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0.1.1 Introduction

The very existence of a quasicrystalline state of matter, which was first discovered by Shecht-
manet al. [1] in 1984 and has since been found in an abundance of compounds, poses two
intellectual challenges. (1) What are the microscopic mechanisms that make the atoms form
a highly ordered, yet not translationally invariant, quasiperiodic state; and (2) what is the na-
ture of the quantum states of electrons moving on a quasicrystalline lattice? Soon after their
discovery it became clear that in quasicrystals (QC) there is an intimate relationship between
the geometrical arrangement of the ions and the electronic properties.

QC and their periodic approximants exhibit unusual electronic structure and transport
properties, e.g. a pronounced pseudogap at the Fermi level"F and an extremely low or even
vanishing electrical conductivity, compared to the conductivity of their metallic constituents.
It is generally believed that these anomalies are directly related to the long–range but ape-
riodic order. For an introduction and for reviews of the physical properties of QC see Ref.
[2] and Refs. [3, 4], respectively, whereas the most recent progress of our understanding is
documented in Ref. [5]. Both the nature of the electron density of states (DOS) and of the
wave functions, delocalized or critical (power-law localized) have remained controversial up
to now. In some QCs the low conductivity seems to be associated with the pseudogap in the
DOS rather than with a short mean free path or even localization of the wave function [6].
This interpretation is consistent with the frequency dependence of the conductivity [3, 7]. The
spiky structure of the DOS, predicted by previous two– and three–dimensional calculations
[8], has not been observed experimentally [9] and might be a numerical artifact [10].

The formation of a QC is, in turn, strongly influenced by the electron system. The QC
phase is stable only in a small window of oncentrations of theelemental constituents in which
the average atomic spacing coincides with the wave length ofthe electronic Friedel charge
density oscillations. Moreover, momentum space (electrondiffraction) [12] as well as real
space (z-contrast electron microscopy) [13] probes of QCs reveal a concentrical, shell–like
arrangement of the ions, similar to the amorphous phase [11,12]. Hence, the Hume–Rothery
stabilization mechanism [14] should play an important rolein the formation of QCs, i.e. the
ions are bound in the minima of the Friedel potential around an arbitrary central ion, and
the electron system minimizes its energy by forming a pseudogap at the Fermi level"F . In
addition, an entropic stabilization mechanism has been putforward [15], relevant for aperiodic
random tilings.

Electronic structure and transport calculations in QCs have been hampered by the absence
of translational symmetry and, hence, by the invalidity of Bloch’s theorem. When describing
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the electronic properties on a QC lattice one has to bear in mind that the electrons can feel the
long–range aperiodic order only over a distance given by their phase coherence length`� =vF ��, with vF the Fermi velocity and�� the phase coherence time. Hence, those properties
originating from the aperiodic order, e.g. the spikyness ofthe DOS in one dimension, will
gradually emerge as the temperatureT is lowered and�� diverges, the energy resolution of
these features given by~=��. In order to describe these structures one must use mathematical
methods that incorporate the QC order exactly [16] or use periodic approximants. On the other
hand, wheǹ � is only of the size of a few concentrical atom clusters, self–averaging takes
place, and, despite of perfect QC order, the electron feels an effective random potential, with
the individual scattering potential provided by a concentrical cluster within the QC. Especially
in this regime electron–electron interactions may become important.

According to these two cases, in this project we study in thisproject (1) the electronic
structure and electrical conductivity of one–dimensionalQCs in theT = 0 limit using a
newly developed, exact path renormalization scheme [17, 18], and (2) the stability of QC
phases and interaction–induced correlation effects at elevated temperature within the Hume–
Rothery mechanism in analogy to amorphous metals [19, 20].

0.1.2 Electronic Structure and Conductivity of Fibonacci Chains

One–dimensional QCs, such as the Fibonacci chain (FC), havebeen studied in great detail
by many researchers, because analytical treatments and exact results are possible. The most
striking feature of this model is that quasiperiodicity induces long range correlations giving
rise to an ‘intermediate’ or ‘critical’ state of localization, while all states are localized in
randomly disordered systems in one dimension. The so–called ‘critical states’ are associated
with singular continuous spectra of the Hamiltonian [4].

An important step towards the understanding of the electronic structure of one–dimensional
QCs was made by Iguchi [21] and later on by Kramer [22] and Baake et al. [23] who rec-
ognized the importance of the automorphism group�n of free groups which was discovered
by Nielsen [24] a long time ago. Most progress in investigating 1D models has been made
by methods based upon the trace map and real–space decimation techniques to investigate
the dynamical properties of the traces which, however, do not exploit on the full structure of
automorphism group. The situation is different for local properties such as the local density
of states or for wave–functions. In a previous article [17] we developed a real space renormal-
ization scheme which is based upon a real–space rescaling procedure of the Dyson equation
for one–band tight–binding models of generalized Fibonacci chains. Herein, we presented an
approach for finding all possible successions of given elementary rescaling transformations to
calculate the diagonal elements of the Green’s function and, hence, for the local density of
states at site���(E) = � 1�=mG��(E + {�); � ! 0+: (1)

