2

2mv

= EG + ℏ2|k|2

2µ , (9.3.4)

where the reduced electon-hole mass µ is defined by

1
µ

= 1
mc

+ 1
mv

. (9.3.5)

The excitation rate Wk for a certain k-point follows from Fermi’s golden rule:

Wk = 2π
ℏ

|⟨c|Hd|v⟩|2δ(ECB(k) − EVB(k) − ℏω). (9.3.6)

Here, ⟨c|Hd|v⟩ is the matrix element of the perturbation Hamiltonian for the electromag-
netic interaction between the two states. The total excitation rate can be calculated by
integration over all k-points:

W = 2π
ℏ

∫
|⟨c|Hd|v⟩|2 2

8π3 δ(ECB(k) − EVB(k) − ℏω)d3k. (9.3.7)
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In the following we assume that the matrix element is independent of k. This allows us
to write the excitation rate per unit volume as

W = 2π
ℏ

|⟨c|Hd|v⟩|2Dj(ℏω), (9.3.8)

where we have introduced the joint density of states

Dj(ℏω) = 2
8π3

∫
δ(ECB(k) − EvV B(k) − ℏω)d3k. (9.3.9)

With

d3k = dSdk⊥ = dS

[
d(ECB − EVB)

∇k(ECB − EVB)

]
(9.3.10)

we obtain after integration over d(ECB − EVB):

Dj(ℏω) = 2
8π3

∫
S

1
|∇k(ECB − EVB)|ECB−EVB=ℏω

dS. (9.3.11)

After a short calculation we obtain:

Dj(ℏω) =
 0 for ℏω < Eg

(2µ)3/2

2π2ℏ3

√
ℏω − Eg for ℏω ≥ Eg

(9.3.12)

The absorption coefficient α(ℏω) characterizes the attuantion of the light intensity I(ℏω)
inside of a material along the propagation path. It is defined as

α(ℏω) = −1
I

dI

dz
. (9.3.13)

For a direct semiconductor, we expect that

α(ℏω) ∝ Dj(ℏω) ∝
√
ℏω − Eg. (9.3.14)

9.3.2 Indirect semiconductors

In the case of an indirect semiconductor, the minimum of the conduction band and the
maximum of the maximum of the valence band lie at different positions in the Brillouin
zone. Hence, one can not fullfill simultaneously momentum and energy conversion in
interband transitions that invole only a photon and an electron. For this reason, near-
band gap transitions in indirect semiconductors additionally require either the absorption
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9 Semiconductors

or emission of a phonon with energy ℏΩ and momentum ℏq (see Fig. 9.3 (b) and (c)).
Conservation of energy and momentum demand that:

ECB = EVB + ℏω ± ℏΩ (9.3.15)
ℏkCB = ℏkVB ± ℏq. (9.3.16)

Here, the + and − sign correspond to the absorption and emission of a phonon, respec-
tively.

The involvement of phonons in the transition process makes the absorption of light in
indirect semiconductors inefficient. Hence light with a photon energy close to the band
gap can typically penetrate deeper into a indirect semiconductor than in a direct semi-
condutcor with comparable band gap before being absorbed.

9.4 Excitons

In the previous section we discussed that light absorption is only possible for photon
energies ℏω ≥ Eg. However, in low-temperature absorption experiments with direct
semiconductors one often finds features in the absorption spectrum below Eg. The reason
of this apparent contradiction is that we have neglected so far the Coulomb interaction
between the electron and the hole. In a first approximation, we can treat a bound electron-
hole pair, a so-called exciton, as a hydrogen like atom with binding energy

En = − µ

m0

1
ϵ2

r

RH

n2 , (9.4.1)

where m0 is the free electron mass, ϵr is the dielectric permittivity of the semiconductor
and RH is the Rydberg constant. The first factor accounts for the effective masses of the
electon and the hole in the semiconductor. The second factor treats the semiconductor
as a homogeneous dielectric material. Both factors greatly reduce the binding energy of
excitons compared to hydrogen. Expermentally one finds that typical exciton binding
energies in direct bulk semiconductors are in the order of a few meV to a few tenth of
meV.

Excitons can be observed in many solid state systemes. Depending on the size of the
dielectric constant ϵr, one distinguishes two types of excitons:

• Wannier-Mott type excitons are found in materials with large ϵr, e.g., semicon-
ductors. Strong screening leads to small binding energies and large Bohr-radii.
Wannier-Mott excitons are hence delocalized and can move freely through the crys-
tal.
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9.4 Excitons

• Frenkel excitons occure in materials with small ϵr, e.g., molecular crystals. They
have an extend comparable to the unit-cell size and are tightly bound.

Electron

Hole

Wannier-Mott exciton

Electron

Hole

Frenkel exciton

Figure 9.4: Wannier-Mott and Frenkel excitons.

Excitons can be also found in two-dimensional transition metal dichalcogenide (TMD)
semiconductors, e.g., MoS2, MoSe2, and WS2. In these monolayers the dielectric screen-
ing is strongly reduced such that excitons can be observed in optical experiments, e.g.,
reflection measurements, even at room temperature (see Fig. 9.5).
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Figure 9.5: A-Exciton resonance of WS2 at room temperature.
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9.5 Doping of semiconductors

The free carrier concentration in semiconductors can be in increased by doping, i.e, by
the addition of electrically active impurities to the semiconductor. In this connection, one
distinguishes between two types of impurities:

• Impurities which increase the number of electrons in the conduction band are called
donors.

• Impurities which increase the number of holes in the valence band are called accep-
tors.

Commonly used doping techniques are diffusion doping and ion implantation. Diffusing
doping results in a montonically decreasing dopant concentration away from the surface
while ion implantation results in a non-monotonic profile (see Fig. 9.6 ).

Figure 9.6: Doping methods.

In what follows, we will discuss doping using the example of a Si crystal. Here, each Si
atom is covalently bound to four neighboring Si atoms. A donor is created by replacing
a Si atom by a valence-five atom such as P. Four of the five valence electrons of the P
atom are required to bind the P atom in the crystal. The fifth electron, however, “finds
no partner” and is only weakly bound to the positively charged donor core. Because of its
small binding energy, the fifth electron can be easily promoted to the conduction band.

To estimate the binding energy Ed of the fifth electron, we again use a simple hydrogen-
atom model in which we replace the free electron mass m by the effective mass m∗ and
include the screening effect of the surrounding Si via the dielectric constant ϵr:

Ed = −1
2

m∗e4

(4πϵrϵ0)2 ℏ2

1
ν2 = EH,ν

m∗

mϵ2
r

. (9.5.1)
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Figure 9.7: Scheme of two commonly used doping techniques.

Here, ν is the principal quantum number and EH,ν is the corresponding energy level of
the hydrogen atom.

The ionization energy of the ν = 1 level of a hydrogen atom is 13.6 eV. For the P atom in
silicon, we find with m∗ = 0.3m and ϵr = 11.7, that the ionization energy is in the order
of 30 meV . The modified Bohr radius of the electron in the Si crystal is given by

r = 4πϵ0ϵrℏ2

m∗e2 = a0ϵr
m

m∗ , (9.5.2)

where, a0 is the Bohr radius of the hydrogen atom. For the values mentioned above, we
find r ≈ 2 nm. This value is considerably larger than the interatomic separation between
two Si atoms in the crystal (0.23 nm). This is an a posteriori justification of the use of
the dielectric constant to describe screening.

Replacing a Si atom by a valence-three atom such as B creates an acceptor. Here, one
bond with a neighboring Si atom is unsatisfied. This unsatisfied bond can easily accept an
electron from the valence band. Formally, this process can be interpreted as the promotion
of a hole from the acceptor level to the valence band. The binding energy Ea of the hole
can be estimated in a calculation analogous to the case of a donor. Here, however, the
effective mass is that of a hole in the valence band.

9.6 Carrier densities in doped semiconductors

In the following, we want to calculate the densities of electrons and holes as well as the
value of the Fermi level for a doped semiconductor. Our starting point is the law of mass
action. When we derived the law of mass action, we did not specify whether the electrons
in the conduction band originate from the valence band or from a donor level. Similarly,
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Figure 9.8: Energy levels of donors and acceptors.

we made no assumptions about the origin of the holes in the valence band. Hence, the
law of mass action is also valid for doped semiconductors:

np = NcNve
−
(

Eg
kBT

)
. (9.6.1)

The total donor concentration ND is given by the sum of the concentrations of the neutral
donors N0

D and the ionized donors N+
D :

ND = N0
D +N+

D . (9.6.2)

Likewise, we can write the total acceptor concentration as

NA = N0
A +N−

A . (9.6.3)

Here, N0
A is the concentration of the neutral acceptors and N−

A is the concentration of
the ionized acceptors. The charge neutrality condition in the presence of acceptors and
donors reads:

n+N−
A = p+N+

D . (9.6.4)

The electron-occupation probability of the donor level can be calculated with the help of
the Fermi-Dirac distribution:

N0
D = ND

exp [(ED − EF ) /kBT ] + 1 . (9.6.5)

At this point, we neglect a slight complication that arises from the fact that the donor
level can be usually only occupied by a single electron. Similarly, the hole-occupation
probability of the acceptor level is given by

N0
A = NA

exp [(EF − EA) /kBT ] + 1 . (9.6.6)
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9.6 Carrier densities in doped semiconductors

In what follows, we consider a n-type semiconductor (NA = 0). In that case, electrons in
the conduction band originate either from the valence band or from donors:

n = N+
D + p = Nc e

− Ec−EF
kBT . (9.6.7)

As a further simplification, we assume that the effect of doping dominates over the intrinsic
carrier concentration:

n ≈ N+
D = ND −N0

D

= ND

(
1 − 1

exp [(ED − EF ) /kBT ] + 1

)
. (9.6.8)

The value of the Fermi level EF follows from equation (9.6.7):

e
EF

kBT = n

Nc

e
Ec

kBT . (9.6.9)

Substituting equation (9.6.9) in (9.6.8), we obtain:

n ≈ ND

1 + e
Ed

kBT n/NC

(9.6.10)

with

Ed = Ec − ED. (9.6.11)

This is a quadratic equation for n

n+ n2 e
Ed

kBT

Nc

≈ ND, (9.6.12)

which has the following physically meaningful solution:

n ≈ 2ND

(
1 +

√
1 + 4ND

Nc

e
Ed

kBT

)−1

. (9.6.13)

The corresponding hole concentration p follows from the law of mass action:

p = nipi

n
. (9.6.14)

The temperature behavior of the electron densisty and the Fermi-level shows the following
behaviour:
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• Freeze-out regime (low temperatures with 4ND

Nc
e

Ed
kBT ≫ 1) :

n ≈
√
NDNCe

− Ed
2kBT , (9.6.15)

EF (T ) ≈ EC − Ed

2 − kBT

2 ln
(
Nc(T )
ND

)
. (9.6.16)

• Saturation regime (intermediate temperatures with 4ND

Nc
e

Ed
kBT ≪ 1):

n ≈ ND = const. (9.6.17)

EF (T ) ≈ EC − kBT ln
(
Nc(T )
ND

)
. (9.6.18)

• Intrinsic regime (high temperatures):
n ≈ ni ≫ ND. (9.6.19)
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Figure 9.9: Qualitative temperature dependence of the carrier concentration n and the Fermi
energy EF of a n-type semiconductor.

9.7 Mobility of semiconductors

In thermal equilibrium, the average kinetic energy of a conduction electron in a semicon-
ductor can be estimated with the help of the theorem for equipartition of energy:

1
2m

∗v2
th = 3

2kBT. (9.7.1)
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The thermal velocity vth for Si at room temperature is in the order of 107 cm/s. Because
of its random nature, the thermal motion leads to a vanishing average displacement of
the electrons.

If we apply a small electric DC-field E , the electrons will acquire an additional velocity
component, the so called drift-velocity vd, which is superimposed on the thermal velocity.
This drift velocity is responsible for the net current density.

