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We propose a general and systematic method for the study of correlated 
Fermi systems, based on an auxiliary slave boson representation and a 
self-consistent partial resummation of Feynman diagrams. The time- 
independent local constraint is treated in the saddle point approxi- 
mation, rendering the theory tractable both in the impurity and lattice 
cases. Our approach avoids slave boson condensation and preserves 
local gauge invariance. We apply the method to the one-impurity, 
infinite-U Anderson model as a test case, and discuss how unphysical 
singularities present in earlier theories may be eliminated. 

THEORETICAL EFFORTS to explain high T, super- 
conductivity [1], heavy fermion systems [2] and other 
recently discovered materials have focused on models 
of strongly correlated Fermi systems. Generally, one 
attempts to model the correlated electrons in these 
compounds by strong repulsive on-site interactions U 
for d- orf-electrons. As U + co, the interaction effec- 
tively limits electrons to the part of the Hilbert space 
with no doubly occupied sites. It is this projection of 
the dynamics into a subspace of Hilbert space which 
is difficult to describe with conventional many-body 
techniques [3]. In order to circumvent the technical 
difficulties caused by projection operators, Barnes [4] 
proposed sometime ago that the projection may be 
accomplished by introducing auxiliary or “slave” 
Bose fields describing the empty lattice site, and a local 
constraint ensuring that each site is either empty or 
singly occupied (i.e. the sum of the occupation num- 
bers of bosons and fermions adds up to one). This 
approach has been pioneered by Coleman [5] and by 
Read and Newns [6] in conjunction with a l/N expan- 
sion for the N-orbital single impurity Anderson 
model. Later versions of the technique have been 
applied to the Anderson lattice model, the Hubbard 
model and its derivatives and other models of 
correlated fermions. 

The conventional l/N slave boson method has 
enjoyed a good deal of success and apparently gives 
much of the correct qualitative physics already in 
mean field theory [6]. However, it is flawed by the 
occurence of a spurious Bose condensation transition 
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at finite temperature, which makes it impossible to 
describe the crossover from low temperature to high 
temperature regime correctly. We believe [7] that Bose 
condensation should be inhibited by the local con- 
straint, even though the number of bosons nb is, in 
general, finite in the limit T --, 0. This may happen if 
the Bose spectral function Ah(w) acquires spectral 
weight at negative o (where it attains negative values), 
such that in the limit T + 0, 

m do 
nb = I ’ dw 

-03 
7 A,(o)b(o) + - f IL 440) >O, 
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where b(o) = (e”lr - 1)-l. It appears that the corre- 
sponding change in the spectral function from its form 
in mean field theory requires the summation of contri- 
butions in all orders of l/N, or even nonanalytic con- 
tributions [5] in l/N. This has been attempted for 
the Anderson impurity model in the so-called “non- 
crossing approximation” (NCA) [8, 93, in which all 
Keiter-Kimball diagrams [3] with non-crossing elec- 
tron propagator lines are summed. For larger 
degeneracy N 2 4 and in the Kondo regime the NCA 
results are in excellent agreement with exact Bethe- 
ansatz results, except for the low temperature regime 

T < TNCA 6 T~ondo, where spurious singularities 
appear and the exact Fermi liquid behaviour of this 
model is badly violated [9]. Application of the NCA 
scheme to lattice models requires additional assump- 
tions [lo]. To some extent these problems have been 
addressed by Jin and Kuroda [1 13, who showed that 
the bose condensation problem could be overcome in 
an unconventional l/N slave boson scheme for the 
Anderson model to order l/N’. While their results 

1003 



1004 CONSERVING SLAVE BOSON APPROACH TO FERMI SYSTEMS Vol. 83, No. 12 

reproduce the known low temperature behaviour and 
provide a smooth crossover to the high temperature 
regime, some singularities have to be removed in an ad 
hoc way. Any of the above theories has difficulties for 
the canonical case of spin l/2 (N = 2). 

We propose here a slave boson approach to 
models of strongly correlated Fermi systems of the 
impurity or lattice type which allows one, for any 
degeneracy iV, to separate the constraint problem 
from the problem of treating the intrinsic dynamics in 
a controlled way. As opposed to some of the above- 
mentioned approaches, our theory is based on time- 
ordered Green’s functions. One may construct 
approximations respecting all exact symmetries of 
such models. As a test case we consider the infinite-U 
single impurity Anderson model of a magnetic impurity 
in a host metal because it allows for comparison with 
available exact results. In addition, dynamical quan- 
tities such as the d-electron spectral function cannot be 
obtained exactly and would be interesting to calculate 
in a controlled approximation. In terms of slave boson 
and pseudofermion operators b and fc for the d-elec- 
trons with d: = fib and conduction electron oper- 
ators cl,, , the effective Hamiltonian is given by 

H = c (s, - &t,&k,a + J% c f:fo 
k.a 0 

+ ?’ 1 (ct,,f~b+ + h.c.), 
k.a 

(1) 

restricted to the subspace of eigenstates of the charge 
operator Q = ZS:,(f,tf, + btb - 1) with eigenvalue 
zero. This spin label rr runs from 1 to N. The charge 
Q is conserved, i.e. [Q, H] = 0, and as a consequence 
the Hamiltonian is invariant under local gauge trans- 
formations f, --, f, eie, b --, b es. 