Later on, we were able to generalize this method to include the non–diagonalelementsG��(E)
for all sites�; � [25] and to set up a renormalization scheme for the conductivity itself [26].
Previously, no renormalization treatments of the completeGreen’s function have been known
and calculations for the (dc) conductivity were fully numerical [27, 28, 29].
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Figure 1: Fifth generation standard Fibonacci latticew5 = LSLLSLSLL SLLS correspond-
ing to a supercell withf5 = 13 atoms. (a) Strip–projection scheme, (b) cut method for generat-
ing the quasiperiodic structure (c),LSLLSLSLLSLLS [2].

A. Generating algorithms for Fibonacci chains

For simplicity, we will discuss in this article only the caseof the standard FC which is specified
by two different types of bonds denoted by L (“long”) and S (“short”), see Fig. 1. One may
describe the geometric structure of such lattices bywordsw(L; S), i.e. strings in the symbolsL; S representing the corresponding linear arrangement of the “letters”L andS. These words
can be generated by an (infinite) repetition of the recursionlaw (Nielsen transformation (NT))wn = wn�2 � wn�1; w�1 = S; w0 = L ; (2)

where the symbol� is defined as the concatenation of two strings andn = 1; 2; : : : The length
of the FC in thenth generation,jwnj = fn, i.e. the number of letters inwn(L; S), satisfies
the recursion relation for the Fibonacci numbers [30]fn = fn�1 + fn�2; f�1 = f0 = 1 : (3)

Alternatively, thenth order approximants can be generated by substitutions (morphisms),
which operate on the symbolsL; S rather than on wordswn(L; S)L : � L 7! LSS 7! L : (4)

The mappingL may be viewed as theorbit of L, i.e.wn = Ln(L):L L7�! LS L7�! LSL L7�! LSLLS L7�! : : : L7�! LSLLSLSLLSLLS � � � :



4

B. Electronic Structure and Path Renormalization

In our study we employ the following tight–binding HamiltonianĤ[�; t℄ =X� j� > �� < �j + X�� j� > t�� < �j ; t�� = t��Æ��1;� (5)

wherej� > is a Wannier state centered at site� 2 G = [�M;N�1℄ � Z, and the real��; t��
denote the site–energies and the nearest–neighbour transfer integrals, respectively. (t�� > 0).
The FC has the speciality that there is noS–S bonding, hence only three of the possible four
combinations occur,�� = 8<: �� : t��1;� = t�;�+1 = tL�� : t��1;� = tL; t�;�+1 = tS� : t��1;� = tS ; t�;�+1 = tL : (6)

Thus, in this case we set� := (��; ��; �) and t := (tL; tS), respectively. To each wordw = (y�)�2G � y�My�M+1 � � � yN , with y� 2 fL; Sg, M + N � 2, we uniquely assign a
dual word�w = (��)N�1�=�M � (��M ; : : : ; �N�1), where each symbol�� 2 f�; �; g will
be related to the pair(y�; y�+1) by the map(LL;LS; SL) $ (�; �; ). For example, the
dual word pertaining tow5 is �w5 = �������, see Fig. 1. Let�u = (�u�)n�1�=�m
and�v = (�v�)q�1�=�p be the dual words ofu, andv respectively. We define the product
of two dual words, corresponding to the productw = u � v, by �u ^ �v =: �w, with�w = (�u�m; � � ��un�1; �n; �v�p; � � ��vq�1), �n := (yun; yv�p), whereyun (yv�p) is the last (first)
letter ofu (v).

To set up a renormalization scheme we approximate the aperiodic FC by a periodic ap-
proximant of length2N (M = N ),�G = �n ^ �n ^ : : : ^ �n| {z }2N 0 times

; G = [�N;N � 1℄; N = N 0fn ; (7)

wherefn�1 denotes the number of symbols�� in�n, and we have the periodicity��+fn = �� ,t��+fn = t�� . � = ~� + mfn with ~� 2 [0; fn � 1℄ labels the atoms inside the Fibonacci
supercell, andm 2 [�N 0; N 0 � 1℄ labels the vectors of the Bravais lattice of the periodic
approximant. Obviously, there is a unique correspondence between the dual word� and the
FC HamiltonianĤ� [�; t℄.