To calculate the drift velocity, we use the classical equation of motion:

m∗v̇ + m∗

τ
v = −eE . (9.7.2)

In steady state (v̇ = 0), the average electron velocity is the drift velocity:

vd = −eEτ
m∗ . (9.7.3)

The electron mobility b is defined by:

b = eτ

m∗ . (9.7.4)

Using this definition, we can write the drift velocity as

vd = −bE . (9.7.5)

So far, we have only considered electrons. The total current density results from the
motion of both electrons and holes. It is given by:

j = −envd,e + epvd,h = e (nbe + pbh) E . (9.7.6)

In what follows, we consider the temperature dependence of the electron mobility. The
hole mobility follows a similar trend and will not be explicitly discussed. The scattering
rate 1/τ is proportional to the average electron velocity ⟨v⟩ and the scattering cross section
Σ of the corresponding scattering process:

1
τ

∝ ⟨v⟩Σ. (9.7.7)

Since the drift velocity is usually much smaller than the thermal velocity for small field
strength, we find

⟨v⟩ ∝
√
T . (9.7.8)
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First, we will consider scattering of electrons from acoustic phonons. For this purpose,
we assume that the scattering cross section is proportional to the average vibrational
amplitude ⟨s2⟩ of a phonon. For temperatures above the Debye temperatue, one finds

Mω2⟨s2⟩ = kBT. (9.7.9)

Hence, we expect that the relaxation time due to scattering from acoustic phonons varies
as

1
τph

∝ ⟨v⟩Σph ∝ T 3/2. (9.7.10)

For the mobility, we thus obtain the estimate

bph ∝ T−3/2. (9.7.11)

Another important source of scattering in semiconductors is scattering from charged de-
fects (ionized donors or acceptors). Here, we assume that this process can be described
analogous to Rutherford scattering. The corresponding scattering cross section is propor-
tional to the inverse fourth power of the velocity:

Σdef ∝ ⟨v⟩−4. (9.7.12)

The inverse scattering time varies as

1
τdef

∝ T−3/2 (9.7.13)

and the mobility is proportional to

bdef ∝ T 3/2. (9.7.14)
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Figure 9.10: Qualitative temperature dependence of the electron mobility of a semiconductor.
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9.8 Continuity equation

In the previous section we considered the transport of carriers in homogeneous semicon-
ductor samples under the influence on an external electric field. Next, we additionally
allow for a gradient of the electron density and also include local generation and re-
combination processes. The latter are characterized by the generation rate Gn(x) and
recombination rate Rn(x), respectively. Inspection of Fig. 9.11 shows that the electron
number in the volume V = Adx changes with the rate

∂n

∂t
Adx =

[
jn(x)
−e

− jn(x+ dx)
−e

]
A+ (Gn(x) −Rn(x))Adx. (9.8.1)

With

jn(x+ dx) = jn(x) + ∂jn

∂x
dx (9.8.2)

we can rewrite equation (9.8.1) as

∂n

∂t
= 1
e

∂jn

∂x
+ (Gn(x) −Rn(x)) . (9.8.3)

Following a similar derivation for the holes, we can express the rate at which the concen-
tration of holes changes as

∂p

∂t
= −1

e

∂jp

∂x
+ (Gp(x) −Rp(x)) . (9.8.4)

x x+dx

j(x) j(x+dx)

Area A

G

R

Figure 9.11: Charge transport and generation and recombination processes in a slab of semicon-
ductor.

The current densities comprise two components: (i) the drift currents jdrift
n and jdrift

p

caused by the electric field and (ii) the diffusion currents jdiff
n and jdiff

p resulting from
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the charge carrier concentration gradients:

jn = jdiff
n + jdrift

n = e

(
Dn

∂n

∂x
+ nbnE

)
(9.8.5)

jp = jdiff
p + jdrift

p = e

(
−Dp

∂p

∂x
+ pbpE

)
. (9.8.6)

Here, Dn and Dp are the diffusion constants of the electrons and holes, respectively.

In the following, we consider the minority carriers, i.e., electrons in a p-type semiconductor
and holes in a n-type semiconductor. Using a relaxation time ansatz, the relaxation rates
of the electrons and holes can be written as

Rn(x) = np − np0

τn

(9.8.7)

Rp(x) = pn − pn0

τp

, (9.8.8)

where np0 and pn0 are the corresponding electron and hole densities at thermal equilibrium
and τn and τp are the relaxation times. The continuity equations for the minority carriers
then read:

∂np

∂t
= Dn

∂2np

∂x2 + bnE ∂np

∂x
+ npbn

∂E
∂x

+Gn − np − np0

τn

(9.8.9)

∂pn

∂t
= Dp

∂2pn

∂x2 − bpE ∂pn

∂x
− pnbp

∂E
∂x

+Gp − pn − pn0

τp

. (9.8.10)

9.8.1 Excess carrier injection at the surface

As a first example, we consider a n-type semiconductor which is illuminated on one side.
If the photon energy is larger than the electronic band gap, photons can be absorbed
and create additional electron-hole pairs. While the density of majority carriers is hardly
changed, the concentration of holes is increased at the interface. This results in a hole
concentration gradient in the interior of the semiconductor. Under steady state conditions,
the continuity equation reads

∂pn

∂t
= 0 = Dp

∂2pn

∂x2 − pn − pn0

τp

. (9.8.11)

With the boundary conditions pn(x = 0) = const and pn(x → ∞) = pn0, we obtain
pn(x) = pn0 + [pn(0) − pn0] e−x/Lp (9.8.12)

with the diffusion length Lp =
√
Dpτp.
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Figure 9.12: Concentration of holes in a n-type semiconductor which is illuminated on one side.

9.8.2 Photo conductor

Consider an intrinsic semiconductor that is uniformly illuminated with light. The total
charge carrier density of electrons n (holes p) is given by the sum of the charge carrier
density of electrons n0 (holes p0) in the absence of optical illumination and the density of
photogenerated excess electrons ∆n (holes ∆p):

n = n0 + ∆n, (9.8.13)
p = p0 + ∆p. (9.8.14)

Since the excess electrons and holes are created pairwise, the condition ∆n = ∆p holds.
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Figure 9.13: Photoconductive detector.

The generation rate G of electron-hole pairs in the crystal with volume V = wA (see
Fig.9.13) is given by

G = ηΦ/wA, (9.8.15)
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where η is the fraction of the incident photons that generate an electron hole-pair and Φ
is the number of incident photons per second. The recombination rate of excess charge
carriers is given by

R = ∆n
τR

, (9.8.16)

where τR is the excess-carrier recombination lifetime. Under steady-state conditions, the
two rates balance each other (G = R) and we obtain:

∆n = ηΦτR

wA
. (9.8.17)

The photogenerated free charge carriers change the conductivity of the semiconductor by

∆σ = q(∆nbe + ∆pbh). (9.8.18)

Inserting ∆n in the last equation yields

∆σ = q∆n(be + bh) = qητR(be + bh)
wA

Φ. (9.8.19)

The total current It can be written as the sum of the current I0 in the absence of optical
illumination and the photo current Ip. The latter is given by

Ip = qητR(vd,e + vd,h)
w

Φ. (9.8.20)

The electron transit time across the sample can be calculated as

τt,e = w/vd,e. (9.8.21)

For many semiconductors, the condition vd,e ≫ vd,h holds. The photo current can thus
be written as

Ip ≈ qη
τR

τt,e

Φ. (9.8.22)

9.8.3 The Haynes-Shockley experiment

The Haynes-Schockley experiment1 is one of the classical experiments in semiconductor
physics. It can be used to determine the mobility, the lifetime, and the diffusion coefficient
of the minority carriers in a semiconductor. A scheme of the Haynes-Schockley experiment
is shown in Fig. 9.14.

1J. R. Haynes and W. Shockley, Investigation of Hole Injection in Transistor Action, Phys. Rev. 75,
691 (1949)
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Figure 9.14: Scheme of the Haynes-Schockley experiment.

Electron-hole pairs are locally generated in a n-type semiconductor at the time time t = 0
and the position x = 0 by illumination with a short focused light pulse. As before, we
assume that the electron concentration(majority carriers) is not noticeably altered by this.
However, the hole concentration (minority carriers) is locally increased and assumes the
value pn(x = 0, t = 0). After the light pulse, the generation rate Gp is zero. If the electric
field is constant across the sample, the continuity equation can be written as

∂pn

∂t
= Dp

∂2pn

∂x2 − bpE ∂pn

∂x
− pn − pn0

τp

. (9.8.23)

The hole concentration varies as

pn(x, t) = N√
4πDpt

exp
(

−(x− bpEt)2

4πDpt
− t

τp

)
+ pn0. (9.8.24)

By measuring the current at the contact (x = L) as a function of time after the arrival of
the light pulse one can determine the drift velocity and hence the mobility of the holes.

x=0

p
n
(x

,t
)

v td 1

v td 2

Figure 9.15: Hole concentration after illumination of a n-type semiconductor with a short light
pulse. The holes move under the influence of the electric field E with the drift
velocity vd.
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9.9 The p-n junction

9.9.1 Unbiased p-n junction

In what follows, we consider a p-n junction, i.e., a semiconductor crystal which is doped
on one half with acceptors (p-type semiconductor) and on the other half with donors
(n-type semiconductor). In a gedankenexperiment, we start with the two separate halves.
The properties of separated halves, e.g., the values of the corresponding Fermi-levels, have
been discussed in the previous sections.
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Figure 9.16: Unbiased p-n junction.

If we combine the two halves and apply no voltage, the large carrier concentration gra-
dients cause carrier diffusion. The electrons from the n-side diffuse into the p-side and
recombine there with holes. Likewise, holes from the p-side diffuse into the n-side and re-
combine with electrons. As a result, a double layer of uncompensated negative acceptors
and positive donors forms near the junction. This space-charge zone creates an elec-
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9.9 The p-n junction

tric field that counteracts the diffusion. The corresponding potential difference is called
built-in potential or diffusion voltage VD.

In thermal equilibrium, the Fermi level takes a constant value within the whole crystal.
The bending of the bands near the junction can be described by a macropotential V (x).
This macropotential is related to the space charge density ρ(x) via the Poisson equation:

∂2V (x)
∂x2 = −ρ(x)

ϵϵ0
. (9.9.1)

Far away from the junction, the concentration of majority carriers (electrons in the n-
region, holes in the p-region) is given by:

nn = Nc e
− En

c −EF
kBT , (9.9.2)

pp = Nv e
− EF −E

p
v

kBT . (9.9.3)
The concentration of the corresponding minority carriers (holes in the n-region, electrons
in the p-region) can be calculated from

n2
i = nnpn = NvNce

− En
c −En

v
kBT . (9.9.4)

The diffusion voltage is related to the carrier concentrations:

eVD = − (En
v − Ep

v) = kBT ln
(
ppnn

n2
i

)
= kBT ln

(
NAND

n2
i

)
. (9.9.5)

Here, we assumed in the last step that we are in the saturation regime.

In thermal equilibrium, the net current flow of carriers (electrons and holes) across the
junction vanishes. For each type of carrier, the drift current caused by VD is exactly
compensated by the diffusion current due to the carrier concentration gradient:

jn = jdiff
n + jdrift

n = e

(
Dn

∂n

∂x
+ nbnE

)
= 0, (9.9.6)

jp = jdiff
p + jdrift

p = e

(
−Dp

∂p

∂x
+ pbpE

)
= 0. (9.9.7)

Here, Dn and Dp are the diffusion constants for electrons and holes, respectively. With
the help of equation (9.9.6), we find

Dn
∂n

∂x
= nbn

∂V

∂x
, (9.9.8)

where

E = −∂V

∂x
(9.9.9)
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has been used.

