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Abstract. The most prominent pseudoparticle representations and their applica-
tions to correlated spin and electronic models are reviewed, with approximate solu-
tion schemes ranging from saddle-point approximations with Gaussian fluctuations
to conserving approximations and renormalization group (RG) techniques. Merits
and shortcomings of these methods are described. In particular, the generic feature of
radial slave boson fields to possess a finite expectation value is discussed, while pure
fluctuation fields may best be treated by conserving appriximations. We present ap-
plications to the magnetic phases of the Anderson lattice model and to the Hubbard
model. The non-crossing approximation and the conserving T-matrix approximation
are presented and discussed as the most important conserving approximations. Fur-
thermore RG techniques for pseudoparticle representations, including “poor man’s
scaling” and functional RG for the Kondo model in and out of euilibrium, a novel RG
approach to the Kondo model for strong coupling, and the functional RG approach
to frustrated Heisenberg models are discussed.
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1.1 Introduction

The immense and steadily increasing field of strongly correlated electrons has
emerged as a central theme of many-body physics over the past three decades
(for a review see [1]). Of particular interest are the so-called heavy-fermion
metallic compounds [2] and copper-oxide superconductors [3]. While fully ac-
counting for their properties remains a challenging task, it is believed that
their key properties are embodied in the Anderson or Kondo lattice models
in the former case, and in the Hubbard model and the t-J-model in the latter
one. The difficulty in solving these models is rooted in the fact that conven-
tional many-body perturbation theory (including infinite resummations), does
not work in these cases. This failure is obvious in lattice models with on-site
repulsion U exceeding the band width D.

Take the Hubbard model with large on-site repulsion U, where each lat-
tice site can either be empty (state |0)), singly occupied (|1),]|])) or doubly
occupied (]2)). The dynamics of an electron will be very different according to
whether it resides on a singly or doubly occupied site. For large U the doubly
occupied states will be pushed far up in energy, and will not contribute to
the low energy physics. This leads effectively to a projection of Hilbert space
onto a subspace devoid of doubly occupied states. It turns out to be difficult
to effect the projection within conventional many-body theory, as has been
realized early on in the context of the magnetic impurity problem. Indeed,
this difficulty is at the heart of the single impurity Kondo problem, for which
a sound physical picture and quantitative analytical and numerical methods
of solution have been developed over a period of 40 years [4]. Over the past
15 years the Kondo problem has attracted renewed interest in the context of
electron transport through nanostructures, in particular in situations out of
equilibrium. We will discuss impurity models briefly in a later section.
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A powerful technique for describing the projection in Hilbert space is the
method of auxiliary particles (slave bosons, pseudofermions [5-10]): One as-
signs an auxiliary field or particle to each of the four states |0),]]),|T),|2) at
a given lattice site (considering one strongly correlated orbital per site). The
Fermi character of the electrons requires that two of the auxiliary particles
are fermions, e.g. the ones representing ||),|T) or equally well |0),|2) and
the remaining two are bosons. Introducing new particles for the states |0) , |2)
allows to express the projection to the Hilbert space of states without double
occupancy as ng + ny +n; = 1, where n, are the occupation numbers of the
states |a); i.e. each lattice site is either empty or singly occupied. There are
various ways of defining auxiliary particles for a given problem. It is wise to
choose the one which is best adapted to the physical properties of the system.

Compared to alternative ways of effecting the projection, the auxiliary
particle method has the advantage of allowing one to use the machinery of
quantum field theory, i.e. Wick’s theorem, diagrammatic perturbation the-
ory and infinite resummations of diagrams, provided the constraint can be
incorporated in a satisfactory way.

Historically, auxiliary particle representations have first been introduced
in the context of spin models. Spin operators may be represented by Bose
operators (Holstein-Primakoff [5], Schwinger [6]) or in the case of spin 1/2
(and with additional complications for higher spins as well) by Fermi oper-
ators (Abrikosov [7], Coqgblin-Schrieffer [8]). Electron operators necessarily
involve a combination of auxiliary fermion and boson operators. The simplest
such representation has been proposed for the Anderson impurity problem by
Barnes [9], and for lattice problems by Coleman [10]. A more complex rep-
resentation of electron operators, incorporating the result of the Gutzwiller
approximation [11] on the slave boson mean-field level has been developed by
Kotliar and Ruckenstein [12]. Generalizations of the latter to manifestly spin
rotation invariant form [13] and to particle-hole and spin rotation invariant
form [14] have also been proposed. Generalizations to multi-band Hubbard
models have been introduced as well [15,16].

Quite generally, auxiliary particle theories have to deal with two problems:
the treatment of the constraint and the approximate description of the dy-
namics. An accurate control of the constraint alone does not yet make a good
theory!

In section 2 we review most of the available pseudoparticle representations
for both spin operators and electron operators. Mean-field approximations of
slave boson operators within several of the most prominent models are consid-
ered in section 3. Section 4 is devoted to Gaussian fluctuation corrections on
top of mean-field theories. Chapter 5 is devoted to a class of time-dependent
mean-field type approximations, the non-crossing approximation and the con-
serving T-Matrix approximation. A powerful non-perturbative method allow-
ing to capture collective many-body phenomena is the renormalization group
method in its various forms. In section 6 we present several examples of aux-
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iliary particle representations employed to describe strong coupling problems
within a RG treatment.

1.2 Pseudoparticle representations of quantum operators

1.2.1 Spin operators

As mentioned in the introduction, the first auxiliary particle representions of
quantum operators proposed and successfully applied are the bosonic repre-
sentations of spin operators by Holstein-Primakoff and by Schwinger. Since
both are well documented in the literature we do not consider them here. Gen-
erally speaking, bosonic representations are useful to describe ordered states
and fluctuations of collective variables. They are less useful if the fermionic
character of spin 1/2 particles is of importance. In the following we will con-
centrate on fermionic representations.

Fermionic representations of S=1/2 spins

The spin 1/2 operator S has a faithful representation in terms of fermion
operators f, (o =1,])

1
_ I
S =3 /E_T lfUTU(,/f[,/ (1.1)

where 7 is the vector of Pauli matrices. The Hilbert space obtained by the
creation operators f; acting on the vacuum state |vac) is spanned by four
states. The two unphysical states, the empty and the doubly occupied one,
are eliminated by requiring that all states considered are eigenstates of the
occupation number operator Q = Y. fIf, with eigenvalue Q = 1.

o=1,1

Abrikosov projection

A first projection scheme involves adding a term AQ to the Hamiltonian, and
taking the limit A\ — oo [7]. In that case double occupancy is forbidden, while
empty states are not involved in expectation values of physical spin operators.
The projection of the pseudofermion Green’s function G<(w), for example, is
effected by taking the following limit G<(w) = lim) .o [G5 (w)Zx/ (Q),]. Here
G5 (w) is the pseudofermion Green’s function at finite chemical potential \,
Zy is the partition function and (@), = > <f;fo>)\ is the total number

o=T,l
of pseudofermions at given A. While taking the limit A — oo removes the
contribution of doubly occupied states, the unphysical contribution of the

empty level in the partition function Z) is removed in the limit A — oo by
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replacing Zy by (Q) . In equilibrium, we may now use that —iG5 (w) = f(w+
)\)A(w)Aiioe*/\/Te*“/TA(w), where f(w) is the Fermi function, to express the
projected Green’s function as G<(w) = ie™“/T A(w)/[2 [ dwe™*/T A(w)]. Out
of equilibrium the occupation function f)(w) has to be calculated from the
quantum Boltzmann equation.