In site representation, the eigenstates of Eq. (5) can be represented in terms of the two
fundamental solutionsfP�g andfQ�g of the discrete Schrödinger equation�Ĥ�n [�; t℄ 	�� := t�+	�+1(E) + t��	��1(E) + ��	�(E) = E	�(E) ; (8)

such that the (unnormalized) solutions are	�� (E) := P�(E) +m�(E)Q�(E) : (9)P�(E),Q�(E), respectively, denote polynomials of degree��1 and�with initial conditionsP�1 = �1=t0 ,P0 = 1 andQ�1 = 0,Q0 = 1=t0 [31]. In addition, we have to fulfill the Bloch
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Figure 2: Energy spectrum of the standard Fibonacci chain in dependence of the hopping pa-
rametertL (y axis). Energy units are chosen such thattS = 1 throughout this chapter. Left
panel: constant onsite energies�� = 1. Right panel:�� = ��� = � = 1.

conditions	��fn = exp(�{ka)	�, wherea = fn is the lattice constant andk = k(E) is the
wave vector. According to time reversal symmetry a state of energyE is twofold degenerate
which will be denoted byjE;�i and	�� (E) = h�j�i, respectively.m�(E) denotes the
Titchmarsh–Weyl function [32]m�(E) = e�ik(E)fn + t0Pfn�1(E)t0Qfn�1(E) ; (10)e�ik(E)fn = �fn2 �s��fn2 �2 � 1 ; �fn = t0(Qfn �Pfn�1) ; (11)

wherefnk(E) = (p�)=N 0 = aros��fn (E)=2� 2 [0; �), and0 � p < N 0. For the
standard one-atomic tight–binding chain with equalt0s and�0s �fn(E) andQ�(E) = P��1
are, apart from a scale factor, Chebyshev polynomialsT�(x), U�(x) of first and second kind,
respectively [33].	�� (E) = e�{�k,E(k) = ��2t os(k). The central quantity of our interest
is the resolvent of the Hamiltonian Eq. (5) with kernelG��(z) = 1W (z)�����	+�	�� +����	��	+� �; (12)

the WronskianW (z) = t�+1(	+� 	��+1 � 	+�+1	�� ) and the discrete step function�� = 1
if � � 1 and�� = 0 else. From Eq. (12) one immediately obtains the local density of states
(LDOS), Eq. (1), and the total DOSN (E) = P� ��(E). The former is related to the wave
function by��(E) = j	�j2, while the support of the latter is simply the electronic spectrum�(Ĥ) of the Hamiltonian. Numerical examples for the spectrum andthe LDOS are displayed
in Figs. 2,3. Note that the symmetry of the electronic spectrum �(Ĥ[�; t℄) = supp(N (E)),
as a function of the hopping energytL, with respect totL = 0 is typical for all two–letter
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Figure 3: Local density of states��(E) (left) and the trace�fn (right) as functions of energy
at site� = 888 for the FC latticew15. The square root singularities at the mini–band edges are
a consequence if the periodic boundary conditions of the approximant. For further details see
text.

chains irrespective of the generating algorithm. There is atrivial gap–closing fortL = tS = 1
in the case of the diagonal model (i.e. all�� = �). This situation changes, however, in the
non–diagonal case (right section of Fig. 2). Since the pointspectrum is empty in the case of
the FC, the spectrum is determined by�(Ĥ) = fE 2 j j�fn j � 2g. In the right section
of Fig. 3 the two possibilities ((b)tL = tS , and (c)tL 6= tS) are shown. The zeros of the
renormalized hopping energiesT+12 := 1=t�L are located in the gaps, thus the LDOS usually
(but not always, cf. arrow (a) in the left section of Fig. 3) vanishes only in the cases when
gap–closing takes place (cf. left panel of Fig. 3).

For large approximants a direct solution is intractable. The idea of path renormalization is
to decimate a given FC�G and its corresponding Hamiltonian̂H� and Green’s functionG by
means of a deflation operation such thatG is invariant on the remaining sites. The deflation
is successively repeated until a tractable cell size (a simple periodic lattice) is reached. As an
example, we demonstrate how to calculate the LDOS��(E). The starting point is observed
by constructing to any inverse substitutionM�1 a suitable decimation transformationM�1
which splits a given lattice (chain)L into two piecesL1 [ L2, whereL2 corresponds to the
vertices which are eliminated, and the latticeL1 consists of the vertices which survive this
elimination. In case of the FC we can confine ourselves to the purely positive deflations, for
the general case see Ref. [18]. One can show that all possibledeflations are compositions
of the two elementary deflationsL�1 : LS ! L; L ! S, andR�1 : SL ! L; L ! S,
respectively. From a mathematical point of view one describes any such decimationM�1 by
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(a) (b)

Figure 4: Local density of States as a function of site index for two different energies (a)E = 2:791 and (b)E = 2:759. f17 = 4181. �� = ��� = � = 1 andtL = 1; tS = 1:5.

the projectionsP̂M1 := X�2L1 ����
���; P̂M2 := X�2L2 ����
��� = 1I� P̂M1 ; (13)

implying the partitioǹ 2(L) = `2(L1)� `2(L2) of the Hilbert space and of the Dyson equa-
tion � z � Ĥ11 Ĥ12Ĥ21 z � Ĥ22 �� Ĝ11 Ĝ12Ĝ21 Ĝ22 � = � 1I1 00 1I2 � ; (14)

where we have set̂Hij = P̂Mi ĤP̂Mj , and Ĝij = P̂Mi ĜP̂Mj , respectively. In order to
calculate observable quantities we are interested in the Green’s function, rather than in the
Hamiltonian, for thenewlatticeL1, i.e.Ĝ11(z) = P̂1Ĝ(z)P̂1 =: RM̂�1 � Ĝ(z): (15)