In the space-charge region, the electron concentration is position dependent with

n(x) = Nc exp
(

−Ep
c − eV (x) − EF

kBT

)
. (9.9.10)

The gradient of the electron concentration can be calculated as

∂n

∂x
= n

e

kBT

∂V

∂x
. (9.9.11)

A comparison with equation (9.9.8) yields the so-called Einstein relation:

Dn = kBT

e
bn. (9.9.12)

The analogous relationship for the holes reads:

Dp = kBT

e
bp. (9.9.13)

In what follows, we use the so-called Schottky model of the space charge zone:

ρ(x) =


0 for x < −dp

−eNA for −dp < x < 0
eND for 0 < x < dn

0 for x > dn

(9.9.14)

With a piecewise constant space-charge density, the Poisson equation can be easily inte-
grated. We find for the n-region (0 < x < dn) of the space-charge zone:

E = −eND

ϵϵ0
(dn − x) (9.9.15)

and

V (x) = Vn(∞) − eND

2ϵϵ0
(dn − x)2. (9.9.16)

For the p-region (dp < x < 0), we get

E = −eNA

ϵϵ0
(x+ dp) (9.9.17)
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and

V (x) = Vp(−∞) + eNA

2ϵϵ0
(x+ dp)2. (9.9.18)

Charge neutrality requires, that

NDdn = NAdp (9.9.19)

and the continuity of V (x) at x = 0 demands:
e

2ϵϵ0

(
NDd

2
n +NAd

2
p

)
= Vn(∞) − Vp(−∞) = VD. (9.9.20)

With the help of the last two equations, we can calculate the spatial extend of the space-
charge zone:

dn =
√

2ϵϵ0VD

e

NA/ND

NA +ND

, (9.9.21)

dp =
√

2ϵϵ0VD

e

ND/NA

NA +ND

. (9.9.22)

9.9.2 Biased p-n junction

In this section, we consider the effect of an external voltage U on the p-n junction. Because
of the depletion of free carriers, the space-charge zone has a considerable larger resistance
than the rest of the semiconductor crystal. Hence, we can assume that the potential drop
across the space-charge zone is equal to the externally applied voltage. Outside of the
space-charge zone, Ec(x), Ev(x), and V (x) are constant within the respective regions.
The total potential drop across the space-charge region is thus given by:

Vn(∞) − Vp(−∞) = VD − U. (9.9.23)

Here, we define that the potential U is positive when the potential of the p side is increased
with respect to the n side.

As an effect of the applied voltage, the extent of the space-charge zone becomes:

dn(U) = dn(U = 0)
√

1 − U

VD

(9.9.24)

dp(U) = dp(U = 0)
√

1 − U

VD

(9.9.25)
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Figure 9.17: Biased p-n junction.

In thermal equilibrium and without applied voltage, the drift currents of electrons and
holes are compensated by the corresponding diffusion currents. The electron drift current
(hole drift current) results from electrons (holes) which have been thermally generated
within the p-side (n-side) of the space-charge zone and which move under the influence of
VD to the n-side (p-side). For that reason, the drift currents are often called generation
currents ( Igen

n and Igen
p , respectively). They are largely independent of the externally

applied voltage. However, they can be increased if we increase the generation rates of the
minority carriers by illumination of the p-n junction.

The situation is different for the diffusion currents which stem from the majority car-
riers. Since the majority carriers have to move against the potential, only the fraction
exp −e(Vd − U)/kBT (Boltzmann-factor) of the majority carriers can overcome the bar-
rier and reach the other side. There the electrons and holes each are minority carriers
which recombine with the corresponding majority carriers (holes and electrons, respec-
tively). The diffusion current is thus often called the recombination current ( Irec

n and
Irec

p , respectively).
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Combining these effects, we obtain for the electron currents:

|Irec
n (U = 0)| = |Igen

n | = const, (9.9.26)

Irec
n (U) ∝ e

−e
Vd−U

kBT . (9.9.27)
Together, we thus have

Irec
n (U) = |Igen

n | e
eU

kBT . (9.9.28)

The total electron current is given by

In = Irec
n + Igen

n = |Igen
n |

(
e

eU
kBT − 1

)
. (9.9.29)

For the hole current, we find after the analogous analysis a corresponding expression. The
total current through the p-n junction is thus given by:

I(U) = (|Igen
n | + |Igen

p |)
(
e

eU
kBT − 1

)
= Is

(
e

eU
kBT − 1

)
. (9.9.30)

Here, we have introduced in the last step the so-called saturation current Is = |Igen
n | +

|Igen
p |.

(I +I )n p

gen gen

I

U

+

-

p

n
U I
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U I

Figure 9.18: Schematic representation of the current voltage characteristic of a p-n junction.

9.10 Metal-semiconductor contacts

Metal-semiconductor contacts are an integral part of every electronic semiconductor de-
vice. A profound understanding of the properties of these contacts is thus important from
a technological point of view.
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Figure 9.19: (a) Energy band diagram of an isolated n-type semiconductor adjacent to an isolated
metal (eΦM > eΦH). (b) Energy band diagram of the Schottky-contact in thermal
equilibrium (eΦM > eΦH).

Fig. 9.19 (a) depicts the energy band diagrams of an isolated n-type semiconductor
adjacent to an isolated metal. As a common reference energy we choose the vacuum
energy Evac that corresponds to an electron that has been just released from either the
metal or the semiconductor. The work functions eΦM and eΦS are the energies required to
bring an electron from the Fermi level of the metal and the semiconductor, respectively, to
the vacuum level. Note that the work function eΦS of the semiconductor depends on the
doping concentration. The electron affinity eχ is the energy that is required to promote
an electron from the conduction-band minimum to the vacuum level.

If the metal and the semiconductor are brought in close contact, electrons flow across the
contact until the Fermi levels EF take the same value in both materials. Furthermore,
the vacuum level Evac must be continuous.

9.10.1 Schottky-contact

We first discuss the so-called Schottky-contact with ΦM > ΦS (see Fig. 9.19 (b) ). When
the two materials are brought into contact, electrons flow from the semiconductor to
the metal in order to reduce the total energy of the combined system. As a result, the
semiconductor is depleted of electrons near the contact and a positive space charge zone
made up from the spatially fixed ionized donors is formed. The additional electrons in the
metal give rise to a negative space charge zone. Because of the large electron concentration
in the metal, the spatial extent of this negative space charge zone is however very small.
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9.10 Metal-semiconductor contacts

The bending of the bands near the contact can be described by a macropotential V (x).
The potential barrier for the electrons passing from the metal to semiconductor has the
height Φb = ΦM − χ. Electrons passing from the semiconductor to the metal must
overcome the so-called built-in potential barrier Φi = (ΦM −ΦS). The potential difference
between the bottom of the conduction band and the Fermi-level is Vn. In what follows,
we assume that the space charge zone is given by

ρ(x) =


eND for −dn < x < 0

−eNDdnδ(x) for x = 0
0 elsewhere.

(9.10.1)

In this case, the Poisson equation can be easily integrated. After a short calculation
(Proof: Exercise) we find for the region −dn < x < 0:

V (x) = Φi − eND

2ϵϵ0
(x+ dn)2. (9.10.2)

With V (0) = 0, the width of the space charge zone in the semiconductor can be calculated
as:

dn =
√

2ϵϵ0

eND

Φi. (9.10.3)

In thermal equilibrium, the density of electrons in the semiconductor in the vicinity of
the boundary is given by

nS = NDe
− eΦi

kBT = NDe
− e(Φb−Vn)

kBT = Nce
− eΦb

kBT . (9.10.4)

The electron current from the semiconductor to the metal, jS→M , is proportional to
nS. This current is exactly canceled by the flow of electrons from the metal to the
semiconductor:

|jM→S| = |jS→M | ∝ nS. (9.10.5)

Next, we consider the effect of an external voltage U . We define that the voltage U is
positive if the potential of the metal is increased with respect to the semiconductor. Since
the resistance of the metal and the bulk of the semiconductor is much smaller than that
of the depletion region, almost all of the voltage drops across the depletion region. When
a positive voltage U is applied to the contact, the potential difference across the depletion
region is decreased. As a result the, the electron density in the semiconductor in the
vicinity of the boundary increases to

nS = NDe
− e(Φi−U)

kBT = Nce
− e(Φb−U)

kBT . (9.10.6)
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The electron current from the semiconductor to the metal rises by the same factor. In
contrast to this, the electron current from the metal to the semiconductor is not altered
since the potential barrier ΦB is (to a first approximation) not affected by the external
voltage. The total current across the Schottky-contact is hence given by:

j(U) = jS→M + jM→S (9.10.7)

= CNce
− e(Φb−U)

kBT − CNce
− eΦb

kBT (9.10.8)

= CNce
− eΦb

kBT

(
e

eU
kBT − 1

)
. (9.10.9)

Here, C is a proportionality factor. Following similar arguments, we find that the current
across the Schottky-contact for a negative voltage −U is given by

j(−U) = CNce
− eΦb

kBT

(
e

−eU
kBT − 1

)
. (9.10.10)

This result shows that a Schottky-contact has rectifying characteristics similar to that of a
pn-junction. In contrast to the latter, the current across the Schottky-contact is however
governed by the majority carriers.

9.10.2 Ohmic contact

Next, we consider a so-called Ohmic contact with ΦM < ΦS (see Fig. 9.20 ). When
the two materials are brought into contact, electrons flow from the the metal to the
semiconductor. As a result, electrons accumulate in the semiconductor near the contact.
If an external voltage is applied to the Ohmic-contact, electrons can easily flow in both
directions.

9.11 Semiconductor devices

9.11.1 Photodiode

Illumination of a p-n junction results in extra minority carriers in the space-charge zone
which add to the generation current. This photo current Ip is proportional to the incident
photon rate Φ:

Ip = qηΦ, (9.11.1)

where η is the probability that an incident photon generates an electron-hole pair that
contributes to the photo current.
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Figure 9.20: (a) Energy band diagram of an isolated n-type semiconductor adjacent to an isolated
metal (eΦM < eΦH). (b) Energy band diagram of the Ohmic-contact in thermal
equilibrium (eΦM < eΦH).

The current-voltage characteristic of a photodiode is given by:

I(U) = Is

(
e

eU
kBT − 1

)
− Ip. (9.11.2)

Photodiodes can be used in different modes of operation:

• In the photoconductive mode a reverse bias is applied to the photodiode (third
quadrant of the current-voltage relation). The current through the diode is a linear
function of the photon flux Φ. The reverse bias increases the width of the deple-
tion layer which leads to a larger photosensitive volume. At the same time, the
capacitance of the p-n junction is decreased such that the response time is reduced.

• In the short-circuit mode (U = 0), the current through the photodiode is the photo
current Ip.

• In the photovoltaic mode no bias is applied to the p-n junction. The photogenerated
carriers give rise to a terminal voltage Up (fourth quadrant of the current-voltage
relation), which is a nonlinear function of the photon flux Φ. Solar cells are used in
this mode.

The spectral responsivity of a photodiode depends on the semiconductor material it is
made of. The following table summarizes the useable wavelength range for some typical
semiconductors:
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Figure 9.21: Enhanced generation current due to illumination of a reverse biased pn-junction.

Semiconductor Wavelength range (nm)
Gallium phosphide 150 − 550
Silicon 190 − 1100
Germanium 400 − 1700
Indium gallium arsenide 800 − 2600

An avalanche diode is a diode operated at a large reverse bias that is designed to go
through avalanche breakdown after generation of an electron hole-pair by an incident
photon. The avalanche breakdown is due to minority carriers accelerated enough to
create ionization in the crystal lattice, producing more carriers which in turn create more
ionization. Avalanche diodes can be used to detect single photons.

9.11.2 Light emitting diode

A light emitting diode (LED) is semiconductor lighting device that is based on the radia-
tive recombination of electrons and holes in the space-charge region of a p-n junction.

The internal energy flux density per energy interval dℏω and solid angle dΩ of a LED is
given by:

jLED
em,dΩ(ℏω) ≈ a(ℏω) (ℏω)3

4π3ℏ3c2

[
exp

(
ℏω
kBT

)
− 1

]−1

exp
[
eU

kBT

]
. (9.11.3)
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Here, a(ℏω) is the optical absorption of the semiconductor material and U is the applied
voltage. Compared to a gray body, the radiation of a LED is amplified by the factor
exp [eU/kBT ]. Near the band gap, the absorption of a direct semiconductor is given by:

a(ℏω) ∝
√
ℏω − Eg. (9.11.4)

The emitted spectrum of the LED has the form:

jLED
em (ℏω) ∝

√
ℏω − Eg (ℏω)3 e

− ℏω
kBT (9.11.5)
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Figure 9.24: Radiative recombination in the space-charge zone of a p-n junction.

9.11.3 Laser diode

A homojunction laser2diode consists of a highly doped p-n junction. Applying a forward
electrical bias causes the injection of holes and electrons from opposite sides of the p-n
junction into the depletion region. Here, the electrons and holes recombine and generate
photons. The corresponding emission frequency is determined by the size of the electronic
band gap. Often, the semiconductor crystal is cleaved in such a way that two parallel facets
of the crystal can be used as the mirrors of a simple Fabry-Perot cavity. Homojunction
laser diodes are very inefficient as they require large current densities because of the large
volume of the active region. Hence, they can be only operated in pulsed mode.