The above projection scheme has the disadvantage that particle-hole sym-
metry is maximally broken. The spectral functions are therefore very unsym-
metric under a sign change of w, causing difficulty in numerical evaluations.

Particle-hole symmetric projection

If one takes A = 0 the pseudofermion spectral function is particle-hole symmet-
ric, A(—w) = A(w), which facilitates calculations considerably. In calculating
any physical quantity, which only involves spin operators, unphysical states
only come in through the partition function, which enters quantities described
by diagrams with closed pseudofermion loops. In the case of quantum impurity
models, diagrams with more than one pseudofermion loop do not contribute,
as each loop introduces a factor 1/Ny, with Ny, the number of lattice sites in
the system. The pseudofermion self-energy is not affected, because its rele-
vant diagrams do not contain loops. By contrast, the diagrams for response
functions like the conductance and the spin susceptibility necessarily contain
one loop. The latter quantities have to be corrected by a normalization fac-
tor, as discussed by Larsen [17]. The correction amounts to multiplying the
pseudofermion occupation factor fy(w) by a factor

Y = 2/2, = (Z)20)/1(Z) Z0) — 1/2], (1.2)

where Z(\) = Trle=HHAA/T] 7 = Z(X\ = 0) and Zy = Trle”Ho/T] are
the partition functions of the (unprojected) interacting system and nonin-
teracting system (taking J — 0 ), respectively, and Z, is the physical (pro-
jected) partition function. We now calculate (Z/Zp) by using the relations
Z=Trle /T = 1Zy+ Z, and Z (Q) = 3 Zy + Z,. From these two relations
we conclude that (Q) = 1 and that Y is indeed given by the above relation.
One may calculate (Z/Z) by integrating the total pseudofermion occupation
Q) = Z'TriQe~HHA/T] = 7L nTr[e~(HH /] with respect to A
from 0 to co. As the spin levels are not occupied in the limit A — oo the
system is therefore noninteracting in this limit. Hence limy_.o, Zx = Zp/4
(keeping in mind that the trace over the pseudofermion states at A = 0 gives
a factor of 4), leading to the result

22 = Jexpl: [ 40 (@) (1.3)

In this set-up the total occupation number may be calculated approximately

from Zod)\ @), = %:fod)\Qfdwf(w + NAW) =~ 2 [dwln(l + e~“/T)A(w),
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neglecting the A-dependence of the spectral function A(w). In the case of the
spin 1/2 Kondo model the factor Y increases from Y = 1 at low temperatures
(T < Tk, the Kondo temperature) to Y =2 at T > Tk.

Popov-Fedotov projection

A different approach allowing for an exact treatment of the constraint even for
lattice systems has been proposed by Popov and Fedotov [18]. It amounts to
applying a homogeneous, imaginary-valued chemical potential puPPY = —%,
where T is the temperature. Thus, within this scheme, the Hamiltonian H is

replaced by

H — PP — [ _ HPPVZQi ) (1.4)

Note that H denotes a given spin-1/2 Hamiltonian using the fermionic rep-
resentation of spin operators. Given a physical operator O (i.e., an arbitrary
sum or product of spin operators) it can be shown [19] that the expectation
value (O)PPV, calculated with HPPY and the entire Hilbert space, is identical
to the physical expectation value (O), where the average is performed with
the original Hamiltonian H. The projection works by virtue of a mutual can-
cellation of the unphysical contributions of the sectors ); = 0 and Q; = 2, at
each site. It should be emphasized that, although the Hamiltonian HPPY is no
longer hermitian, the quantity (O)PP¥ comes out real-valued. If, on the other
hand, O is unphysical in the sense that it is non-zero in the unphysical sector,
e.g., the operator O = @Q;, the expectation value (@;)PPV is meaningless and
one has (Q;) # (Q:)"".

This approach is applicable to spin models [19-22] but unfortunately it
can not be extended to cases away from half filling. Although pPPY vanishes
in the limit 7' — 0, in principle the exact projection with pu = pPP¥ and the
average projection with p = 0 are not equivalent at 7" = 0. This is due to
the fact that the computation of an average (...)PPV does not necessarily
commute with the limit 7" — 0. Nevertheless it can be expected that in
usual quantum spin models both projection schemes are equivalent at T' =
0. This can be understood with the following argument: Starting from the
physical (“true®) ground state, a fluctuation of one fermion charge results
in two sites with unphysical occupation numbers, one with no and one with
two fermions. Since these sites carry spin zero the sector of the Hamiltonian
with that occupation is identical to the physical Hamiltonian where the two
sites are effectively missing. Thus a fluctuation from the ground state into
this sector costs the binding energy of the two sites which is of the order of
the exchange coupling, even in the case of strong frustration. Consequently,
at T' = 0 charge fluctuations are not allowed and it is sufficient to use the
simpler average projection with p = 0.
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1.2.2 Electron operators

The Hilbert space of electrons in a local orbital is spanned by four states:
Two with single occupancy (representing a local spin 1/2) and the empty and
doubly occupied states. Obviously, the singly occupied states have fermionic
character, while the remaining two states have bosonic character. One may
now envisage to create these states out of a vacuum state |vac), which is
defined by the absence of any of the four occupation number states. These
four states may then be created by fermionic or bosonic auxiliary operators.
This may be done in a multitude of ways. We will concentrate here on the
representations introduced by Barnes [9] and by Kotliar and Ruckenstein [12].