We introduce here the “super operator”RM̂�1 acting in the space of Green’s functions, which
is induced by the deflationM�1 of the FC. The superscript “R” is reminiscent of renormal-
ization. From Eq. (14) one immediately obtains a new Dyson equationĜ11 = Ĝ(0)11 (1I + V̂Ĝ11)Ĝ(0)11 := (z � Ĥ11)�1; V̂ := Ĥ12(z � Ĥ22)�1Ĥ21: (16)Ĝ11 is the resolvent of the new effective Hamiltonian̂Heff[z℄ := RM̂�1 � Ĥ, whereĤeff[z℄ := Ĥ11 + Ĥ12 1z � Ĥ22 Ĥ21 = X�;�2L1(HjM[z℄)�� ����
��� (17)
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Figure 5: Binary “Farey graph”F(Vn;En). Every real number� 2 [0; 1℄ corresponds uniquely
to one path inF(Vn;En) or equivalently, to a binary address.

acts in thereducedHilbert spacè 2(L1). One can show that in our case the new matrix ele-
ments(HjM[z℄)�� = (H[�jM; tjM℄)�� , with �; � 2 L1, have the same tridiagonal structure
as Eq. (5), but with the new, renormalized parameters�jM andtjM, respectively. The latter
are rational functions of the original parameters�, t, and the (complex) energyz = E + i�.
For details see Refs. [17] and [18]. Suppose we start with theHamiltonianĤ� [�; t℄ associ-
ated with the dual word�, acting in the Hilbert spacè2(L) = `2(L1) � `2(L2), then the
correspondenceM(�0) = � () RM̂�1 � Ĝ� [�; t℄(z) = Ĝ�0 [�jM; tjM℄(z) (18)

is valid, whereĜ�0 [�jM; tjM℄(z) acts in the Hilbert spacè2(L1).
Omitting in the following the details of the construction offiltrations of Hilbert spaces and

K–theory [17, 18], we now show the basic idea how to calculatethe local density of states��(E) for all sites�. We will demonstrate the deep connection between path renormalization
and spiky structures like in Fig. 4, where the LDOS��(E) = j	+� (E)j2 is plotted as a function
of the site� for two different energiesE. The boundary conditions��+fn = ��, andt�+fn =t�, respectively, immediately imply the relationsRT̂ � Ĝ�(z) = ĜT (�) (z) and RT̂ (��; �) = �T (�); �+1 ; (19)

and consequently��; � = RT̂ �(��; 0) = 1� �=m ĜT �(�)(z)�00: (20)

HereRT̂ is the dual of the shift operator with the property(RT̂  )� = 	�+1 for all �, while
we setT (�) = (�1; : : : ; �p; �0) for every� = (�0; �1; : : : ; �p). The main idea of path renor-
malization is the substitution of the shift operatorsRT̂ � = RT̂ � with elementary substitutions



0.1 Interplay between the Geometrical and the Electronic Structure in Quasicrystals 9M. In Ref. [17] we constructed the orbitO(!) � �T �(!) j� 2 N	 with�T � j� 2 N	 �= nM(�) ���M(�) = limn�!1 n�Yk�=1M0k�;�; � 2 No;! =M(L); M := limn!1 nYk=1Mk: (21)

whereM0k�;� 2 A�. A� is an alphabet of elementary substitutions. In the case of the

FC considered here we haveA� = fL;Rg andMk = L. The general case of general-
ized FC or arbitrary substitutions on n–letter alphabets (nfinite) is investigated in Ref. [18].
For generalized Fibonacci words one can useMk = PVNk , with P(L; S) = (S;L) andVNk = (PL)Nk . The associated alphabetA� is given in Ref. [17]. Fig. 5 shows all rel-
evant possibilities of

QkMNk and their connections to the angle�, defined in Fig. 1(a).
This diagrams of this type are called “Farey graph” because it yields the well–known Farey
construction of real numbers on the interval[0; 1℄. Their construction rules may be found
in Refs. [21, 34]. Note, that in Fig. 5 we used the fact thatM2M1 corresponds uniquely
to SM2SM1 . SM : � ! � 0 is the Möbius transformation corresponding to the substitution
matrixSM which corresponds to the substitutionM [18].