In a double-heterojunction laser diode, a thin layer of a low band gap material (e.g. GaAs)
is sandwiched between two high band gap layers (e.g. AlGaAs). This results in a better
confinement of the carriers in the active region. Furthermore, the refractive index profile
of the double-heterojunction causes a confinement of the optical field to the active region.
Both effects reduce the required current density such that continuous wave operation of
double-heterojunction laser diodes at room temperature is possible.

9.11.4 Bipolar junction transistor

A bipolar junction transistor is formed by three differently doped semiconductor regions,
the emitter region, the base region, and the collector region. Each of the three regions

2Laser: Light amplification by stimulated emission of radiation.
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Figure 9.26: Scheme of a homojunction laser diode .

is connected to a separate terminal. The base region is very thin and physically located
between the emitter region and the collector region. In a so-called NPN transistor, the
emitter and collector region are n-doped semiconductors while the base region is a p-
doped semiconductor. Accordingly, a PNP transistor consists of a n-doped base region
sandwiched between the p-doped emitter region and collector region. In a typical bipolar
junction transistor, the emitter region is heavily doped.

In the following we consider a NPN transistor and assume that the base-emitter junction
is forward biased whereas the base-collector junction is reverse biased (active mode). The
corresponding band diagram is shown in Fig. 9.28.

The emitter current IE in the forward-biased base-emitter junction is given by:

Ie = Is,e

(
e

eUe
kBT − 1

)
≈ Is,ee

eUe
kBT . (9.11.6)
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Figure 9.27: Scheme of a heterojunction laser diode.

Here, Is,e is the corresponding saturation current and Ue = UEB + ŨE is the applied
voltage.

Due to the small thickness of the base region, only a small fraction of the injected electrons
recombines with holes. The large fraction α ≈ 1 of the injected electrons diffuses through
the base-region and reaches the base-collector junction. The collector current can be thus
written as

Ic = Is,c + αIe ≈ αIe, (9.11.7)

where Is,c is the saturation current of the base-collector junction. The corresponding
voltage measured across a load resistor reads

UL = RLIc = αRLIe. (9.11.8)

Small variations in ŨE can lead to a large change in UL:

dUL

dŨE

= eαRLIe

kBT
. (9.11.9)

For typical parameters (Ie = 10 mA, kBT/e ≈ 0, 025 V, RL = 1 kΩ), we find a value of
the voltage gain of 400.
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10 Magnetism in condensed matter

In this chapter we discuss the fundamentals of magnetism in condensed matter systems.
We start with the dia- and paramagnetic response of insulators. Here, it is sufficient
to take only the magnetic properties of isolated atoms into account. That followed,
we consider paramagnetism of the free electron gas. The main part of this chapter is
devoted to magnetic order phenomena, for which we have to go beyond the single electron
approximation. In this context, we discuss aspects of ferromagnetism, spin waves, and
the formation of magnetic domains.

10.1 Magnetization and magnetic susceptibility

The magnetization M of a material is defined as the density of the magnetic dipole
moment m:

M = mN

V
. (10.1.1)

In many materials, the magnetization M is proportional to the local1 magnetic field
strength H. In this case, we can write

M = χ̂H, (10.1.2)

where χ̂ is the magnetic susceptibility. Note that χ̂ usually is a tensor. However, for
sake of mathematical simplicity we often consider a scalar magnetic susceptibility. Mate-
rials with a negative susceptibility are called diamagnetic and the induced magnetization
opposes the applied magnetic field. In contrast, paramagnetic materials have a positive
susceptibility and the induced magnetization is parallel to the applied field. In matter,
the magnetic induction B is related to the magnetic field H by

B = µ0 (H + M) . (10.1.3)

with the vacuum permeability

µ0 = 4π · 10−7 Vs/Am. (10.1.4)
1Typically, the magnetic field inside a solid differs from the externally applied magnetic field. The

reason for this is the magnetic field produced by all magnetic moments in the sample.
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A convenient starting point for the theoretical description of the magnetic properties of
many condensed matter systems is the free energy:

F = U − TS. (10.1.5)

Its differential is given by:

dF = dU − SdT − TdS = −SdT − pdV − VM · dB. (10.1.6)

If we consider a process with dT = 0 and dV = 0, the magnetization can be calculated
by taking the derivative of the free energy with respect to the magnetic field:

Mi = − 1
V

(
∂F

∂Bi

)
V,T

. (10.1.7)

The elements of the magnetic susceptibility tensor can be calculated as

χij = µ0

(
∂Mi

∂Bj

)
V,T

= −µ0

V

(
∂2F

∂Bi∂Bj

)
V,T

. (10.1.8)

10.2 Dia- and paramagnetism of insulators

In this section, we discuss the magnetic response of insulators. We make the assumption
that the interaction between the magnetic moments of the different atoms can be ignored.
It is therefore sufficient to consider the effect of an external magnetic field on the individual
atoms. In the absence of an external magnetic field, the Hamiltonian of a single atom is
given by:

H0 =
Z∑

i=1

(
p2

i

2m + Vi

)
, (10.2.1)

where the sum is taken over all Z electrons of the atom. Next, we add an external
magnetic field B given by

B = ∇ × A. (10.2.2)

Here, A is the magnetic vector potential. We chose the gauge such that

A(r) = 1
2r × B. (10.2.3)

In the presence of the external magnetic field, the Hamiltonian of the atom reads:

H =
Z∑

i=1

(
[pi + eA(ri)]2

2m + Vi

)
+ g0µbB · S. (10.2.4)
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The second term is the potential energy of the spin magnetic moment in the magnetic
field. After a few lines of math, we obtain:

H = H0 + µB (L + g0S) · B + e2

8m

Z∑
i=1

(B × ri)2. (10.2.5)

Here, µB is the Bohr magneton, L is the total orbital angular momentum of the electrons
and S is the corresponding total spin angular momentum.

The shift of the energy levels due to the presence of the magnetic field can be calculated
by perturbation theory. Retaining terms up to second order in the magnetic field, we
obtain:

∆En = µB⟨n| (L + g0S) · B|n⟩ + µ2
B

∑
m ̸=n

|⟨n| (L + g0S) · B|m⟩|2

En − Em

+ e2

8m

Z∑
i=1

⟨n|(B × ri)2|n⟩. (10.2.6)

10.2.1 Larmor diamagnetism

In the first instance, we consider atoms with completely filled shells (L = S = 0), i.e., the
total magnetic dipole moment of the electrons is zero. Furthermore, we assume that the
external magnetic field B is oriented along êz. The latter condition allows us to write

(B × ri)2 = B2
(
x2

i + y2
i

)
. (10.2.7)

The first-order shift of the ground state energy due to the diamagnetic term can be
calculated as

∆E0 = e2B2

8m

Z∑
i=1

⟨0|
(
x2

i + y2
i

)
|0⟩. (10.2.8)

Because of the completely filled shells, the atoms possess spherical symmetry and we find

⟨0|x2
i |0⟩ = ⟨0|y2

i |0⟩ = 1
3⟨0|r2

i |0⟩, (10.2.9)

where ri is the distance of the i-th electron from the nucleus. This allows us to rewrite
equation (10.2.8) as

∆E0 = e2B2

12m

Z∑
i=1

⟨0|r2
i |0⟩. (10.2.10)
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The corresponding diamagnetic susceptibility is given by

χdia = −µ0

V

(
∂2F

∂B2

)
V,T

= −µ0
e2

6m
N

V

Z∑
i=1

⟨0|r2
i |0⟩. (10.2.11)

The electrons in the outer shell of the atome give the largest contribution to the sum. We
can thus approximate the sum by

Z∑
i=1

⟨0|r2
i |0⟩ ≈ Zar

2
a, (10.2.12)

where Za is the number of electrons in the outer shell and ra is the radius of the atom.
With this approximation, the diamagnetic susceptibility reads

χdia ≈ −µ0
e2

6m
N

V
Zar

2
a. (10.2.13)

Diamagnetism is a weak effect and the diamagnetic susceptibility typically is in the order
of χdia = −10−4 . . . 10−6.

10.2.2 Paramagnetism of insulators

For atoms where the spin-orbit coupling is weak, the total orbital angular momentum L
and the total spin angular momentum S couple to form the total angular momentum

J = L + S (Russel − Saunders coupling). (10.2.14)

In the following, we consider the case J ̸= 0, i.e., the atoms possess a magnetic moment.
Furthermore, we assume that the external magnetic field is oriented in the êz-direction.
The dominant contribution to the shift of the energy levels is then given by

∆En = gJµbmjB. (10.2.15)

Here, gJ is the so-called Landé g-factor

gJ = 1 + J(J + 1) + S(S + 1) − L(L+ 1)
2J(J + 1) (10.2.16)

and mJ is the magnetic quantum number that can take all integer values −J ≤ mj ≤ J .
The average value of the magnetic quantum number can be calculated as

⟨mJ⟩ =

J∑
mJ =−J

mje
− gJ µBmJ B

kBT

J∑
mJ =−J

e
− gJ µBmJ B

kBT

= − 1
Z

∂Z

∂x
, (10.2.17)
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where Z = ∑
mJ
e−mJ x is the partition function and x = gJµBB/kBT . The corresponding

magnetization is given by

M = −N

V
gJµB⟨mJ⟩ = N

V

gJµB

Z

∂Z

∂B
∂B
∂x

= N

V
kBT

∂ ln(Z)
∂B

. (10.2.18)

The evaluation of the partition function yields:

Z =
sinh

[
(2J + 1) x

2

]
sinh

[
x
2

] . (10.2.19)

Upon substitution of Z into equation (10.2.18), we obtain

M = N

V
gJµBJBJ(xJ). (10.2.20)

Here, we have introduced the so-called Brillouin function

BJ(xJ) = 2J + 1
2J coth

(2J + 1
2J xJ

)
− 1

2J coth
( 1

2J xJ
)
. (10.2.21)
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Figure 10.1: Brillouin function.

For xJ ≫ 1, i.e, for very low temperatures, the Brillouin function becomes BJ(xJ) = 1
and the magnetization reaches its maximum value. At room temperature, the condition
xJ ≪ 1 is fulfilled. In this case, we can approximate the Brillouin function by

BJ(xJ) ≈ J + 1
3J xJ. (10.2.22)

With this approximation, the magnetization is given by

M = N

V

g2
Jµ

2
BJ(J + 1)
3kBT

.B (10.2.23)
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The corresponding susceptibility can be written as

χpara = C

T
, (10.2.24)

where the so-called Curie constant is given by

C = N

V

µ0g
2
Jµ

2
BJ(J + 1)
3kB

. (10.2.25)

Equation (10.2.24) is known as the Curie law. Typical values of the paramagnetic sus-
ceptibility at room temperature are in the order of χpara = 10−3.

10.3 Pauli paramagnetism

Next, we consider the magnetic response of the free electron gas. At this point we neglect
correlation effects. These will be later included in the Stoner model of ferromagnetism
(see below). The magnetic moment due to the electron spin is given by

µs = −g0µBms = ∓µB, (10.3.1)

with ms = ±1/2. The magnetization of the electron gas can be expressed as

M = (n+ − n−)µB. (10.3.2)

Here, n+ is the density of electrons with µs parallel to the external magnetic field and n−
is the corresponding density of electrons with anti-parallel orientation of µs. The density
of electrons with spin up can be calculated as

n+ = 1
2V

∫ ∞

0
D(E + µBBext)f(E) dE. (10.3.3)

Likewise, we obtain for the electrons with spin down:

n− = 1
2V

∫ ∞

0
D(E − µBBext)f(E) dE. (10.3.4)

Substitution of n+ and n− into equation (10.3.2) yields:

M = (n+ − n−)µB = µB

V

1
2

∫ ∞

0

dD
dE

2µBBextf(E) dE

= µ2
BBext

V

∫ ∞

0

dD
dE

f(E) dE

= µ2
BBext

V

[
D(E)f(E)|∞0 −

∫ ∞

0
D(E) df

dE
dE

]

= −µ2
BBext

V

∫ ∞

0
D(E) df

dE
dE. (10.3.5)
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Figure 10.2: Pauli paramagnetism.