Barnes’s representation

The basic idea consists in locally decomposing the electronic excitations into
spin and charge components. This can be achieved in many different ways.
A suitable Hubbard-Stratonovich decoupling of the interaction term could
reach this goal, but would likely be limited to weak interaction. Instead, in
the pioneering Barnes approach [9] the spin and charge degrees of freedom
are represented by fermionic and bosonic operators, respectively. Being more
numerous than the original (physical) operators, the auxiliary operators span
a Fock space that is larger than the physical one. Consequently they need to
fulfill an appropriate set of constraints for such a representation to be faithful.
Specifically Barnes considered the single impurity Anderson model (STAM):

H= ZskcLUcka +ey Z ala, + VZ (c;rwaa + alcka) + UCLJ{CLTCLICLl .
ko o ko

(1.5)

Clearly, this problem may not be treated by means of perturbation theory in
U, especially in the U — oo limit. Instead, Barnes introduced the auxiliary
fermionic (f,) and bosonic (e,d) operators in terms of which the physical
electron operators a, read,

a, =e'f +ofl d (1.6)

The a,-operators obey the ordinary Fermion anticommutation relations. This
property is not automatically preserved when using the representation Eq. 1.6,
even when the fermionic and bosonic auxiliary operators obey canonical com-
mutation relations. In addition the constraint

Q=cle+d fif, +did=1 (1.7)

must be satisfied. Eq. 1.6 together with Eq. 1.7 constitutes a faithful rep-
resentation of the physical electron operator in the sense that both have the
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same matrix elements in the physical Hilbert subspace with Q = 1. The above
representation has been widely used, in particular in the U — oo limit where
the operator d (linked to double occupancy) drops out. The constraint can be
implemented by means of a functional integral representation. For example,
for U — oo the partition function, projected onto the Q = 1 subspace, reads,

7= /W fax W/HD [Fo £ /HDc,w,c,w

—71'/5 271'
/D . et J§ dr(Ls(m+Lu(r) (1.8)

with the fermionic and bosonic Lagrangians

Ly(r ):Zc,w( )(Or + er — p1)eg, (T +ZfT )0y 4 0 — 4 iN £, (1)

+VZ(C,W el (1) + h. c)

Ly(1) = el (1) (07 +iN)e(T). (1.9)
Here the A integration enforces the constraint, and the Lagrangian is bi-linear
in the fermionic fields. Remarkably, this has been achieved without decoupling
the interaction term. Besides, the correctness of the representation can be
verified by carrying out all integrals in, e.g., the V' — 0 limit. By virtue of the
substitution z = e~"* Bd\ = idz/z, the )\ integral in Eq. 1.8 is transformed
into a contour integral along the complex unit circle. Observing that this
substitution implies exactly a 2nd-order pole at z = 0 (i.e., at i\ — +oo,
real), it is seen that the projection of Z amounts to calculating the grand
canonical Q expectation value in the limit of infinite, real chemical potential,
Z = lim;x—,00(Q)ix [23], equivalent to the Abrikosov projection. Eq. 1.8 may
also be viewed as the projection of the non-interacting partition function onto
the “U = oo”-subspace. Indeed Eq. 1.8 may be rewritten as:

Z = P[] det[So[e(r), A] (1.10)

with det [S,[e(7), A]] the fermionic determinant for one spin species involv-
ing an effective time-dependent hybridization (Ve'(7)), and the projection
operator:

/B _
P= @ew/D e, efle J& drLe(m) (1.11)
—ﬂ'/ﬂ 27'['

Yet, there is an asymmetry in the representation of spin and charge degrees
of freedom. While the latter can be expressed in terms of bosons, this is not
the case of the former, and may cause unnecessary errors in any approximate
treatment (for details see Ref. [14]).

With this motivation Kotliar and Ruckenstein introduced a representation
where spin and charge degrees of freedom may be expressed by bosons.
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Kotliar and Ruckenstein representation

In the Kotliar and Ruckenstein (KR) representation two additional Bose op-
erators linked to the spin degrees of freedom (DoF) are introduced, p, and

Py [12]. In this approach the physical electron operators are represented as:
a, =%,f, with z, =efp, +p' d (1.12)

where the first term corresponds to the transition from the singly occupied
state to the empty one, and the second term to the transition from the doubly
occupied state to the singly occupied one. Again the representation is faithful
provided the auxiliary operators obey canonical commutation relations and
satisfy constraints. They read,

eTe—l—ij,pg +did=1 (1.13)

php, +d'd= flf, o=1,1. (1.14)

They may be enforced in a functional integral representation with Lagrange
multipliers in a fashion analogous to the one we encoutered with the Barnes
representation. Besides, the density operator (3°_ plp, + 2d'd) and the z-
component of the spin operator (% Dot oplp,) may be expressed in terms

g

of bosons. Spin and charge DoF may therefore be treated on equal footing.
This procedure can be extended to multiband models [15].

Spin-rotation invariant representation

Though faithful, the Kotliar and Ruckenstein representation is lacking spin
rotational invariance as transverse components of the spin operator may not
be simply represented in terms of auxiliary operators Indeed, S is neither
related to >, f1 :S}f)f nor to 2> plr, M, pa, Hence fluctuations as-
sociated to the transverse modes are not treated on the same footing as the
ones associated to the longitudinal mode. With this motivation a manifestly
spin-rotation invariant (SRI) formulation has been introduced [13,14]. In this
setup the doublet p, [12] is replaced by a scalar (S=0) field p, and a vector
(S=1) field p = (pwpy,pz), in terms of which the state |o) = af|0) may be
represented as

pr ,[vac) with pjm,—f > oplrh (1.15)
n=0,z,y,z
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The bosons p,, obey canonical commutation relations, and all the auxiliary
operators annihilate the vacuum (f,|vac) = e|vac) = ... |vac) = 0). With this
at hand the electron operators may be written as:

a, = Z foiZory with 2, = eTpo,a + O'IO'p]L_m_U,d. (1.16)
(T,

Again, the auxiliary operators need to satisfy constraints. They read,

6Te+ZprH +dfd=1 (1.17)
”w
S ff,=> vy, +d'd (1.18)
o p
f =l po —ip' 1.19
> flreerf, =plp+p'py—ip' xp . (1.19)

While the density operator (n = 3", p},p, + 2d'd), and the density of doubly

occupied sites operator (D = dd) may be expressed in terms of bosons or
fermions, the spin operator reads,

S = Z ngfp:fmlpalg,. (1.20)

oo'oq

This expression is especially useful in the context of the t-J model, in partic-
ular because the spin degrees of freedom need not be expressed in terms of
the original fermions. Using the above, one can tackle models of correlated
electrons such as the single impurity Anderson model, the Anderson lattice
model, the t-J or the Hubbard model. However, while the spin and charge
degrees of freedom have been mapped onto bosons, anomalous propagators
necessarily vanish on a saddle-point level as the Lagrangian is bi-linear in the
fermionic fields, independent of the model. Here they are not treated on equal
footing with the spin and charge degrees of freedom. This motivated two of

us to introduce a manifestly spin- and charge-rotation-invariant formulation
(SCRI) [14].