The key message of Eq. 21 is, that it is always possible to find asuccession of elementary
substitutions for any� 2 N (hereL, andR respectively), such thatM(L) = ! () ��; �(E) = 1�=m �(RM̂(�))�1 � Ĝ� [�; t℄(z)�00= 1�=m �Ĝ� [�jM(�) ; tjM(�) ℄(z)�00= 1�=m 1q(z � ��jM(�))2 � 4t2LjM(�) (22)

with (RM̂(�))�1 := limn�!1 1Yk�=n� RM̂0 �1k�;�; (23)

whereRM̂0 �1k�;� is the super operator corresponding to the deflationM0k�;��1. The last expres-
sion in Eq. (22) is the consequence of the underlaying periodic boundary conditions. From Eq.
(22) one concludes that the LDOS is completely determined bythe behaviour of the dynamical
system��jM(�) ; tjM(�)� = (RM(�))�1(�; t);��(k�); t(k�)� = RM0 �1k�;���(k��1); t(k��1)�; k� = 1; 2; : : : ;1; (24)

with (�(0); t(0)) = (�; t).
Our approach has a nice geometrical interpretation. To find the concrete sequence for the

super operators Eq. (23) one has to follow one of the corresponding paths in the associated
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Figure 6: (a) The hierarchical graphG�(V;E) for the FC. To every directed edge (arrow) in
the setE corresponds a super operatorRM̂0 �1k�;�. Arrows pointing to the left (resp. right) site

correspond toRL̂�1 (resp.RR̂�1) associated to the deflationsL�1 (resp.R�1). (b) To each
graphG�(V;E) one can find a generating automaton [18].

hierarchical graphG�(V;E), first introduced in Ref. [17]. For the case of the FC we plotG�(V;E) in Fig. 6. Each directed line (arrow)e 2 E corresponds to a super operator.
For n = 1; 2; : : : we assign the vertices��(n) 2 V; �(n) = 0; 1; : : : ; p(n) with p(n) =max(�(n)), and� 2 f�; �; g respectively, the LDOS��n; �(n)(E), where we have set�n =(�0(n); �1(n); : : : �p(n)). Details may be found in Refs. [17, 18].

C. Electrical Conductivity
In the linear response theory the real part of the conductivity is given by [35]<ef�(n)(!)g = �~ Z 1�1 f(E)� f(E + ~!)~! �(n)(E;!) dE ; (25)�(n)(E;!) = Tr

�Ĵ Æ�E � Ĥ�(n) �Ĵ Æ�E + ~! � Ĥ�(n) �	 ; (26)

wheref(E) is the Fermi function and̂J is the current operatorĴ = ie~m X�;�2G j�� ����
���; j�� = �t�+Æ���1 + t��Æ��+1 : (27)

The frequency dependent electrical conductivity�(!) depends on the density of initial and
final states as well as on the wave functions which determine the dipole matrix elements. In a
recent article [26], we derived a suitable expression of Eq.(26) in terms of the known2 � 2
transfer matrices and additional5 � 5 matrices�, which allow us to set up a real–space
renormalization scheme and its numerical implementation.
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Figure 7: Density of states (left), bandstructure (middle), and (unrestricted) transition energies
(wave numberk may be real/imaginary) between the subbands (right) as function of frequency.6th order generation FC with�� = �� = � = 0 andtL = 1:1; tS = 1:0.
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Figure 8: Density of statesN (11)(E) (left) and conductivity�(11)(!) (right) of the FC with a
supercell off11 = 233 sites. Fermi energy�F = 0, tS = 1:0; tL = 1:5, and�� = �� = � = 0
(arbitrary units).

−5 −4 −3 −2 −1 0 1 2 3 4
0

2

4

6

8

10

0 1 2 3 4 5
0

2

4

6

8

10

E !
N (E) �(!)

Figure 9: Density of states (left) and conductivity (right) of the same FC as in Fig. 8 but with
different parameters:�F = �0:2, ��� = �� = � = 1:0.



12

0.1.3 Results and Conclusion

The main challenge in the numerical evaluations turned out to be the calculation of the sub-
band transition energies displayed in Fig. 9. This task implicitly implies the evaluation of
polynomials of very high order. Such operations are numerically unstable, but could be man-
aged with the help of Bailey’s multiprecision software packet [36].

Figs. 7, 8, and 9 display some numerical results for the DOS, mini–band structure, tran-
sition energies, and the frequency dependent conductivity. For frequency! ! 0, merely�(n)(0) contributes because none of the lines(E(i)! ; !) cut the axis! = 0 for energieswithin
the energy spectrum. Therefore,�(n)(!) vanishes in the limit! ! 0. Moreover, there is
always a gap in the neighbourhood of! = 0. If one introduces some mechanism of dis-
sipation or disorder, one may expect that the small gap in�(!) at ! = 0 revealed in Fig.
8 may be smeared out (leading to metallic behaviour), but will persist in the case of Fig. 9
(semiconducting behaviour).

Starting from the self–similarity of the FC, we found a real space renormalization scheme
for the Green’s function as well as for the Kubo conductivity, which is suitable for numer-
ical implementation. Hereto, these schemes stand alongside with the powerful tool of the
trace map for the spectrum and the path renormalization scheme for the local DOS [17]. For
details and generalizations of our approach to arbitrary morphisms (like Thue–Morse, Rudin–
Shapiro, period doubling) and n-letter alphabets, we referto Ref. [18].