For low temperatures, we can approximate the derivative of the Fermi-function by

− df

dE
≈ δ(E − EF ). (10.3.6)

With the density of states at the Fermi-level

D(EF ) = V

2π2

(2m
ℏ2

)3/2
E

1/2
F = 3

2
nV

kBTF

, (10.3.7)

we can write the magnetization of the free electron gas as

M = 3nµ2
BBext

2kBTF

. (10.3.8)

The so-called Pauli spin paramagnetic susceptibility is given by

χP = µ0

(
∂M

∂Bext

)
T,V

= 3nµ0µ
2
B

2kBTF

. (10.3.9)

In contrast to the paramagnetic response of insulators, χP does not depend on tempera-
ture.

10.4 Magnetic interactions

So far, we have only considered the effect of an external magnetic field on isolated mag-
netic moments. This approach is however insufficient if we want to discuss magnetic order
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10 Magnetism in condensed matter

phenomena. A prominent example for such a magnetic order phenomenon is ferromag-
netism. Here, the magnetic interactions result in a parallel orientation of the microscopic
magnetic moments and create through this a macroscopic magnetization of the ferro-
magnetic substance even in the absence of an external magnetic field. In materials that
show antiferromagnetism, the magnetic moments of the atoms or molecules align in a
regular pattern with neighboring spins (on different sublattices) pointing in opposite di-
rections. This is, like ferromagnetism, a manifestation of a magnetic order phenomenon.
If the sublattices are populated with different types of atoms or ions, it can happen that
the macroscopic magnetization does not vanish even though neighboring spins point in
opposite directions. This kind of magnetic order is called ferrimagnetism.

Ferromagnetic
order

Antiferromagnetic
order

Ferrimagnetic
order

Figure 10.3: Schematic representation of different magnetic order phenomena.

10.4.1 Magnetic dipolar interaction

At first, one might expect that the magnetic dipolar interaction plays an important role
in magnetic order phenomena. Two magnetic dipoles m1 and m2 separated by a distance
r have an energy equal to

E = µ0

4πr3

[
m1 · m2 − 3

r2 (m1 · r) (m2 · r)
]
. (10.4.1)

For two magnetic dipoles each with a moment m ≈ µB separated by r ≈ 1Å, the interac-
tion energy is in the order of 10−23 J which is equivalent to roughly 1 K in temperature.
However, magnetic order phenomena can be observed in some materials even at room tem-
perature. This back-of-the envelope calculation hence shows that the magnetic dipolar
interaction is to weak to play an important role in magnetic order phenomena.

10.4.2 Exchange interaction of localized electrons

In the following, we consider a system consisting of two electrons that occupy the atomic
one-electron states Ψa and Ψb. Using the Heitler-London-Ansatz, we can write the joint
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10.4 Magnetic interactions

two-electron spatial wave functions as:

ΨS(1, 2) = 1√
2

[Ψa(r1)Ψb(r2) + Ψa(r2)Ψb(r1)] , (10.4.2)

ΨT (1, 2) = 1√
2

[Ψa(r1)Ψb(r2) − Ψa(r2)Ψb(r1)] . (10.4.3)

The Pauli exclusion principle requires that the total wavefunction is anti-symmetric un-
der exchange of the two electrons. Hence, the symmetric spatial wave function ΨS(1, 2)
corresponds to an anti-symmetric spin wave function with total spin S = 0 (singlet state).
Accordingly, the anti-symmetric spatial wave function ΨT (1, 2) requires that the corre-
sponding spin wave function is antisymmetric with total spin S = 1 (triplet state).

Let H be the Hamiltonian of the system. The energies of the two states are given by

ES =
∫ ∫

Ψ∗
S H ΨS dr1 dr2, (10.4.4)

ET =
∫ ∫

Ψ∗
T H ΨT dr1 dr2. (10.4.5)

The difference between the two energies is given by

A = ES − ET = 2
∫ ∫

Ψ∗
a(r1)Ψ∗

b(r2)H Ψa(r2)Ψb(r1) dr1 dr2. (10.4.6)

Here, we have introduced the exchange constant A. For A > 0, a parallel orientation of
the electron spins is favored. This is the primary cause of ferromagnetism in materials in
which the electrons are localized. In contrast, if A < 0, an antiparallel orientation of the
electron spins is favored, potentially causing antiferromagnetism.

The Pauli exclusion principle causes a strict interdependence of the symmetry properties
of the spatial part and the spin part of the total wave function. We will use this fact
to introduce an effective Hamiltonian that has the same eigenvalues as the Hamiltonian
considered above.

Let s1 and s2 be the operators for the spins of the two electrons. The operator for the
total spin is given by

S = s1 + s2 (10.4.7)

so that

S2 = (s1 + s2)2 = s2
1 + s2

2 + 2s1 · s2. (10.4.8)

The last equation can be rewritten as

s1 · s2 = 1
2
[
S2 − s2

1 − s2
2

]
. (10.4.9)
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The eigenvalues of the operator s1 · s2 are given by

s1 · s2 =
{

1
4 if S = 1 (triplet)

−3
4 if S = 0 (singlet) (10.4.10)

Here we have used that the eigenvalues of the operator S2 for the singlet state and the
triplet state are given by S(S+1) = 0(0+1) = 0 and S(S+1) = 1(1+1) = 2, respectively,
and that the eigenvalue of both s2

1 and s2
2 are 3/4.

Next, we consider the effective Hamiltonian given by

H = 1
4 (ES + 3ET ) − (ES − ET ) s1 · s2. (10.4.11)

One can easily show that its eigenvalues for the singlet state and the triplet state are ES

and ET , respectively. If one considers the interaction with several neighbors and neglect
the constant first term, we obtain the Hamiltonian of the so-called Heisenberg model:

H = −
∑

j ̸=i,i>j

Aij si · sj. (10.4.12)

10.4.3 Exchange interaction of conduction electrons

Next, we discuss the exchange interaction of conduction electrons. For this purpose, we
consider two conduction electrons i and j and assume that their spins are oriented parallel.
The Pauli exclusion requires that the corresponding two-electron spatial wave function is
anti-symmetric:

Ψij = 1√
2V

(
eıki·rieıkj ·rj − eıki·rjeıkj ·ri

)
= 1√

2V
eıki·rieıkj ·rj

(
1 − e−ı(ki−kj)·(ri−rj)

)
. (10.4.13)

The probability of finding electron i in the volume d3ri and the electron j in the volume
d3rj is given by:

|Ψij|2 d3ri d
3rj = 1

V 2 [1 − cos {(ki − kj) · (ri − rj)}] d3ri d
3rj. (10.4.14)

This equation shows that the probability of finding two conduction electrons with the
same spin orientation at the same place is zero regardless of the wave vectors ki and kj.

It is instructive to discuss this effect in a little bit more detail. For this purpose, we will
average the probability of finding two spin-↑-electron in the volume d3r over all possible
k-values:

P (r) d3r = n↑d
3r[1 − cos {(ki − kj) · r}], (10.4.15)
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where, n↑ = n/2. Next, we write the effective density of spin-↑-electrons as

ρ(r) = en

2 [1 − cos {(ki − kj) · r}]

= en

2

1 − 1(
4π
3 k

3
F

)2

∫
d3ki

∫
d3kj

1
2
(
eı(ki−kj)·r + e−ı(ki−kj)·r

)
= en

2

[
1 − 9[sin(kF r) − kF r cos(kF r)]2

(kF r)6

]
. (10.4.16)

The total density of electrons seen by the spin-↑-electron is given by:

ρt(r) = en

[
1 − 9

2
[sin(kF r) − kF r cos(kF r)]2

(kF r)6

]
(10.4.17)

Hence, if we consider a certain electron with e.g. spin ↑, we find that the other spin-↑-
electrons are less effective to locally screen the Coulomb potential of the ion cores. As a
result, the energy of the spin-↑-electron is reduced. The energy reduction is maximized if
an as large as possible portion of the conduction electrons has the same spin-orientation.
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Exchange hole

Figure 10.4: Normalized total electron density seen by a conduction electron.
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10.5 Ferromagnetism

10.5.1 Mean field theory for localized magnetic moments

In the following, we use a mean field theory to explain ferromagnetism resulting from
the interaction of localized magnetic moments. Our starting point is the Heisenberg-
Hamiltonian defined in equation (10.4.12). The exchange energy of the i-th atom with its
z neighbors is given by:

E = −A
z∑

j=1
Sj · Si. (10.5.1)

Here, the exchange constant A is taken to be possitive and identical for all pairs.

We assume that Sj can be approximated by the temporal average value ⟨Sj⟩. In this case,
we can write E as

E = −zA⟨Sj⟩ · Si (10.5.2)

and the magnetization of the sample is given by

M = −n0gJµB⟨Sj⟩, (10.5.3)

where n0 is the relevant density of atoms. Substituting equation (10.5.3) into (10.5.2)
yields:

E = − (−gJµBSi) · zA

n0g2
Jµ

2
B

M. (10.5.4)

The second factor can be formally interpreted as a magnetic field:

Bmf = zA

n0g2
Jµ

2
B

M. (10.5.5)

It is usually referred to as the exchange field or the molecular field. It can be also expressed
as

Bmf = µ0λM (10.5.6)

with the molecular field constant

λ = 1
µ0

zA

n0g2
Jµ

2
B

. (10.5.7)

If we apply an external magnetic field Bext to the sample, the total magnetic field Bt

acting on the i-th atom is given by

Beff = Bext + Bmf . (10.5.8)
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Within the mean-field theory of ferromagnetism, the only effect of the exchange interaction
is to replace Bext by Beff . Consequently, we can apply the formalism developed in section
(10.2.2) to calculate the magnetization of the system:

M = N

V
gJµBJBJ(α). (10.5.9)

with

α = gJµBJBeff

kBT
= gJµBJ (Bext + µ0λM)

kBT
(10.5.10)

Since the argument of the Brillouin function, α, also depends on M, we can not directly
solve equation (10.5.9). However, the correct solution can be easily found by a graphical
method. For this purpose, we first write equation (10.5.10) as

M = kBT

µ0λgJµBJ
α− Bext

µ0λ
. (10.5.11)

Next, we plot equation (10.5.9) and equation (10.5.11) in one figure. The correct solution
is the intersection of the two curves (see Fig. 10.5).
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Eq. 10.70

Eq. 10.68

Solution

B 0ext≠

Figure 10.5: Graphical solution to the magnetization of a ferromagnet. Left hand side: Bext ̸= 0.
Right hand side: Bext = 0.

By setting Bext = 0, we can determine the spontaneous magnetization M of the sys-
tem as the function of temperature T . The right hand side of Fig. 10.5 shows that a
non-vanishing spontaneous magnetization requires that the slope of the linear function
(10.5.11) is smaller than the slope of the function defined in (10.5.9) for small values of α.
Using the Taylor expansion (10.2.22) of the Brillouin function, we find that the system is
in the ferromagnetic state if

kBT

µ0λgJµBJ
< n0gJµB

J + 1
3 . (10.5.12)
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This requires that the temperature is smaller than the Curie temperature TC defined by

TC = n0
µ0g

2
JJ(J + 1)µ2

B

3kB

λ. (10.5.13)

Materials with a large exchange constant A, i.e., large molecular field constant λ, posses
a large Curie temperature TC .

For T > TC , the system is in the paramagnetic state. For small values of α, equation
(10.5.9) can be written as

M = 1
µ0

N

V

µ0g
2
Jµ

2
BJ(J + 1)
3kBT

(Bext + µ0λM) = 1
µ0

C

T
(Bext + µ0λM) . (10.5.14)

This equation can be rearranged as

M = 1
µ0

C

T − TC

Bext. (10.5.15)

Here, we have used that TC = λC. The corresponding susceptibility is given by the
so-called Currie-Weiss law:

χ = C

T − TC

. (10.5.16)

Material Curie temperature TC (K)
Fe 1044
Co 1360
Ni 629
Gd 289

EuO 69.4
MnAs 630

Table 10.1: Curie temperature of some ferromagnetic materials. Source: Gross, Marx; Festkör-
perphysik.

10.5.2 Band ferromagnetism

Hereinafter, we discuss the Stoner model that allows to explain the occurrence of ferro-
magnetism in some metals (Fe, Co, Ni). Our starting point is an electron gas with Fermi
energy EF . Now assume that we redistribute δN spin down electrons near the Fermi level
into empty spin up states. By doing so, we increase the kinetic energy of each of these
electrons by the amount δE (see Fig. 10.6).
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D(E)

E

EF } ΔE

Figure 10.6: Redistribution of spin down electrons into empty spin up states in a band ferro-
magnet.