Spin- and charge-rotation-invariant formulation

The SCRI representation is motivated both by the need to be able to account
for anomalous expectation values (such as the ones arising when investigating
excitonic states), and to satisfy the particle-hole rotational symmetry entailed
in many models. The generators of these rotations are given by the components
of the operators:

1 a
— T
J = 5 (aT,al) T (a]) (1.21)
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which form a spin algebra with the usual commutation relations. One may
then replace the doublet e, d by a scalar (vector) by (b) field (with respect
to rotations in the particle-hole space), all of them satisfying canonical com-
mutation relations. In terms of them the two local occupation number states
[2) = |+), and |0) = |—) may be represented as:

prp Yl vac) 3 p==+ (1.22)

with wT = f{r ff and wi = 1. When considering the generalized z- operator

T : T
zPUP/U' = pPp b—p p/paa —|—O'0',p o,— abpp (Wlth bpp’ - QZN 0,z,y,2 ;t # )

and the matrix operators:

Apo= (7" ) and B, = fTT fiT (1.23)
ap =4y =5

one may write the physical electron operator as:

Zzp[,p, Fpor . (1.24)

The constraints now read,

1
fllfg:2zplmpg,m+§6o,g/ > bib,
g1

n=0,z,y,z
1
T - 1]
Z potle = Qmepbp’pl + 25979' Z PuPy - (1.25)
p1 u=0,z,y,2

In particular, when performing the trace of Eq. 1.25, one obtains:
D=1 Y (phpu+bfb) = (1.26)
o p=0,z,y,2

Therefore, both spin and charge DoF no longer possess a representation in
terms of the auxiliary fermions. Instead, correcting Eq. (48) in [14], the density
operator reads,

n=>Y plp,+2D (1.27)
I

with the density of doubly occupied sites:

D= ZbTb tr[ 0 +77) T'LLTIL/} . (1.28)

The spin operator is still given by Eq. 1.20. The SCRI representation of the
Hubbard model is thus obtained using Eq. 1.24 and Eq. 1.28, together with
the constraints Eq. 1.25.
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Gauge symmetry and radial slave boson fields

When representing the electron operators a, as Z, f,, it is immediately clear
that the latter expression is invariant under the group of transformations:

fo(T) — fU(T)eid’(T) , and Z, (1) — 20(7')6714’(7) ) (1.29)

This local U(1) gauge symmetry was first realized by Read and Newns [24]
in the context of the U — oo Barnes representation for the SIAM (with
Z, = el). In that case this can be made use of to gauge away the phase of
the slave boson, which remains as a purely radial field, while the constraint
Lagrange parameter is promoted to a time-dependent field. Yet, standard
textbooks do not mention representations of such radial fields that are set up
on a discretized time mesh from the beginning.

A scheme specific to radial slave boson fields has been proposed by one
of us [25]. In this scheme the partition function takes a form analogous to
Eq. 1.8. However the projection operator does not mix the N time steps, and
may be written as:

N
P = lim lim P,, with

N—oco W—oo
n=1

< BdN, [ ;
P - %?/ da, e~ X Pn(@n =D+ W (@n=1)) (1.30)
—o0

Here the constraint parameter )\, is defined for each time step n, i.e., it is
a time-dependent field, and x represents the radial slave boson field. In the
discrete time step form, the fermionic part of the action reads,

N
_5 _
Sf = Z {Z CL,n,U (ck,n,a —¢ A #)ck,nfl,a)

n=1 ko

_8 i\, —
3 S (fug —e R )
g

— 00

B
+N kz V:L’n (CL,TL,Ufnfl,a + f;,ack,n—l,o’) : (131)

The integration over the fermionic fields can be carried out, and the partition
function can be obtained by projecting the resulting fermionic determinant:

Z = P[] det[Sy [{zn}, {\n}]] (1.32)

with the above projection operator Eq. 1.30. The expectation value of the
hole density operator takes the simple form:

(Mn(Tm)) = (Tm) = %P {xm Hdet [SU [{xn}y {)‘n}”} . (1.33)
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It is easily seen to be time-independent. In contrast to a Bose condensate
(xm) is generically finite, and may only vanish for zero hole concentration
[26]. Another specific feature of the radial slave boson field is that, for any
power a > 0, one finds (%) = (z,,), as the corresponding projections of the
fermionic determinant all yield the same value.

The hole autocorrelation function may also be expressed as a projection

of the fermionic determinant. It reads,

(np(Tn)nn(Tim)) = (Tpem) = %P {xnojm Hdet [So [{zn}, {/\n}]]} .
(1.34)

Regarding the Kotliar and Ruckenstein representation the determination
of the gauge symmetry group has been debated over several years [14,27-30].
It was finally agreed that it reads U(1) x U(1) x U(1). By promoting all
three constraint parameters to fields one may gauge away the phase of three
bosonic fields, the fourth one, for example d, remaining complex. Therefore,
in the U — oo limit (d — 0), the three remaining bosonic fields are radial
slave boson fields. In functional integral language they may be handled in the
same fashion as the above x-field.

1.3 Mean-field approximations

An economical and often physically reasonable way to determine observable
quantities in the SB framework is provided by a saddle-point approximation
(SPA) to the functional integral. This is equivalent to allowing for a finite
expectation value of a Bose field amplitude. Strictly speaking, a finite expec-
tation value of a Bose field operator violates gauge invariance and should not
exist. In contrast, a finite saddle-point amplitude of the radial slave boson
fields is compatible with Elitzur’s theorem.

1.3.1 Saddle-point approximation to the Barnes representation

In its simplest form the SPA consists of replacing the boson field operators
b; at each lattice site, or b at the impurity site, by the modulus of its ex-
pectation value, in accordance with the above. The remaining problem is a
non-interacting model, which is easily solved. We will discuss the solution
briefly for the Anderson impurity model and the Anderson lattice model.

Kondo effect in the Anderson impurity model

In SPA the Anderson impurity Hamiltonian Eq. 1.5 takes the form
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H =Y ey ter D fL0+ VY €0 (chofs + Flew, ) +MQ = 1)
ko o ko
(1.35)

where the conserved charge is @ = Y., fif, + et = 1 and \ is the cor-
responding Lagrange multiplier. This is nothing but a resonant level model
with renormalized parameters. €f = ey + A and V = Veg. At the station-
ary point of the free energy one finds that the level position €7 and the level
width A = e2A = 7NV 2, where A = 7NgV2 (Ny = 1/2D is the conduction
electron DOS at the Fernn level), satisfy the equations

9 §3£-|-A2
=g — —1 1.
Ef=¢5 n D (1.36)
24 A
A= A——tan p— (1.37)
ef

-1 A

R
approaches unity, which means that a local moment forms at higher temper-
ature. Below a characteristic temperature, the Kondo temperature Ty, the
local moment gets screened by the conduction electron spins, which form a

resonance state with the local moment, located close to the Fermi energy, at

In the limit of A < |ef| the occupation of the local level, ny = 2 tan

¢, and of width A~ Tx = Dexp 2N‘ I = Dexp ﬁ, where J = % is
the antiferromagnetic spin exchange coupling constant of the local spin and
the local conduction electron spin density. The low temperature behavior of
Kondo systems is reasonably well described by slave boson mean-field theory.
At higher temperatures one finds in this approximation a spurious first order

transition to the local moment regime, rather than a continuous crossover.