0.2 Interaction–induced Correlations and Hume–Rothery
Stabilization

The microscopic origin of the stability of quasicrystalline phases continues to be an unresolved
issue. While at high temperatures the long-range order of quasicrystals and approximants may
be favored over crystalline order because of entropic effects [15], striking interrelations be-
tween the ionic and the electronic structures [3, 11] especially in icosahedral (i) quasicrystals
seem to indicate that electronic stabilization plays an important role at short and intermedi-
ate length scales of several atomic spacings: (1) The electron density of states (DOS) has a
pronounced, structure-induced pseudogap at the Fermi level "F . (2) The positionkp of the
main ionic structural peak coincides with twice the Fermi wave number,2kF ' kp [12]. (3)
In dependence of the composition from their constituents, quasicrystalline phases are only
stable in small regions where the condition2kF ' kp is satisfied. (4) In the quasicrystalline
phase the electrical conductivity is substantially smaller than that of each of the elemental con-
stituents. Similar coincidences between electronic and ionic structures are observed in amor-
phous noble-polyvalent alloys [12, 37]. These findings may be traced back to the common
feature of these materials that the ion system exhibits concentrical, shell-like density correla-
tions, where the spacinga between neighboring shells coincides with the Friedel wavelength,�F � �=kF = 2�=kp � a. Therefore, it has been conjectured that the electronic Friedel
oscillations around an arbitrary central ion give an important contribution to the pair potential.
As a consequence, the total energy of the system should be optimized by the ions effectively
being bound in the minima of the Friedel potential and a concommittant pseudogap formation
at "F . The importance of such a Hume-Rothery (HR) stabilization mechanism is supported
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by detailed theoretical studies at temperatureT = 0 both for amorphous [38] and for qua-
sicrystalline [39, 40, 41, 42] systems. Numerical simulations [43] show that quasicrystalline
structures can indeed be grown by the use of pair potentials with appropriate repulsive (i.e.
oscillatory) parts.

However, at the relevant temperatures where quasicrystalsor amorphous structures are
stable (T ' 102 : : : 103K), regular Friedel oscillations are exponentially damped,and the
thermal ion energy is so large that the experimentally observed short- to intermediate-range
concentrical ion density correlations cannot be understood on the basis of the conventional
Friedel oscillations alone.

In the present work it is shown that the interplay between Coulomb electron-electron in-
teraction and disorder can lead to a strong enhancement as well as to a systematical phase shift
of the Friedel oscillations even at finiteT . Both effects compare well with available experi-
mental results on amorphous HR alloys, and support the validity of the HR mechanism even
at elevated temperatures.

0.2.1 Model and Effective Interaction

We now discuss an effective model for the electron motion in amorphous and quasicrystalline
systems atT > 0. The ionic density correlations mentioned above constitute a scattering
potential for the electrons whose scattering T-matrixt~k;~k0 is, by definition, proportional to the

static ion structure factor,t~k;~k0 / S(j~k�~k0j), which in turn is peaked at a momentum transferq � j~k � ~k0j = kp ' 2kF and thus leads to enhanced backscattering. As has been shown
[50, 51, 19], the latter not only generates a pseudogap but atthe same time leads to a substantial
increase of the electron transport or density relaxation rate,��1, over the quasiparticle decay
rate,��1qp . ��1 is related to the conductivity� by � = ne2�=m�. Thus,��1 > ��1qp is a
generic feature of the amorphous and the quasicrystalline state. In quasicrystals, when the
conductivity is substantially reduced below the Drude result, we may have��1 � ��1qp .

In addition, at the relevant, finite temperatures the phase coherence of the electrons is lost
on the length scale of the inelastic mean free path. It follows that the electrons cannot probe the
long-range order in a quasicrystal. Rather, they experience an effective potential made up of
randomly placed, spatially extended scattering centers, each one characterized by the T-matrixt~k;~k0 . For a detailed derivation of the effective disorder model see [44]. In such a random
potential the electronic motion is diffusive instead of ballistic, similar as in amorphous metals.
When the electron coherence length is long enough (lowT ), the motion may be subdiffusive
with a diffusion exponent� < 1=2 [16, 45]. However, for the present purpose the precise
value of� is unimportant, and we will assume� = 1=2 (classical diffusion) in the following.

Diffusion, as a dissipative process, is difficult to incorporate in anab initio calculation.
Therefore, we will choose a Feynman diagram technique, where diffusion arises by averaging
over all (quasi-)random configurations of the system. In a diffusive electron sea screening
is inhibited, so that the effective Coulomb interaction,veffq (z; Z), between electrons with
complex frequenciesz andz + Z acquires a long-range, retarded part [46],veffq (z; Z) = vq�2(z; Z; q)�RPA(Z; q) ; vq = 4�e2q2 ; (28)
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Figure 10: a) Diagrammatic definition of the diffusion vertex�. b) Polarisation�(0; q) including lead-
ing order quantum correction induced by disorder and interactions. Dashed lines denote electron–ion
scattering T-matrixt~k;~k0 , the wavy line with solid triangles the effective Coulomb interaction.

where�RPA(Z; q)=1+2�i � =(Z sgnZ 00+ iq2D) is the disordered RPA dynamical dielectric
function, and the diffusion vertex, defined in Fig. 1 a), is�(z; Z; q) = ( i=� sgnZ00Z+iq2D sgnZ00 z00(z + Z)00 < 01 otherwise.