The number of redistributed electrons can be expressed as

δN = 1
2D(EF )δE, (10.5.17)

where D(EF ) is the density of states at the Fermi level. The total kinetic energy of the
electron system hence rises by

∆Ekin = δN

V
δE = 1

2V D(EF ) (δE)2 . (10.5.18)

As discussed in section (10.4.3), electrons with parallel spin are less effective to locally
screen the Coulomb potential of the ion cores. The redistribution of the electrons hence
reduces the potential energy of the electron system. With the modified densities of the
spin down and spin up electrons

n↑,↓ = N

2V ± δN

V
= n

2 ± δn, (10.5.19)

we can express the magnetization of the electron system after the redistribution as

M = −1
2gµB (n↑ − n↓) = −µB

D(EF )
V

δE. (10.5.20)

As in the previous section, we can formally introduce an exchange field

Bmf = µ0λM, (10.5.21)
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where λ is the corresponding molecular field constant. The reduction of the potential
energy can then be calculated as

∆Epot = −
∫ Bmf

0
M′dB′ = −µ0λ

∫ M

0
M′dM′ = −1

2µ0λM2. (10.5.22)

With the Stoner parameter

U = 2λµ0µ
2
B

V
, (10.5.23)

we can express ∆Epot as:

∆Epot = − 1
4V U (D(EF )δE)2 . (10.5.24)

The total energy change is given by

∆E = ∆Ekin + ∆Epot = 1
2V D(EF ) (δE)2

[
1 − 1

2UD(EF )
]
. (10.5.25)

If the redistribution of the electrons is favorable from an energetic point of view, i.e.,
∆E < 0, the system will spontaneously pass into the ferromagnetic state. Obviously, this
requires that the so-called Stoner criterion

1
2UD(EF ) > 1 (10.5.26)

is fulfilled. According to the Stoner model, band ferromagnetism is expected for those
metals which posses a large density of states at the Fermi level and a large Stoner-
parameter. Numerical calculations2 show that only the ferromagnetic metals Fe, Co, and
Ni meet this requirement.

10.6 Spin waves

In the ground state of the Heisenberg-Hamiltonian at zero temperature, all the spins are
oriented parallel to each other. In the following, we want to discuss excitations of the
system. For this purpose we consider a simple model a 1D chain of spins. The exchange
energy of the l-th spin reads:

E = −ASl · (Sl−1 + Sl+1) . (10.6.1)

With

ml = −g0µBSl (10.6.2)
2J. F. Janak, Phys. Rev. B 16, 255 (1977).
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and

Bmf = − 2A
g0µB

(Sl−1 + Sl+1) , (10.6.3)

the exchange energy can be written as

E = −ml · Bmf . (10.6.4)

In the presence of an external magnetic field Bext, the total magnetic field Bt acting on
the spins is given by

Bt = Bext − 2A
g0µB

(Sl−1 + Sl+1) . (10.6.5)

The dynamics of the spin can be described in a semiclassical model by

ℏ
dSl

dt
= ml × Bt = −g0µb (Sl × Bext) + 2A [Sl × (Sl−1 + Sl+1)] . (10.6.6)

In the following, we assume that the external magnetic field is parallel to the z-axis

Bext = B êz. (10.6.7)

For low temperatures, the spins are then predominately oriented in the êz direction, such
that

|Sl,z| ≫ |Sl,x|, |Sl,x|. (10.6.8)

Neglecting terms quadratic in Sl,x and Sl,y, we obtain with Sl,z = −S:

dSl,x

dt
= −g0µBB

ℏ
Sl,y − 2AS

ℏ
(2Sl,y − Sl−1,y − Sl+1,y) , (10.6.9)

dSl,y

dt
= g0µBB

ℏ
Sl,x + 2AS

ℏ
(2Sl,x − Sl−1,x − Sl+1,x) , (10.6.10)

dSl,z

dt
= 0. (10.6.11)

(10.6.12)

We now look for plane-wave solutions of the form

Sl,x = Sxe
ı(kla−ωt), (10.6.13)

Sl,y = Sye
ı(kla−ωt), (10.6.14)
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Figure 10.7: A Spin wave on a line of spins. Image adopted from Wikipedia.

where k is the wave vector and a is the separation between the spins.

Substituting this ansatz for Sl,x and Sl,y into equations (10.6.9) and (10.6.10), we obtain
after a view lines of math:

Sy = ıSx, (10.6.15)

ω = g0µBB
ℏ

+ 4AS
ℏ

[1 − cos(ka)] . (10.6.16)
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Figure 10.8: Dispersion relation of a magnon.

The quasi-particle associated with such a spin wave is referred to as a magnon. The
dispersion relation of magnons is usally determined by inelastic neutron scattering exper-
iments.

10.7 Magnetic domains

The discussion above suggests that a ferromagnetic sample shows a non-vanishing magne-
tization for T < TC . However, iron and other ferromagnets are often found in an “unmag-
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10.7 Magnetic domains

netized” state. The reason for that is that the material is divided in so-called magnetic
domains (see Fig. 10.9). Within each domain, the microscopic magnetic moments are
aligned parallel resulting in a mesoscopic magnetization. However, the magnetization di-
rections of different domains need not be parallel such that the macroscopic magnetization
of the complete sample vanishes.

The interface between two domains is usually referred to as a domain wall.

Magnetic field energy decreases

Figure 10.9: Magnetic domains of a ferromagnet.
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Figure 10.10: Hysteresis curve of a ferromagnet.
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11 Superconductivity

11.1 Some elementary properties of superconductors

11.1.1 Zero electric resistance

On the basis of our discussion in section 8.7, we should expect that all metals exhibit
a finite constant resistance at very low temperatures caused by electron scattering from
impurities. Surprisingly, for a number of metals and ceramic materials the electric resis-
tance drops abruptly to zero below a material specific critical temperature Tc. This effect
is called superconductivity and was first observed for mercury (see Fig. 11.1). Materials
which show superconductivity are called superconductors.

Figure 11.1: First observation of superconductivity by Heike Kamerlingh Onnes in 1911. The
resistance of Hg vanishes for temperatures below 4.19 K. Image: Wikipedia.

11.1.2 Meisser-Ochsenfeld effect

The interior of a superconductor is free of electric or magnetic fields. The resistance-free
flow of carriers immediately counteracts any potential difference across the superconduc-
tor. Moreover, a persistent current at the surface of the superconductor expels weak
magnetic fields from the interior as soon as the temperature is decreased below TC . This
is the so-called Meisser-Ochsenfeld effect.
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11 Superconductivity

Figure 11.2: A permanent magnet levitating above a high-temperature superconductor. The
persistent current at the surface of the superconductor expels the magnetic field of
the magnet and effectively forms an electromagnet. Image: Wikipedia.

We note that a superconductor is not simply a perfect conductor since in the latter case
the magnetic field distribution would depend on the order of cool-down and application
of the magnetic field (see Fig. 11.3). A superconductor rather behaves like a perfect
diamagnet.
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Figure 11.3: Difference between a perfect conductor and a superconductor.
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11.1 Some elementary properties of superconductors

11.1.3 Critical field

The superconducting state is destroyed if a strong magnetic field is applied. In type
I superconductors, the superconductor directly returns to the normal conducting state.
The magnetic field strength at which this transition happens is called critical field BC(T ).
The critical field decreases with temperature and vanishes for T = TC . It follows the
empirical rule:

BC(T ) = BC(0)
(

1 −
(
T

TC

)2)
. (11.1.1)

Type II superconductors show a more complicated behavior. Above a critical filed strength
BC1(T ), the superconductor gradually looses its superconducting properties and it can
no longer completely expel the magnetic field from its interior. At a higher critical field
strengthBC2(T ), the superconducting state is completely destroyed and it becomes normal
conducting.
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Figure 11.4: Phase diagram of a type I superconductor (left) and a type II superconductor
(right).

11.1.4 Isotope effect

The critical temperature Tc of a superconducting sample depends on its isotope composi-
tion and hence on the average mass number M . For a number of materials, e.g. Tin, the
following relation holds:

M1/2Tc = const (11.1.2)
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11 Superconductivity

This so-called isotope effect is an indication that superconductivity is related to properties
of the lattice.
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Figure 11.5: Isotope effect. Data taken from: E. Maxwell, Superconductivity of the Isotopes of
Tin, Phys. Rev. 86,235 (1952).

11.2 London equations

In the following, we discuss a phenomenological model that allows us to describe the
Meissner-Ochsenfeld effect. Our starting point is the classical Drude transport theory of
electrons. According to section 8.1.1, the DC resistivity ρDC of a conductor is proportional
to the scattering rate τ−1. Consequently, a perfect conductor with ρDC = 0 exhibits a
vanishing scattering rate, i.e, τ → ∞ and the corresponding classical equation of motion
reads

ms
∂v
∂t

= −qsE . (11.2.1)

Here, ms and qs are the mass and charge, respectively, of the electrons contributing to
the supercurrent. The corresponding current density can be written as

j = −nsqsv, (11.2.2)

where ns is the density of superconducting electrons. By combining the last two equations,
we obtain the first London equation

∂ (Λj)
∂t

= E , (11.2.3)

with the London coefficient

Λ = ms

nsq2
s

. (11.2.4)
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11.3 Macroscopic quantum model of superconductivity

Inserting the first London equation into the Maxwell equation1 ∇ × E = −∂B/∂t yields

∂

∂t
(∇ × (Λj) + B) = 0. (11.2.5)

On integration we obtain the second London equation

∇ × (Λj) + B = 0. (11.2.6)

At this point we have set the integration constant to zero in order to account for the
Meisser-Ochsenfeld effect. Using ∇×B = µ0j, we can rewrite the second London equation
as

∇2B = 1
λ2 B, (11.2.7)

with

λ =
√

Λ
µ0

=
√

ms

µ0nsq2
s

. (11.2.8)

We can use equation (11.2.7) to calculate the magnetic field distribution inside of a super-
conductor. We assume that the magnetic field outside of the superconductor is constant
and parallel to the surface, Bext = (0, 0, Bz). The magnetic field inside of the supercon-
ductor falls off exponentially

Bs(x) = Bexte
− x

λ , (11.2.9)

where λ characterizes its penetration depth into the superconductor. The suppression of
the magnetic field is caused by a supercurrent near the inteface. Using the second London
equation, we find that

Js,y(x) = Js,y(0)e− x
λ , (11.2.10)

with

Js,y(0) = Hext

λ
. (11.2.11)

11.3 Macroscopic quantum model of superconductivity

Next, we want to discuss a macroscopic quantum model of superconductivity. The basic
assumption of this model is that the electrons in the superconducting state are charac-
terized by a common macroscopic wave function of the form:

Ψ(r, t) = Ψ0(r, t)eıθ(r,t). (11.3.1)
1Note that we use microscopic Maxwell equations in this section.