Heavy fermions in the Anderson lattice model

The SB mean-field approximation to the Anderson lattice model in the limit
U — oo [24] leads to the following single-particle Hamiltonian of two hy-
bridized bands

H = ngckacka+5fzfzafzo+vzeo < zo‘fla + io za)+z)\

lO' ZO’

(1.38)

The stationarity condition with respect to the fields A; leads to the condition
(Q;) = 1,which for a translation invariant state is independent of the lattice
position R;. As in the impurity problem the f—level position is shifted by the
correlation effect to € = e + A = ¢f — 2N V2 1n % and the square of the
boson amplitude is related to the f—level occupation nf
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—€F

B =er = 2NV I L (1.39)
2NV?2e3
=1-n;=1-20% (1.40)
0 f &

Here we have assumed [€| < D. We observe that, provided e is sufficiently
below the Fermi level e, we have |€f| < |ef| and it follows from Eq. 1.39
that € —ep = Dexp 2;\}05{/‘2 = Tk, equal to the single impurity Kondo tem-
perature. In this limit e3 &~ |£7|/2NgV? < 1 and the hybridization amplitude
is substantially reduced, leading to heavy quasiparticle bands of energy

1 ~ ~
E* = §[€k+€fi\/(€k+€f)2+vzeg] (1.41)

k

1.3.2 Saddle point approximation to the KR representation

It is tempting to extend this approach to the Hubbard Model. Yet, at this
stage of the formulation, the representation suffers from the following draw-
back: The non-interacting limit is not properly recovered on the SPA level
(see [12] for the case of the Hubbard model), in contrast to more conven-
tional approaches. This can be cured by noticing that there is no unique
slave boson representation, but rather infinitely many different ones. They
are all equivalent when the functional integral is exactly evaluated, but differ
on saddle-point level. Fortunately enough, there is one representation of the
kinetic energy which allows to overcome the above drawback. For the KR
representation it consists in replacing the operators z, in Eq. 1.12 by

2o =L R, p, +p' ,L,R,d with (1.42)

L, = ! and R, = ! (1.43)

o - 9
\/1—plps —did \/1 —pl _p_ —ete

and to consistently use a, = 2, f, in the representation of the kinetic energy
operator. In this form the SPA to the KR representation is equivalent to the
Gutzwiller approximation to the Gutzwiller wave-function [12]. As the latter
two are equivalent in the large d limit, the SPA to the KR representation turns
variationally controlled in this limit. In adddition it turns exact in several
large N limits [14], or for particular toy models [31]. These properties are
shared by the SRI formulation [14]. Indeed, introducing p,_, = oo'p__,
the z-operator reads, ’

—0

z=¢ LM Rp +p'L M Rd (1.44)
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with

1
2

M= |1+ele+ Zplpu +d'd and (1.45)
“w

L =[(1-d'd)1-2p'p] P and E:[(l—eTe)l—ZﬁTﬁ]_%.
(1.46)

Eq. 1.44 and Eq. 1.46 corrects Eq. (22) in [14] and Eq. 1.46 corrects Eq. (3)
in [32].

Mott-Hubbard metal-insulator transition

The KR and SRI representations have been used to characterize a very broad
range of phases of the Hubbard Model [33-45]. In addition to the above dis-
cussed motivations, the popularity of the approach is fueled by its ability to
describe a Mott metal-to-insulator transition as it encompasses the Brinkman-
Rice mechanism [46,47] that we describe below. It arises when considering the
paramagnetic saddle-point. In the SRI representation it corresponds to set the
bosonic fields p, (7) and the constraint fields enforcing Eq. 1.19 to zero, and
to replace the remaining bosonic and constraint fields by their mean value.
The free energy then reads,

F:—TZln(He*L?")+Ud2+a(62+p8+d2—1)—50(p§+2d2)
k,o

(1.47)

Here the Lagrange multiplier « (5y) enforces the constraint Eq. 1.17 (Eq. 1.18).
The quasiparticle dispersion relation is given by:

Epo = 23tk + Bo — 1 (1.48)
with
o= pole +d) (1.49)

V2 Ji-@ - b1 e - 4t

22 both plays the role of a mass renormalization factor and of a quasiparticle
residue. Should it vanish in some parameter range, then a Mott insulating state
would be realized. Solving the saddle-point equations at half-filling yields:

2o (50)2 (1.50)
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with

Up = —4ZtkfF(Ek,a) (1.51)

k,o

Therefore, the quasiparticle residue continuously varies from 1 down to 0 for
U — Up. There, the quasiparticle mass diverges, its residue vanishes, and a
Mott gap opens. Indeed, solving the equation for the chemical potential of the
quasiparticles for U > Uy and n — 1 yields:

_1=n i W
|1 —n| U

_Uv
T2

() (1.52)

The discontinuity in g across n=1 indicates a pair of first order phase transi-
tions from the metallic phase at n < 1 (with finite zy) to the insulating phase
at n = 1 (with chemical potential p = %) and back to the metallic phase
at n > 1 (with finite z). This discontinuity vanishes for U — U, which is
therefore a critical point. In the insulating phase the quasiparticle contribu-
tion to doubly occupied sites vanishes. This does not imply that the latter
is predicted to be zero, but that it purely results from fluctuations, that we
address in Sec. 1.4.

Magnetic order in the Anderson lattice model

The Anderson lattice model is believed to describe the physics of many
transition-metal, rare-earth and actinide compounds, including the so-called
heavy fermion compounds. It is one of the archetypical models of correlated
electrons on a lattice, consisting of a ”light” conduction band hybridized with
a strongly correlated narrow f-electron band. Depending on the strength of
the onsite Coulomb repulsion on the f-orbital, the hybridization strength,
the band filling, the model describes either localized moments interacting via
spin exchange interaction (e.g. the RKKY interaction), which usually order
at low temperature, or Kondo screened moments and heavy quasiparticles.
The competition between these two ground states gives rise to a quantum
phase transition [48,49]. A qualitatively correct description (excluding the
critical behavior at the quantum critical point, which requires a different ap-
proach) may be obtained within the SRI slave boson mean-field theory. The
Hamiltonian of the Anderson lattice model reads,

_ § T § T E T T
H = CkChoCro t€a Ui Qi +V (Ciaaia + aiacia)
ko 1,0 1,0

JrUZazTaiTa;rlale (1.53)
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Fig. 1.1. Phase diagram in the 2t/U versus ¢ plane at 7' = 0. Spiral (S), ferro-
magnetic (F), and antiferromagnetic (A) regions are indicated. The inset shows the
behavior near § = 0.

where ¢;; = Y, e®Ric, and R; is the lattice vector at site i. In terms of
SRI slave boson operators H may be represented as

H = Z akc,tac,w + &g Z(Zp;rupm + ZdIdi) +V Z (c}tgzwrgfw, + h.c.)