The constraint is conveniently taken into account 
in the path integral formulation, e.g. of the partition 
function 2 [6], 

Z = (2) 

where TS,, is the grand potential of the system with 
fixed 1, given by 

Z(n) = e-% = I o[f,flD[b, &lo[c, PI e-’ (3) 

with 

+ &a, + iA)b + H(T) - il 1 . (4) 

In writing equation (2), it is assumed that S,,(J) is an 
analytic function of ,l in the interval [0, 2nT]. Other- 
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Fig. 1. Diagram for the generating functional Q, in 
lowest order in V. 

wise, the integration contour has to be shifted along 
the imaginary axis to avoid any singularities. In par- 
ticular, shifting the contour to - ice is equivalent to 
taking the limit il + CO of Z(n). The single-particle 
Green’s function may be expressed likewise as 

where G,,(o,, 1) is the d-electron Green’s function for 
a fixed 1. It may be shown that the above represen- 
tation gives the correct result in the limit hybridization 
I/ + 0 (atomic limit). 

We now proceed to discuss approximations for 
Gd(w,, A). Since in deriving equation (5) we made use 
of the local gauge invariance of GJo,, A), any 
approximation used in equation (5) must be gauge 
invariant, too, guaranteeing the conservation of Q in 
time. Such approximations may be conveniently 
derived from a generating functional CD [ 121. In the 
limit of small hybridization I’, the lowest order dia- 
gram for Cp is second order in V and contains one 
Green’s function of each kind, G,, Gb, G, (Fig. 1). As 
discussed below, this approximation is sufficient to 
give the correct qualitative behaviour both above and 
below the Kondo temperature, except for very low 
temperatures. For the moment, our intent is princi- 
pally to show that conserving approximations can be 
constructed. It is one of the virtues of this formulation 
that any extension to higher order processes is 
straightforward. 

Functional differentiation with respect to Gi yields 
the self-energies Xi, i.e. 

&(w,) = I’*T 11 G&A + dN,,t~~), (6) 
D w; 

which, together with the slave particle Green’s func- 
tions Gb(w,) = (io, - iA - &)-I and G,,(w,) = 
(iw,, - il - EJ - Z&-’ as well as the local c-elec- 
tron Green’s function G,(o,) = [(G:) - Xc]-‘, form 
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Fig. 2. Boson spectral function &,(a) vs o near w = 0 
in saddle point approximation for N = 2, Ed = 
-0.67, F = 0.15, TK z 5 x IO-‘at T = 5 x 10e6, 
using conduction electron density of states N(E) = 
R-” exp (-Ed) and chemical potential ~1 = 0. The 
inset shows the broadened peak at o N lo N lEdI. 
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Fig. 3. The d-electron spectra1 function Ad(m) vs fre- 
quency, in saddle point approximation (parameters as 
in Fig. 2). The inset shows the Kondo resonance peak 
near o = 0. The exact T = 0 value of Ad(O) following 
from the Friedel-Langreth sum rule is 6.2. 

a complete set of self-consistent equations. Here 
G,O(w,) = j de N(c)/(ico, - E), where N(E) is the c- 
electron density of states. Note that il plays the role of 
a chemical potential with the unusual property of 
being complex-valued. The d-electron Green’s func- 
tion is given exactly in terms of C, as 

Gd(wn, A) = i w%) 
V2 1 - ~:,(w,)G,“(w,)’ 

It can be shown that expression (7) for Gd(w,, A), with 
C, given by equation (6), is gauge-invariant. 

We evaluate the 1 integral over Gd(w., 2) in 
equation (5) approximately by determining the 
saddle point of exp { - S,,(n)}. The saddle point con- 
dition d&/dl = 0 translates into (Q) = 0 using the 
thermodynamic relation (Q) = - iT dS,,/dl. We 
have solved the self-consistent equations (6) and (7) 
numerically at the saddle point. The saddle point 
value & is found to be purely imaginary, corresponding 
to a real valued chemical potential i& for the pseudo- 
fermions and the slave boson. The pseudofermion 
spectral function is characterized by a single peak 
around w = 0, while the slave boson spectra1 function 
has a broad peak at w rr. I&] and a sharp structure 
near zero frequency (Fig. 2), extending to negative o, 
as anticipated. The corresponding d-electron spectral 
function shows the expected features: a broad peak at 
w N ]&I and a Kondo resonance near the Fermi 
energy at w = 0 (Fig. 3). The width of the resonance 
is correctly given by the Kondo scale TK = D exp 
{ - nIEdlM-}, where I = rrN(0)V2 is the bare hybrid- 
ization width and D is the conduction bandwidth. 
However, at temperatures T g TK the slave boson 
and the pseudofermion spectra1 functions A,(w) and 