183



11 Superconductivity

The normalization is chosen such that∫
Ψ∗(r, t)Ψ(r, t)dV =

∫
ns(r, t)dV = Ns. (11.3.2)

Here, ns(r, t) is the local density of superconducting electrons andNs is the total number of
superconducting electrons. The evolution of Ψ(r, t) in the presence of an electromagnetic
field is governed by the Schrödinger equation:

1
2ms

(
ℏ
ı
∇ − qsA(r, t)

)2

Ψ(r, t) + (qϕ(r, t) + µ(r, t)) Ψ(r, t) = ıℏ
∂Ψ(r, t)
∂t

, (11.3.3)

where A(r, t) is the vector potential, ϕ(r, t) is the scalar electrostatic potential, and µ(r, t)
is the chemical potential. We note that the microscopic electric and magnetic field can
be written as :

E(r, t) = −∂A(r, t)
∂t

− ∇
(
ϕ(r, t) + µ(r, t)

q

)
, (11.3.4)

B(r, t) = ∇ × A(r, t). (11.3.5)

Using elementary quantum mechanics, we obtain the following continuity equation:

∂ns

∂t
+ ∇ · Jp = 0 (11.3.6)

with the probability flux density

Jp = 1
ms

ℜ
{

Ψ∗(r, t)
(
ℏ
ı
∇ − qsA(r, t)

)
Ψ(r, t)

}
. (11.3.7)

The corresponding supercurrent density is then given by

Js = qsJp = qsℏ
2msı

(Ψ∗∇Ψ − Ψ∇Ψ∗) − q2
s

ms

|Ψ|2A. (11.3.8)

With Ψ(r, t) =
√
ns(r, t)eıθ(r,t), the supercurrent density can be rewritten as

Js = qsns(r, t)
(

ℏ
ms

∇θ(r, t) − qs

ms

A(r, t)
)
. (11.3.9)

Next, we calculate he time derivative of the phase θ:

−ℏ
∂θ

∂t
= ıℏ

2ns

[
Ψ∗∂Ψ

∂t
− Ψ∂Ψ∗

∂t

]
. (11.3.10)
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11.4 Microscopic theory of superconductivity

Using the Schrödinger equation (11.3.3) and assuming slowly varying potentials2, we
obtain after some algebra the expression:

−ℏ
∂θ

∂t
= 1

2ns

ΛJ2
s + qsϕ+ µ, (11.3.11)

with the London coefficient

Λ = ms

nsq2
s

. (11.3.12)

Next, we show that the London equations can be recovered in the framework of the
macroscopic quantum model. For this purpose, it is useful to rewrite equation (11.3.9)
as:

ΛJs = −
(

A(r, t) − ℏ
qs

∇θ(r, t)
)
. (11.3.13)

Next, we take its time derivative

∂

∂t
(ΛJs) = −

[
∂A(r, t)
∂t

− ℏ
qs

∇
(
∂θ(r, t)
∂t

)]
. (11.3.14)

With equations (11.3.11) and (11.3.4), we obtain

∂

∂t
(ΛJs) = E − 1

qsns

∇
(1

2ΛJ2
s

)
. (11.3.15)

Usually, the second term can be neglected, so that we obtain the first London equation

∂

∂t
(ΛJs) = E . (11.3.16)

The second London equation can be retrieved by taking the curl of equation (11.3.13):

∇ × (ΛJs) + ∇ × A = ∇ × (ΛJs) + B = 0. (11.3.17)

Thus, we can put the London equations on a quantum fundament if we assume that the
superconducting state can be characterized by a macroscopic wavefunction Ψ(r, t).

11.4 Microscopic theory of superconductivity

In this section we discuss a microscopic theory of superconductivity. The basic idea is that
even a weak attractive interaction between electrons can result in electron pairing and an

2In the case of slowly varying potentials we can neglect terms of the order ∇2.
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11 Superconductivity

overall reduction of the energy. A possible mechanism for an effective attractive electron-
electron interaction is the exchange of virtual phonons. This can be understood as follows
(see Fig. 11.6). An electron moving through the crystal interacts with the positively
charged ions leading to a retarded distortion of the lattice. The resulting local increase
of the positive charge density then attracts other electrons. Since the first electron has
already left this region of the crystal before the positve charge is build up, the lattice
mediated attractive interaction between electrons can overcome their repulsive Coulomb
interaction.
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Figure 11.6: Schematic representation of the lattice mediated attractive interaction between two
electrons.

11.4.1 Cooper pairs

We start with a gas of free electrons at T=0 K, in which all states up to the Fermi energy
EF = ℏ2k2

F/2m are occupied. Next we add two electrons and assume that the continuous
exchange of virtual phonons mediates an effective attractive interaction between them.
During a phonon exchange, one electron emits a phonon with wave vector q which is
shortly thereafter absorbed by the second electron. As a result, the wave vectors of the
two electrons change from k1 and k2 to

k′
1 = k1 − q (11.4.1)

k′
2 = k2 + q. (11.4.2)

For reasons of momentum conservation, the sum of the electron wave vectors does not
change during the phonon exchange:

K = k1 + k2 = k′
1 + k′

2 = const. (11.4.3)

Since all electron states with an energy below EF are occupied and the maximum phonon
energy is ℏωD, all accessible states for the two electrons lie in the energy range between
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Figure 11.7: Interaction between two electrons via the exchange of a virtual phonon.

EF and EF + ℏωD. In k-space, this corresponds to a shell with radius kF and thickness

∆k ≈ mωD

ℏkF

. (11.4.4)

Momentum conservation further restricts the number of accessible states. As depicted in
Fig. 11.8, the states compatible with condition (11.4.3) are in the overlap region of two
shells with radius kF and thickness ∆k, whose centers are shifted by K. Obviously, the
number of accessible states is maximal and hence phonon exchange is most likely if the
two shells overlap completely, i.e., for so-called Cooper3 pairs with K = 0.

k
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k
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K

k
F

Δk

Figure 11.8: Momentum conservation during the interaction between two electrons.

In the following, we consider an ansatz for the wavefunction of a Cooper pair that consist
of a superposition of pair states with K = 0:

Ψ(r1, r2) =
kF +∆k∑
k=kF

ake
ık1·r1eık2·r2 =

kF +∆k∑
k=kF

ake
ık·r (11.4.5)

3Leon N. Cooper, Bound electron pairs in a degenerate Fermi gas, Physical Review 104, 1189 (1956).
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with the relative coordinate
r = r1 − r2. (11.4.6)

This pair wavefunction is a solution of the Schrödinger equation

− ℏ2

2m
(
∇2

1 + ∇2
2

)
Ψ(r1, r2) + V (r)Ψ(r1, r2) = EΨ(r1, r2). (11.4.7)

Here we assume that the effective interaction potential V (r) depends only on r. Next,
we insert the ansatz (11.4.5) into the Schrödinger equation, multiply with e−ık′·r and
integrate over the crystal volume Vc. This results in(

E − ℏ2

m
k2
)
ak = 1

Vc

kF +∆k∑
k′=kF

ak′Vk,k′ (11.4.8)

with
Vk,k′ =

∫
V (r)eı(k−k′)·rdV. (11.4.9)

As a further simplification, we assume that the interaction potential (11.4.9) has the form

Vk,k′ =
{

−V0 for kF < k, k′ < kF + ∆k
0 else (11.4.10)

With this, we can rewrite equation (11.4.8) as

ak = −V0

Vc

1
E − ℏ2

m
k2

kF +∆k∑
k′=kF

ak′ . (11.4.11)

Upon summation over all allowed k-values, we obtain

1 = V0

Vc

kF +∆k∑
k=kF

1
ℏ2

m
k2 − E

. (11.4.12)

Next, we replace the sum by an integral:

1 = V0
D(EF )

2

∫ EF +ℏωD

EF

dE ′

2E ′ − E
. (11.4.13)

Here, we have used the abbreviation E ′ = ℏ2

2m
k2. After the integration, we find

E = 2EF − 2ℏωD e
−4/[D(EF )V0]

1 − e−4/[D(EF )V0] . (11.4.14)

In the case of weak interactions (D(EF )V0 ≪ 1), we obtain the approximate solution
E ≈ 2EF − 2ℏωD e

−4/[D(EF )V0]. (11.4.15)
This result indicates that it is energetically favorable for the electrons to form pairs.

The total wave function of the pair state must be antisymmetric. Since the spatial part
of the wave function is symmetric (see equation 11.4.5), we can conclude that the spin
part is antisymmetric, i.e., the total spin of the pair vanishes, S = 0. In order to reflect
this point, we use the notation (k ↑,−k ↓) to address a pair state.
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11.4 Microscopic theory of superconductivity

11.4.2 BCS theory

BCS ground state

In the previous section we made the assumption that only a single electron pair interacts
via the exchange of virtual phonons. We now abandon this restriction and allow that all
electrons near the Fermi level can in principle form Cooper pairs. In the framework of
the BCS-theory4, we assume that the many-body wavefunction of the interacting electron
system at T = 0 K can be written as a product of pair states:

|ϕBCS⟩ =
∏
k

(uk|0⟩k + vk|1⟩k) . (11.4.16)

Here, |1⟩k corresponds to the occupied pair state (k ↑,−k ↓) while |0⟩k denotes that this
pair state is empty. Normalization requires that

v2
k + u2

k = 1. (11.4.17)

The energy of the interacting electron system can be written as

WBCS = 2
∑

k

v2
kηk − V0

Vc

∑
k,k′

vkuk′ukvk′ (11.4.18)

with

ηk =
(
ℏ2k2/2m− EF

)
. (11.4.19)

The first term in equation (11.4.18) corresponds to the kinetic energy measured relative
to the Fermi level EF . The second term characterizes the reduction of the energy due
to the attractive electron-electron interaction. Here, vkuk′ is the probability amplitude of
the initial state5 and ukvk′ is that of the final state6.

For the further analysis, it is convenient to express vk and uk as

vk = cos(θk) (11.4.20)
uk = sin(θk). (11.4.21)

This allows us to rewrite the energy of the interacting electron system as

WBCS = 2
∑

k

cos2(θk)ηk − V0

Vc

∑
k,k′

cos(θk) sin(θk) cos(θk′) sin(θk′). (11.4.22)

4Bardeen-Cooper-Schrieffer theory named after John Bardeen, Leon Cooper, and John Robert Schrieffer.
5In the initial state (k ↑, −k ↓) is occupied and (k′ ↑, −k′ ↓) is empty.
6In the final state (k ↑, −k ↓) is empty and (k′ ↑, −k′ ↓) is occupied
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In order to find the ground state, we minimize WBCS with respect to θk:

∂WBCS

∂θk

= −2ηk sin(2θk) − V0

Vc

∑
k′

cos(2θk) sin(2θk′) = 0 (11.4.23)

This can be rewritten as

ηk tan(2θk) = −1
2
V0

Vc

∑
k′

sin(2θk′) (11.4.24)

Next, we define the so-called gap parameter

∆ = V0

Vc

∑
k′

sin(θk′) cos(θk′) = V0

Vc

∑
k′
uk′vk′ (11.4.25)

and

Ek =
√
η2

k + ∆2. (11.4.26)

Using simple trigonometric relations, we find

sin(2θk) = 2 sin(θk) cos(θk) = 2ukvk = ∆
Ek

, (11.4.27)

cos(2θk) = cos2(θk) − sin2(θk) = v2
k − u2

k = − ηk

Ek

. (11.4.28)

With v2
k + u2

k = 1, we can calculate the probability that the pair state (k ↑,−k ↓) is
occupied:

v2
k = 1

2

(
1 − ηk

Ek

)
= 1

2

1 − ηk√
η2

k + ∆2

 (11.4.29)

By substituting equation (11.4.29) and (11.4.25) into (11.4.18), we find the energy of the
BCS ground state to be

W 0
BCS =

∑
k

ηk

(
1 − ηk

Ek

)
− Vc∆2

V0
. (11.4.30)

Condensation energy

The condensation energy Wc is the energy reduction of the electron system in the BCS
state relative to the normal conducting state. The latter can be expressed as

Wn =
∑

k<kF

2ηk. (11.4.31)
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Figure 11.9: Occupation probability of the Cooper pair states.

To calculate Wn, we rewrite equation (11.4.30) as

W 0
BCS = 2

∑
k<kF

(
1 − u2

k

)
ηk + 2

∑
k>kF

v2
kηk − Vc∆2

V0

= Wn − 2
∑

k<kF

u2
kηk + 2

∑
k>kF

v2
kηk − Vc∆2

V0
.

Replacing the sums by integrals and using Taylor expansions for v2
k and u2

k at η = 0, we
find after a few lines of algebra:

Wc = W 0
BCS −Wn = −1

2D(EF )∆2Vc. (11.4.32)

Excitations of the BCS ground state

By breaking up a single Cooper pair, we create the first excited state of the BCS model.
During this process, a single electron is scattered from a state with wavevector k1 to a
state with wavevector k2. As a result, the two pair states (k1 ↑,−k1 ↓) and (k2 ↑,−k2 ↓)
are no longer available for the BCS-state. The excitation energy can thus be calculated
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as

W 1
BCS −W 0

BCS = ηk1 + ηk2 − 2v2
k1ηk1 − 2v2

k2ηk2 + 2V0

Vc

∑
k′
vk1uk′uk1vk′ + 2V0

Vc

∑
k′
vk2uk′uk2vk′

= (1 − 2v2
k1)ηk1 + (1 − 2v2

k2)ηk2 + 2∆vk1uk1 + 2∆vk2uk2

=
η2

k1√
η2

k1 + ∆2
+

η2
k2√

η2
k2 + ∆2

+ ∆2√
η2

k1 + ∆2
+ ∆2√

η2
k2 + ∆2

=
√
η2

k1 + ∆2 +
√
η2

k2 + ∆2 = Ek1 + Ek2 . (11.4.33)

Since ηk1 and ηk2 can be arbitrarily small, we find that the minimum excitation energy to
break up a Cooper pair is

∆Emin = 2∆. (11.4.34)

This discussion shows that we can interpret Ek = 2
√
η2

k + ∆2 as the dispersion relation of a
quasiparticle that arises from the excitation of the BCS ground state. These quasiparticles
are sometimes called Bogolons, named after the Russian physicist Nikolai Nikolajewitsch
Bogoljubow.