7 I i,0,0'

ko
+U S dld; + 3 {0i(Qp — 1) + BioQs + B; - Qs } (1.54)

A mean-field approximation to this Hamiltonian describing spiral magnetic
states has been considered in [50]. There the nonmagnetic boson mean-field
amplitudes e, d, py and Lagrange parameters «, 3y have been assumed spatially
uniform, while the magnetic parameters p; and 3; were taken to have the
spatial dependence of a spiral vector field, p; = p(cos ¢;,sin ¢;,0) and B; =
B(cos ¢;,sin ¢;,0) oriented perpendicular to the z—axis in spin space, and
¢; = q - R,;. The spatial periodicity characterized by the wave vector q leads
to a coupling of Bloch states at wave vectors k and k + q. The energy matrix
of the hybridized bands then takes the form

€k — [ Vzy 0 Vaz_
| Vzy e+ Bo—pn Va_ B
e = 0 Vie  ek4q—p  Vzi (1.55)
Va_ g Vzy €+ 0Bo—p

where the weight factors z; _ are defined by

epy + dp_

Z4 =
\/1—d2—pi\/1—62—p2_

+ [p+ < p-] (1.56)
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with py _ = (po £ p)/v2. The mean-field values are determined by requiring
that the free energy

~Fkoa

F==TY W[l+e ©)+ N [Ud® - Bo(pj +p° +2d°) +2Bpop] (1.57)

koo

be stationary. Here Fy,, are the eigenvalues of the energy matrix ey.

In Fig. 1.1 the zero temperature phase diagram is shown in the (¢t/U) — o-
plane (¢ nearest neighbor hopping amplitude, ¢ filling factor of the conduction
band). In a wide region a spiral magnetic state is found, with wave vector q
approaching the edge of the Brillouin zone at § = 1 (antiferromagnetic order).
Approaching the limit § = 0 one finds a ferromagnetic region, followed by
another antiferromagnetic state very close to § = 0. These findings have been
confirmed by Quantum Monte Carlo simulations [51]. One should keep in mind
that the spatial dimension enters only through the energy dispersion of the
conduction electrons. These results are therefore applicable in three or higher
dimensions, where fluctuation effects are expected to be small.

1.4 Fluctuation corrections to the saddle-point
approximation: SRI representation of the Hubbard
model

Having mapped all degrees of freedom onto bosons allows for directly eval-
uating the spin and charge response functions. Indeed, the spin and density
fluctuations may be expressed as

Z 0ong = 8(plps + plpy) = 65
Z ony =6(d'd—efe) =6N, (1.58)

in the SRI representation. The spin and charge autocorrelation functions can
be written in terms of the slave boson correlation functions as:

Xs(k) = 32, 5 00 (0o (—k)dn, (k) = (0S(~k)6S (k)
Xe(k) =3 ,0 (60 (—k)on, (k) = (SN(—k)SN(k)) . (1.59)

Performing the calculation to one-loop order, one can make use of the propa-
gators given in the appendix of Ref. [32] to obtain:

xs(k) = 2p5 Sz (k)
Ye(k) = 22811871 (k) — dedS,t (k) 4 2d% Sy (k) . (1.60)
As emphasized and analyzed by several authors, see e. g. [52,53], a Fermi liquid

behavior is obtained when considering the above (k) and x.(k) in the long
wavelength and low frequency limit. However, in contrast to the conventional
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RPA results, the obtained Landau parameters involve effective interactions,
which differ in the spin channel and in the charge channel. Performing the
algebra at half-filling yields:

= oo
s UQU, - U)
B = ae T (1.61)

fulfilling the property F;(U) = F§(—U) that can be derived on a more general
ground [47]. As can be seen in Eq. 1.61 F§ remains finite when reaching the
Mott transition, while Fj diverges (for a recent manifestation of a related
behavior see [54]).

Ferromagnetic instabilities and ferromagnetic phases have been investi-
gated, too. In particular, in the limit U — oo, it could be shown analytically
that the fully polarized ferromagnetic ground state and the paramagnetic
ground state are degenerate at density n = 2/3, for any bi-partite lattice [33].
For lower densities the ground state is paramagnetic.

Yet, in such an analysis, focus is put on a ferromagnetic instability only,
while other commensurate or even incommensurate instabilities should be con-
sidered as well. This analysis has been carried out by two of us for the Hubbard
model on the square lattice [55]. Off half-filling it turned out that the leading
instabilities are systematically towards incommensurate states characterized
by a wave-vector (Q,,7) for U < 57 ¢t with @, smoothly varying from 7 for
U = 07 down to 0 for U = 57 . For larger U the wave-vector characterizing
the instability is rather of the form (0, @, ), with @, ~ 7.

Charge instabilities have been looked for as well, in particular through
the computation of the charge structure factor [32], though with a negative
result even for the t-t’-U repulsive Hubbard model [56]. Instead, the charge

0.5 0.6

0.1 0.2 0.4

charge structure factor

0.0

r X M r

Fig. 1.2. Comparison of the Quantum Monte Carlo (triangles) and Slave Boson
(full line) charge structure factors for U = 4¢, 6 = 0.275 and 8 = 6.
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structure factor quite systematically consists of one broad peak centered at
(m,m). As an example we compare in Fig.1.2 the slave boson result with
Quantum Monte Carlo simulations by Dzierzawa [57], for U = 4t and 6 =
0.275 at temperature T = t/6. The agreement between both approaches is
excellent, as the difference does not exceed a few percent.

1.4.1 Magnetic and stripe phases

Having established that the leading instabilities of the paramagnetic phase
are generically towards incommensurate phases, spiral and stripe phases have
been thoroughly investigated [33-39,45]. Comparison of ground state energies
in spiral phases with numerical simulations showed very good agreement [34,
36]. Regarding the pure Hubbard model it has been obtained that magnetic

-0.01
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Fig. 1.3. Free energy gain §F per site with respect to the AF phase as a function
of doping z, obtained for the t-t'-U Hubbard Model with U = 12t and ¢ = —0.3t
for: (a) Vertical site-centered stripe phases; (b) vertical bond-centered stripe phases.
Domain walls are separated by d = 3,...,11 lattice constants. Circles and squares
show the corresponding data for vertical and diagonal spiral order, respectively.
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stripe phases are generically more stable than spiral phases. However, for the
t-t’-U repulsive Hubbard model, the situation is more intricate. As shown in
Fig. 1.3 for an intermediate value of ¢/, a large number of phases compete.
While the vertical site-centered stripe phases are generically lower in energy
than the vertical bond-centered stripe phases at low doping x, the opposite
result is found at larger x. For instance, for U = 12¢, the transition occurs at
x ~ 0.16 for ¢’ = —0.15¢, and at = ~ 0.18 for ¢ = —0.3t. Yet, in the latter
case, the diagonal spiral phase is lower in energy for = > 0.09, in contrast to
the former case [39)].