(29)D = 1=3 v2F � and 00 denote the diffusion constant and the imaginary part, respectively, and� = 1=2. The long-range nature ofveffq is a consequence of the hydrodynamic (Z; q ! 0)
pole of�, Eq. (2). Since diffusion is a classical phenomenon, guaranteed by particle number
conservation, the form Eq. (1) of the effective interactionpersists at finiteT .

There are two experimental indications for the diffusion model of electron transport to be
valid in i-quasicrystals. First, note that the diffusion-enhanced effective Coulomb interaction
Eq. (1) implies the well-known

pjE � "F j dependence of the DOS in the pseudogap of
disordered systems [46], where the half-integer power is characteristic for diffusion. The fact
that a powerlaw dip in the DOS at"F with an exponent very close to 1/2 has been observed in
i-quasicrystals by tunneling measurements [47] may be taken as an indication that the electron
motion is indeed diffusive in these systems, and that the effective interaction has indeed the
Alt’shuler-Aronov form Eqs. (1), (2). Second, the diffusion model, based on a finite phase
coherence length, explains why the spikiness of the DOS, predicted for ideal quasicrystals atT = 0, has up to now not been observed experimentally [48].

0.2.2 Electron Density Response

The dynamical screening of the electron-electron interaction in a diffusive metal may be ex-
pected to drastically affect the screening charge distribution around an ion in the electron sea
as well. In order to calculate this effect on the Friedel oscillations, we must consider the static
charge density response�(0; q) in the vicinity of q = 2kF . It is given in terms of the polar-
ization function�(0; q) as�(0; q) = �(0; q)=(1 � vq�(0; q)). The first term of Fig. 1 b),�(0)(0; q), corresponds to the well-known Lindhard function (RPA) [50]. In this diagram�
contributes only a nonsingular factor ofO(1), since here the effective interactionveffq enters
in the static limit at wave numbersq ' 2kF , where the diffusion vertex� is structureless.
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We are thus led to consider quantum corrections where� gives contributions with vanishing
frequency and momentum transfer, so that thehydrodynamictransport properties become im-
portant, although the response is taken at large external wave numbersq. The most singular
contribution of this type arises from the quantum correction �(1)(0; q), shown in Fig. 1 b),
2nd diagram.

While diffusive density relaxation occurs in general for large times,t > � , in �(1)(0; q)
it is, in addition, cut off for times larger than the life time�qp of the quasiparticles, which are
interacting viaveffq0 . Thus, the frequency transfer in this term extends over the nonvanishing
(see above) range��1qp � jZj � ��1. It may be evaluated explicitly as [44, 19],�(1)(0; q) = �C 2m�kF(2�~)2 �qp=� � 1("F �)7=2 � (30)Z "F�"F d� 1=(4T )

cosh2 �2T x� 1[(x � 1)2 + ( 14p2"F �qp )2℄3=4 ;
wherex = x(�) = (q=2kF )=p1 + �="F andC is a numerical constant ofO(1). It is seen
that forT = 0, ��1qp ! 0 �(1)(0; q) exhibits a powerlaw divergence/ �sgn(q � 2kF )=jq �2kF j1=2 at q = 2kF . Although at finiteT or ��1qp the divergence of�(1)(0; q) is reduced
to a peak, the inverse dielectric function,1="(q) = 1=(1 � vq�(0; q)), still has aq = 2kF
divergence at a critical transport rate,��1 (T ) because of the vanishing denominator. This
leads to a systematical enhancement as well as to a phase shift of the Friedel oscillations (see
below). On the other hand, when there is no enhanced backscattering, we have�qp=� = 1,
and the peak structure of�(0; q) vanishes. Eq. (3) constitutes an extension of previous work
[19] in that the finite quasiparticle life time is explicitlytaken into account. The parameter��1 may be varied by changing the composition of the alloy.

0.2.3 Comparison with Experiments

In the following, the theory summarized in the previous section is applied in the region1="F �qp � 1 to a large class of noble-polyvalent metal alloys like Cu1�xSnx. We restrict
ourselves to the comparison with amorphous phases here, because of their structural similari-
ties to QC systems, and because at the same time in the amorphous state the Fermi momentum
can be varied over a wider range than in QCs. These HR alloys exhibit an amorphous to crys-
talline transformation (CAT) as a function of the composition of the alloy, and the thermal
stability may be continuously varied. Remarkably, in all these systems (1) the thermal stabil-
ity reaches a maximum at or near the CAT (Fig. 2) [37], and (2),assuming that the ions sit in
the minima of the Friedel potential, the measured ionic positions suggest that there is a sys-
tematical phase shift' of the Friedel oscillations [37],�(r) / os(2kF r�'), with ' = �=2
at the CAT (inset of Fig. 2).