Obviously, there are no quasiparticle states with Ek < ∆ in a superconductor while in a
normal conductor corresponding one-electron states exist. To determine the quasiparticle
density of states we note that the number of states is conserved during the transition from
a normal conducting state to the superconducting state. We thus require that

Ds(Ek)dEk = Dn(ηk)dηk, (11.4.35)

where Ds(Ek) is the quasiparticle density of states in a superconductor and Dn(ηk) is the
electron density of states of the normal conductor. Since we are only interested in a small
energy interval around the Fermi level, we can assume that the density of states for a
normal conductor is constant Dn(ηk) = Dn(EF ) and we find:

Ds(Ek)
Dn(EF ) = dηk

dEk

=


Ek√
E2

k
−∆2 for Ek > ∆

0 for Ek < ∆
(11.4.36)

The existence of the energy gap in the excitation spectrum of the BCS-model allows
us to give an intuitive explanation for the persistence of currents in a superconductor.
As discussed in section 8.4, a current requires a non-equilibrium electron distribution.
In a normal conductor, the scattering of the individual electrons quickly restores the
equilibrium electron distribution if we switch off the field responsible for the current
(see Fig. 11.11 (a) ). The situation is different for a superconductor. The existence of
the energy gap protects the Cooper pairs from breaking up during a scattering event at
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Figure 11.10: Density of states of quasiparticles in a superconductor.

sufficiently low temperatures. Figuratively speaking, electrons can only scatter in pairs
from an occupied pair state ((k ↑,−k ↓) to an empty state ((k′ ↑,−k′ ↓). This does
however not change the centroid of the electron distribution, i.e., the current persists
even if we switch of the applied field.
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Figure 11.11: Left: Scattering of single electrons restores the equilibrium electron distribution.
Right: Scattering of Cooper pairs preserves a nonequilibrium electron distribution.

Size of a Cooper pair

In the following we want to give an estimate for the spatial extend of a Cooper-pair. We
start by noting that the energy uncertainty for a Cooper-pair is in the order of δE = 2∆.
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11 Superconductivity

The corresponding uncertainty of momentum can be estimated from

δE = 2∆ = δ

(
p2

2m

)
≈ pF

m
δp. (11.4.37)

Using Heisenberg’s uncertainty relation, we find that the approximate size of the Cooper-
pair is given by

δx = ℏ
δp

≈ ℏpF

m2∆ . (11.4.38)

For typical parameters, this corresponds to a size of approximately 10 nm to 100 nm.
From the ratio EF/∆ ≈ 104 and the typical electron density, we can estimate that the
volume occupied by a given Cooper pair also contains approximately 106 other Cooper
pairs. Hence, we have a strong spatial overlap of the Cooper pairs, which results in the
formation of a macroscopic wavefunction.

Gap parameter

By combining equation (11.4.25) and (11.4.27), we find that the gap parameter ∆ has to
fulfill the condition

∆ = V0

Vc

∑
k

ukvk = 1
2
V0

Vc

∑
k

∆
Ek

= 1
2
V0

Vc

∑
k

∆√
η2

k + ∆2
. (11.4.39)

Next, we replace the sum by an integral (V −1
c

∑
k →

∫
d3k/4π3) and obtain

1 = V0

2

∫ ℏωD

−ℏωD

Z(EF + η)√
η2 + ∆2 dη (11.4.40)

with the pair density of states

Z(EF + η) = 1
2D(EF + η). (11.4.41)

In the energy interval [EF − ℏωD, EF + ℏωD] the pair density of states can be considered
to be constant so that we can rewrite equation (11.4.40) as

1
V0Z(EF ) =

∫ ℏωD

0

dη√
η2 + ∆2 (11.4.42)

= arcsinh
(
ℏωD

∆

)
. (11.4.43)

For weak interactions (V0Z(EF ) ≪ 1), we finally obtain

∆ = ℏωD

sinh
(

1
V0Z(EF )

) ≈ 2ℏωDe
−1/[V0Z(EF )]. (11.4.44)
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11.4 Microscopic theory of superconductivity

Critical temperature

So far, we considered superconductivity at T = 0 T. At finite temperature, some of the
Cooper pairs break up. The occupation of the corresponding quasiparticle states with
energy Ek =

√
η2

k + ∆2(T ) is governed by the Fermi-distribution function f(Ek +EF , T ).
Since these occupied state are no longer available for the Cooper pairs, we have to modify
equation (11.4.42):

1
V0Z(EF ) =

∫ ℏωD

0

dη√
η2 + ∆2(T )

[
1 − 2f

(√
η2

k + ∆2(T ) + EF , T
)]
. (11.4.45)

For T → TC , the gap parameter ∆(T ) has to approach zero. By setting ∆(Tc) = 0
in equation (11.4.45), we can determine the critical temperature Tc. After numerical
integration, we obtain:

kBTc = 1.14 ℏωDe
−1/[V0Z(EF )]. (11.4.46)

Since ωD ∝ M−1/2, we find that TcM
1/2 = const, i.e., the BCS theory correctly describes

the isotope effect.

Current carrying wavefunction

The flow of a supercurrent js requires that the electron distribution of the superconductor
is shifted in k-space away from the origin. Let us denote this shift by Q. As a consequence,
also the pair states are modified (k ↑,−k ↓) → (k + Q ↑,−k + Q ↓). Obviously, each
pair state has a total momentum ℏK = 2ℏQ.

The wave function of the Cooper-pair in the current-carrying case is given by

Ψ(r1, r2) =
∑

k

ake
ık1·r1eık2·r2 =

∑
k

ake
ı K

2 ·(r1+r2)eık·(r1−r2). (11.4.47)

With the coordinate of the centroid

R = r1 + r2

2 (11.4.48)

and the relative coordinate

r = r1 − r2, (11.4.49)

this can be rewritten as

Ψ(K, r1, r2) = eıK·R ∑
k

ake
ık·r = eıK·RΨ(K = 0, r1, r2). (11.4.50)
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11 Superconductivity

We can conclude that the current flow only modifies the phase of the Cooper pair wave-
function. The probability density is not affected:

|Ψ(K, r1, r2)|2 = |Ψ(K = 0, r1, r2)|2. (11.4.51)

Following a similar line of arguments, we can write the BCS-wavefunction in the current-
carrying case as

ϕBCS(K) = eıφ(R1,R2,...)ϕBCS(K = 0) (11.4.52)

with

φ(R1,R2, . . .) = K · R1 + K · R2 + . . . . (11.4.53)

Here, R1, R2, . . . are coordinates of the centroids of the different pair states.

In the presence of a magnetic field, the supercurrent density can be shown to take the
form (compare with section 11.3):

js = −2e
4m

[
4eA|ϕBCS(0)|2 + 2ℏ|ϕBCS(0)|2

∑
ν

∇Rνφ(. . . ,Rν , . . .)
]
. (11.4.54)

With ∇ × ∇φ = 0 and ∇ × A = B, we obtain

∇ × js = −2e2

m
|ϕBCS(0)|2B. (11.4.55)

This is precisely the second London equation with

|ϕBCS(0)|2 = ns

2 . (11.4.56)

Hence, we can also explain the Meisener-Ochsenfeld effect in the framework of the BCS
theory.

11.5 Josephson effects

In this section, we consider two superconducting layers that are separated by an insulating
barrier. For large barrier thicknesses, the two superconductors are decoupled and the
dynamics of the macroscopic wavefunctions is governed by

ıℏ
∂ψ1

∂t
= E1ψ1, (11.5.1)

ıℏ
∂ψ2

∂t
= E2ψ2. (11.5.2)
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11.5 Josephson effects

Here, E1 and E2 are the energies of the superconducting states.

In a so-called Josephson junction, the insulating barrier is very thin (typically 1 to 2 nm)
and the tunneling of Cooper pairs from one superconductor to the other is possible. This
process can be considered as a weak perturbation that we can take into account by adding
coupling terms to the two equations:

ıℏ
∂ψ1

∂t
= E1ψ1 + Tψ2, (11.5.3)

ıℏ
∂ψ2

∂t
= E2ψ2 + Tψ1. (11.5.4)

Here, T characterizes the contribution to the energy due to the tunneling of Cooper pairs.
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Figure 11.12: Scheme of a Josephson junction.

For the following analysis, we write the macroscopic wavefunctions as

ψ1 = √
nc,1e

ıϕ1 , (11.5.5)
ψ2 = √

nc,2e
ıϕ2 , (11.5.6)

where nc,1 and nc,2 are the densities of Cooper pairs in superconductor 1 and supercon-
ductor 2, respectively. Upon substitution of ψ1 and ψ2 into equation (11.5.3) and (11.5.4),
we obtain:

ıℏ
2 ṅc,1 − ℏnc,1ϕ̇1 = E1nc,1 + T

√
nc,1

√
nc,2e

ı(ϕ2−ϕ1), (11.5.7)
ıℏ
2 ṅc,2 − ℏnc,2ϕ̇2 = E2nc,2 + T

√
nc,1

√
nc,2e

−ı(ϕ2−ϕ1). (11.5.8)
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11 Superconductivity

Separating real and imaginary parts yields:

ṅc,1 = 2T
ℏ

√
nc,1

√
nc,2 sin(ϕ2 − ϕ1), (11.5.9)

ṅc,2 = −2T
ℏ

√
nc,1

√
nc,2 sin(ϕ2 − ϕ1), (11.5.10)

ϕ̇1 = −T

ℏ

√
nc,2

nc,1
cos(ϕ2 − ϕ1) − E1

ℏ
, (11.5.11)

ϕ̇2 = −T

ℏ

√
nc,1

nc,2
cos(ϕ2 − ϕ1) − E2

ℏ
. (11.5.12)

(11.5.13)

In the following we assume that the junction is made from two identical superconductors
(nc,1 = nc,2 = nc). In this case, the first two lines of the previous set of equations simplify
to

ṅc,1 = 2T
ℏ
nc sin(ϕ2 − ϕ1) = −ṅc,2. (11.5.14)

With this, we can calculate the supercurrent resulting from Cooper pair tunneling:

Is = 2eṅc,1 = Imax sin(ϕ2 − ϕ1), (11.5.15)

with

Imax = 4Tenc

ℏ
. (11.5.16)

Equation (11.5.19) is often called the first Josephson equation. It predicts that the su-
percurrent is controlled by the phase difference ∆ϕ = ϕ2 − ϕ1 and can take values in the
range ±Imax.

If there is a voltage U across the Josephson junction, the energy levels of the two halves
are shifted by ∆E = E1 − E2 = 2eU with respect to each other. The resulting temporal
evolution of the phase difference then follows the second Josephson equation:

ℏ
(
ϕ̇2 − ϕ̇1

)
= 2eU. (11.5.17)

Let us first consider the case that the Voltage across the junction vanishes (U = 0).
According to equation (11.5.17), the phase difference ∆ϕ0 = ϕ2 − ϕ1 is then a constant
that may, depending on the history of the device, take any value between 0 and 2π. For
∆ϕ0 ̸= 0, equation (11.5.19) predicts a constant supercurrent Is = Imax sin(∆ϕ) even in
the absence of an external field7. This is the so-called DC Josephson effect.

7In order to avoid charging , we have to connect the Josephson junction with an appropriate load resistor
to a current source
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11.5 Josephson effects

For a finite constant voltage U across the junction, the phase difference grows with time

∆ϕ(t) = 2eU
ℏ
t+ ∆ϕ0 (11.5.18)

and we obtain an alternating current

Is(t) = Imax sin(ωt+ ∆ϕ0) (11.5.19)

with oscillation frequency

ω = 2eU
ℏ
. (11.5.20)

This is the so-called AC Josephson effect. Since the ratio ω/U depends only on natural
constants, we can use the AC Josephson effect for very precise voltage measurements.
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