A/,(w) appear to develop singularities at w = 0 at 
least down to the lowest temperatures of about 10e2 
TK of our numerical evaluation. Also the fluctuations 
in Q appear to tend to zero with T as AQ’ - T, 

implying that the projection onto the Q =0 sector 
may become exact at T = 0 even in the saddle point 
approximation. The singularities are not unexpected, 
since both the pseudofermions and the slave boson 
Green’s functions involve intermediate states in sec- 
tors of Hilbert space different from Q = 0 which are 
orthogonal to the Q = 0 states and hence lead to an 
orthogonality catastrophe [ 131. Another way to view 
the singularities is to notice that in order to have a 
non-integer value n/ < 1 for the fermion occupation 
number at T = 0, as enforced by the constraint, the 
real part of G,,(w - io) needs to change sign at 
w = 0 [14]. This requires Gr,(w - io) to diverge at 
w = 0, since Im Z,O(w - i0) + 0 as well [see 
equation (6)]. The d-electron spectra1 function is finite, 
but develops a cusp at w = 0 in the limit T + 0, 

which conflicts with the exact Fermi-liquid behaviour 
known to exist for this mode1 [15]. 

In fact, the results of the saddle point approxi- 
mation to equations (4)-(6) are very similar to those 
obtained within the NCA. The NCA equations are 
obtained from equation (6) by taking the limit 
iA + 00, which effects the exact projection onto the 
subspace Q = 0. Therefore it does not appear to ‘be 
essential to improve on the saddle point approxi- 
mation by calculating the effect of fluctuations. Never- 
theless we would like to point out a difficulty in the 
fluctuation calculation. Since S,,(n) as well as G,,(w,, 
A) have branch cuts in the complex I-plane along Re 
{A> = 0 and Re {A} = xT (and periodically con- 
tinued at intervals of 27rT), the initial integration 
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Fig. 4. Contours in the complex iL-plane for the inte- 
grations in equations (4) and (5). The branch cuts of 
&&) and GdO(o,, A) are indicated by crosses. 

contour from L = -U, to L = - il, + 2nT, 
1, -+ co, may not just be shifted parallel to the real 
axis until it traverses the saddle point at ,l = 1, (i.e. 
choosing -A, = 1,). Instead, the contour wraps 
around the branch cuts in the way shown in Fig. 4. 
Thus there is an extra contribution of the fluctuations 
around the saddle point from the part of the inte- 
gration contour along the branch cuts. 

In the chosen approximation for the generating 
functional (Fig. l), the formation of the Kondo singlet 
ground state is not accounted for in an explicit way. In 
the NCA, this deficiency is reflected in the appearance 
of spectra1 anomalies at very low temperatures, 
destroying the expected Fermi liquid behaviour [8, 
9, 151 To recover the correct low-energy behaviour in 
this formulation, it appears necessary to include higher 
order diagrams. For example, multiple scattering of 
pseudofermions and conduction electrons shown in 
Fig. 5 should lead to the formation of the bound state 
[16]. We have analyzed the corresponding scattering 
amplitude in the exactly projected case, where the 
integral equation represented by Fig. 5 simplifies con- 
siderably, and found numerically that a pole indeed 
exists on the real axis in the spin singlet channel. The 
pole contribution to the self-energies C,, causes the 
infrared singularities to be cut off on the scale TK, thus 
restoring analytical behaviour of the d-electron 
Green’s function. It remains to be seen whether this 

Fig. 5. Correction to generating functional from f-c 
ladders. 

behaviour persists in the saddle point approximation. 
A full numerical evaluation is in progress. 

We note that in the model of spinless fermions 
(N = l), there is no possibility of a pole in the f-c 

correlation function and hence the infrared singu- 
larities remain. In renormalization group language, 
the N > 1 system scales, initially with decreasing tem- 
perature, towards the X-ray threshold fixed point 
(FP), but at low temperature flow towards the Fermi 
liquid FP characteristic of the noninteracting system. 

An advantage of the approach presented here, as 
compared to generalizations of the NCA, is that it 
may be extended to the lattice case in a straightfor- 
ward way. Although the evaluation of the saddle point 
equations will be more difficult on the lattice, we 
expect the fluctuation expansion to be well-defined, 
since the singularities peculiar to single-impurity 
problems will be integrated over. We are in the process 
of applying the approach to lattice models such as the 
periodic Anderson model, and the t-J and Hubbard 
models. 

In summary, we have presented a systematic and 
general approach to strongly interacting many-body 
systems by combining slave particle representations 
with conserving self-consistent approximations and a 
controlled implementation of the local constraint 
inherent to such theories. As a first test, we have 
applied the method to the single impurity Anderson 
model, which has been notoriously difficult to describe 
in a standard field theoretical treatment. Our formu- 
lation is free of spurious slave boson condensation and 
provides a systematic method for handling infrared 
singularities present in earlier similar theories. 
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