1.5 Conserving self-consistent approximations

General properties

The KR representation and its SRI and spin-charge symmetric extensions
have been remarkably successful in identifying and describing zero-tempera-
ture phases of correlated electron models within saddle-point and Gaussian
approximations. However, in order to describe dynamical properties, like spec-
tra or non-equilibrium transport, a more accurate treatment of the excitations
is needed. This is especially important for understanding Fermi liquid or non-
Fermi liquid signatures in these quantities. It requires, in particular, avoiding
the spurious condensation transition of the auxiliary boson fields at finite
temperature or energy. That is, the auxiliary fields must be treated as pure
fluctuation fields, preserving the local U(1) gauge symmetries associated with
the conservation of the local constraint charges, Eqgs. 1.7, 1.13-1.14, or 1.17-
1.19 for the Barnes, the KR, and the SRI representation, respectively. Gauge
symmetric theories may be systematically constructed by means of conserv-
ing approximations [58], where all irreducible n-point vertex functions are
derived from a generating functional ¢ by means of appropriate functional
derivatives. This implies that these quantities are calculated self-consistently,
i.e., as functionals of the fully renormalized auxiliary particle propagators.
Physical expectation values, calculated at first in the grand canonical ensem-
ble of the auxiliary particle occupation numbers utilizing Wick’s theorem, are
projected onto the physical sector of Fock space at the end of the calculation,
using the techniques described in section 1.2.2. In order to capture the correct
low-energy properties of a given correlated electron model, the approximation
for the generating functional must still be chosen appropriately. The conserv-
ing scheme has been extensively pursued within the Barnes representation, in
order to keep the number of fluctuating auxiliary fields minimal.

Exact infrared properties of pseudoparticle propagators

The Fermi or non-Fermi liquid behavior is governed by the infrared asymp-
totics of the slave boson and pseudofermion propagators, G.(w), Gg4(w), and
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G (w). By definition, the field operators appearing in these propagators cre-
ate an impurity site which is initially empty, doubly occupied or singly occu-
pied with spin o = £1/2, respectively, and which evolves in time to a final
occupation number n, = > n... This process constitutes an orthogonal-
ity catastrophy [59] with characteristic infrared powerlaw singularities of the
auxiliary particle spectral functions. In the case of a Fermi liquid, the in-
frared powerlaw exponents of the pseudofermion, empty and doubly occupied
slave boson spectral functions, o, ., ag, respectively, are determined by the
single-particle scattering phase shifts at the Fermi level, which may in turn
be expressed in terms of the impurity occupation number n, via the Friedel
sum rule. The dependence of the infrared exponents on n, is, therefore, an
indicator of Fermi liquid or non-Fermi liquid behavior in a given system. For
the single-channel Anderson model, Eq. 1.5, which has a Fermi liquid strong-
coupling fixed point, one obtains in the absence of a magnetic field [60-62],

Qfy = Mg — 12 /2 (1.62)
ae=1-n2/2 (1.63)
ag = —1+2n, —n2/2. (1.64)

These expressions have been confirmed by direct numerical renormalization
group calculations [63] and should be recovered by any approximation that is
to describe a Fermi liquid fixed point.

Fock space projection in saddle-point approximation

While the projection onto the physical Fock space with local charge QQ =
1 (Eq. 1.8) may easily be performed exactly for a single correlated site, it
becomes cumbersome already for two sites, let alone for a lattice of correlated
electrons. This is because by the exact projection the partition function, for
instance, is transformed into the expectation value of the product of all the
local charges @); on the correlated lattice sites j (compare the discussion after
Eq. 1.9), i.e., it becomes an Np-point correlation function, where Ny, is the
number of correlated sites.

However, gauge symmetric, conserving approximations, which avoid any
spurious condensate amplitudes and, hence, preserve the infrared properties,
can still be constructed when the Fock space projection is done in an ap-
proximate way. In this approach, first proposed in [23], the A-integration of
Eq. 1.8 is done in saddle-point approximation, while all auxiliary particle
Green’s functions are derived as pure fluctuation propagators from a gen-
erating Luttinger-Ward functional. The A saddle point can be shown to be
equivalent to fixing i\ as a real chemical potential for the thermodynamic av-
erage of the local charge, (@Q). Spurious slave boson condensation is avoided by
the fact that the fluctuation part of the Bose propagator acquires finite, neg-
ative spectral weight A 4(w) < 0 for negative frequencies, w < 0, such that
the occupation number density, b(w) A q4(w), remains non-negative for all
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Fig. 1.4. Diagrammatic representation of the Luttinger-Ward functional generating
the CTMA for U — oo. The first diagram constitutes the NCA. The two-loop dia-
gram is excluded, since it is not a skeleton. Solid, dashed, and wiggly lines represent
conduction electron, renormalized pseudofermion and auxiliary boson propagators,
respectively. The terms with the conduction electron lines running clockwise gen-
erate the conduction electron-pseudofermion ladder vertex T°Y) with bosons as
rungs (spin fluctuations), while the terms with the conduction electron lines run-
ning counter-clockwise generate the conduction electron-empty orbital ladder vertex
T®) with pseudofermions as rungs (charge fluctuations).

w [23], with b(w) = 1/(e* — 1) the Bose-Einstein distribution. The structure
of the self-consistent integral equations for the pseudoparticle propagators is
not altered by this approximation. In fact, it may be shown explicitly and in
a straight-forward way along the lines of Ref. [64] that the A saddle-point pro-
jection preserves the infrared exponents on the level of the simplest conserving
approximation, the non-crossing approximation (to be discussed in the next
section). It may be conjectured that this remains true also for more sophis-
ticated conserving approximations. Since the A\ saddle-point approximation
involves only the thermal average (Q), it is straight-forwardly generalized to
lattice problems, with a spatially homogeneous chemical potential iA € R.
The method has been applied to the Heisenberg lattice in pseudofermion rep-
resentation in Ref. [65].

1.5.1 Non-crossing approximation (NCA)

The rest of this chapter is concentrated on the Anderson impurity model.

Anderson impurity model for U — oco: NCA

The simplest conserving approximation in the limit U — oo is obtained by
choosing the generating functional to lowest, i.e., 2nd order in the hybridiza-
tion V, as shown as the first diagram of Fig. 1.5. Since the self-energies gen-
erated in this approximation do not contain any crossings of lines, it has been
termed “non-crossing approximation” (NCA). The NCA has been pioneered
by Keiter and Kimball using the resolvent operator formalism [66,67] and by
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Kuramoto, who first recognized the conserving nature of the NCA [68]. First
numerical evaluations were performed by Kojima et al. [69] and by Bickers [70].
For an efficient and numerically stable algorithm for solving pseudoparticle
integral equations, like the NCA and its extensions, see Ref. [71].

For U — oo the NCA captures correctly the Kondo energy scale, and it
provides a qualitative description of the formation of the Kondo resonance.
It happens to describe also correctly the powerlaw dependence of physical
properties at the non-Fermi liquid fixed point of the two-channel Anderson or
Kondo impurity model [72]. For these reasons and for its technical simplicity
the NCA has been applied to a wide variety of problems, including, as an
impurity solver for dynamical mean-field theory (DMFT), to the ¢ — J model
[73,74] and the non-Fermi liquid two-channel Anderson lattice model [75,76] as
well as to phase transitions in dilute, magnetic semiconductors at not too low
temperature [77]. The NCA has also been generalized to the case of multiple
local orbitals, as in rare earth and transition metal ions, where the NCA
correctly produces a distinct Kondo resonance for each crystal-field or spin-
orbit split local orbital, each with a characteristic, logarithmic temperature
dependence [78,79].