Fourier transforming1 � 1="(q) to obtain�(r) [50] shows that for incomplete Fermi
surface-Jones zone matching, i.e. small��1 ' ��1qp , the quantum corrections generate den-
sity oscillations�(1)(r) / �cos(2kF r)=r3, which overcompensate the conventional Friedel
oscillations, implying a phase shift of' = � [19]. As ��1 ! ��1 , the increasing2kF peak
of 1="(q) leads, in addition, to density oscillations�(1)(r) / sin(2kF r)=r2 [49], so that in
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Figure 11: Crystallization temperatureT as a function of the DOS suppression at"F , (1 � g). Data
points representT for a-Cu1�xSnx [5]. The solid curve is the fit of the present theory (see text).
Vertical line: position of CAT. The inset shows the phase shift ' of the first maximum of the charge
density distribution�(r). Solid line: theory. Data points with solid line: measurements [5] for a-Cu1�xSnx.

the vicinity of ��1�(r) / �cos(2kF r)(2kF r)3 +A(��1)sin(2kF r)(2kF r)2 ; (31)

with A(��1) ' 0:343�(1� ��1=��1 )�1=2. The exponent1=2 is characteristic for diffusive
behavior. Thus, the Friedel oscillations are shifted by' = � � tan�1[2kF r A(��1)℄ '�=2 + 1=(2kF rA), i.e. the diverging Friedel amplitude necessarily goes hand in hand with'! �=2+0. Note that, in contrast to the conventional Friedel oscillations, this divergence is
robust against damping due to finiteT or disorder. The point where the amplitude,A, diverges
should be identified with the CAT, since at this point the fluctuations of the Friedel potential
also diverge, allowing the system to find its crystalline ground state. This process explains in
a natural way the observed composition dependence of the thermal stability and of the phase
shift' mentioned at the beginning of this section.

For a direct comparison with experiments the control parameter of the theory,��1, must be
translated into a parameter which is experimentally accessible: It follows from the scattering
theory [51, 19] that��1 = ��1o +  S(2kF ), where the peak of the ionic structure factor,



0.3 Acknowledgments 17S(q = 2kF ), controls the backscattering amplitude, is a constant, and��1o is an offset due
to momentum independent scattering.S(2kF ) in turn is proportional [37] to the measured,
structure–induced suppression of the DOSN("F ) at the Fermi level,1 �N("F )=No("F ) �1 � g, compared to the free electron gas,No("F ). The resulting fit of the crystallization
temperature,T, is shown in Fig. 2, where the contribution to the stability coming from the
pseudogap formation is assumed to be linear in(1 � g) (dashed line). The characteristic
increase ofT at the CAT, explained by the present theory, is clearly seen.The inset shows
the calculated phase shift,', and the measured shift of the atomic nearest neighbor position
relative to the position of the first conventional Friedel minimum,ao = �=kF . Note that there
is no adjustable parameter in', once the fit ofT has been performed. The overall behavior of
the shift is well explained by the theory; however, the experimental data approaches' = �=2
faster than predicted. The latter may be attributed to the fact that, as seen from the discussion
after Eq. (31), the higher–order Friedel minima approach' = �=2 faster than the first one. In
this light, the agreement between theory and experiment is remarkably good.

0.2.4 Conclusion

The structural similarities [3] between amorphous alloys and i–quasicrystals suggest that the
quantum effect discussed above may be important in the latter systems as well. In fact, qua-
sicrystals seem to fulfill all the necessary conditions for this effect to occur, i.e. effectively dif-
fusive electron motion [16, 45] and��1 � ��1qp . The latter is supported by the Fermi surface
matching, i.e. by the experimental observation [47] and theoretical prediction [39, 40, 41] of
structure-induced pseudogaps. Moreover, another more commonly known effect of disorder–
enhanced Coulomb interaction, the

pjE � "F j dependence of the DOS in the pseudogap
[46], may have been already observed ini-quasicrystals by tunneling measurements of the
DOS [47].

In conclusion, we have shown that the Friedel oscillations are enhanced by Coulomb in-
teraction in the presence of disorder and enhanced backscattering. The results are relevant for
the stability of amorphous and quasicrystalline metals. A selfconsistent formulation, treating
the coupled electron and ion systems on equal footing withina continuum model, has been
developed in Ref. [44]. It is proposed to include the enhanced Friedel potential calculated in
the present work in the pseudopotential of more quantitativeab initio calculations.
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S. B. Astaf’ev, and M. Kléman, Phys. Rev. B59, 286 (1999).
[44] J. Kroha, Habiliationsschrift (2001), to be published.
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