However, in NCA the infrared exponents of the auxiliary particle propa-
gators come out independent of n,, a}VCA =1/(N+1), a4 = N/(N +1)
[64,71], with N the spin degeneracy, in contrast to the Fermi liquid values,
Egs. 1.62-1.64. As a consequence, the NCA fails to describe Fermi liquid be-
havior at temperatures T' < Tk, with spurious infrared singularities appear-
ing in physical quantities at energies or temperatures T < Tk [64, 70, 71].
Since the NCA becomes formally exact for SU(N) symmetric models in the
limit N — oo, with deviations appearing in O(=) [70,80], this low-T" fail-
ure is less pronounced for N > 1. Note, however, that the deviation of the
NCA infrared exponents ay, a. is of order 1/N, not 1/N? as one may have
expected. In a magnetic field the NCA also fails even in the high temperature
regime, T' > Tk, producing a spurious resonance in the impurity spectrum at
w = 0 in addition to the two Zeeman-split Kondo peaks. The low-T failure
of the NCA can be traced back to its insufficient inclusion of coherent mul-
tiple spin-flip processes which are responsible for the formation of the Kondo
singlet state. The origin of the failure in a magnetic field, on the other hand,
lies in the fact that NCA neglects the exchange diagram to the conduction
electron-impurity spin vertex at 2nd order in the spin coupling J [62,81]. As a
consequence, logarithmic contributions in the potential scattering channel do
not cancel even in leading logarithmic order, producing a spurious resonance
which does not Zeeman-split in a magnetic field.

Anderson impurity model with finite U: SUNCA

At finite Coulomb interaction U, the spin exchange interaction J acquires
contributions from both, virtual excitations to the empty and to the doubly
occupied impurity states via a Schrieffer-Wolff transformation [82],
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VP v
leg]  lep +U|

J (1.65)
Neglecting either one of these contributions would lead to an exponentially
wrong Kondo scale Tk, because of the exponential dependence of Tk on
J. A simple generalization of NCA to this case, i.e., adding the 2nd order
self-consistent perturbation theory for the two processes, fails to capture the
simultaneous contribution of both channels in each order of bare perturba-
tion theory. For a correct treatment of both terms, there must be included,
for each diagram with an empty boson line G., the corresponding diagram
with G, replaced by a doubly occupied boson line G4 (which amounts to the
exchange diagram of the former), and vice versa, on the level of bare per-
turbation theory [83,84]. The corresonding vertex corrections have first been
evaluated in leading self-consistent order by Sakai et al. [85] and by Pruschke
and Grewe [86]. The first conserving approximation for finite U, fully symmet-
ric with respect to the empty and double occupied fluctuation channels, was
formulated and evaluated by Haule et al. [83] and termed as the symmetrized
finite-U NCA (SUNCA). On the level of renormalized perturbation theory
(generating functionals), it means that for each dressed b-line there must be
included a ladder vertex function with a-lines as rungs, and vice versa. The
SUNCA is tractable with relatively moderate numerical effort, since it can be
formulated in terms of no higher than 3-point vertex functions. The results
of a fully selfconsistent evaluation of the impurity electron spectral function
within SUNCA are shown in Fig. 1.5.1 in comparison with NRG results. It is
seen that the correct Kondo scale (width of the Kondo peak) is reproduced.
However, like the NCA, the SUNCA solution still develops a spurious low-T
singularity.

There is evidence that both failures of NCA, at low temperature and in
a magnetic field, can be cured by a systematic resummation of coherent spin
flip terms to infinite order, which will be discussed in the next section.

1.5.2 Conserving T-matrix approximation (CTMA)
Construction of the CTMA

As a minimal precondition to obtain a gauge symmetric description of the
Fermi liquid fixed point, a conserving approximation must reproduce the cor-
rect pseudoparticle infrared exponents, Egs. 1.62-1.64, whose dependence on
ng is characteristic for a Fermi liquid ground state. It is easily seen by power
counting arguments that any summation of a finite number of skeleton self-
energy diagrams merely reproduces the incorrect NCA exponents [80], like,
e.g., the post-NCA considered by Anders [88] (diagrams up to O(I™) in Fig.
1.5). Hence, the generating functional must be comprised of an infinite class of
skeleton diagrams in order to describe Fermi liquid behavior. Since the latter
is a consequence of the singlet state formed at low T between the impurity
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Fig. 1.5. Physical impurity electron spectral function of the Anderson impurity
model for U = —2¢y. Solid lines: SUNCA results [83], dashed lines: NRG results [87].

and the conduction electron spins, one may expect that higher than two-
particle correlation functions need not be considered in the single-channel
case. The approximations to the total vertex functions between conduction
electons (c¢) and impurity degrees of freedom (pseudofermions f, slave bosons
e) are then two-particle T-matrices, T(f) T(c)  As the irreducible parts of
these T-matrices we select the single (renormalized) e or f particle lines, since
(1) in the Kondo regime these terms are the leading contributions in the small
parameter V Ny; and (2), in the spirit of principal diagrams, this choice gives
rise to the maximum number of spin and charge fluctuation processes, respec-
tively, in the T-matrices at any given order of (renormalized) perturbation
theory. The Luttinger-Ward functional generating these ladder vertex terms
(and others) for U — oo is shown in Fig. 1.5. It is comprised of all closed
pseudoparticle rings (skeletons) with each conduction electron line spanning
at most two hybridization vertices and has been termed the conserving T-
matrix approximation (CTMA) [61,89]. Via the self-consistent inclusion of
the self-energies, the vertex equations for T, T°¢, have parquet character.
The CTMA integral equations, the analytical expressions for the self-energies,
Yts, Xe, and the impurity electron Green’s function, G, are given explic-
itly in Ref. [89,90]. Keiter and co-workers [91,92] efficient decoupling scheme
for the CTMA integral equations, which greatly facilitates the evaluation,
and which preserves the Fermi liquid values of the auxiliary particle infrared
exponents.
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Fig. 1.6. Left panel: CTMA results (symbols with error bars) for the threshold
exponents ay and a. for U — oo, B = 0. Solid lines: Exact values, Egs. (1.62,1.63),
dashed lines: NCA results. Right panel: Static spin susceptibility as a function of
temperature; Bethe ansatz, CTMA and NCA results (see text). Model parameters
used: €q/D = —0.81, I'/D = 0.2.

Principal results

Pseudoparticle spectral functions. As a first indication for description of Fermi
liquid behavior within CTMA it has been checked if the CTMA reproduces the
correct Fermi liquid values of the pseudoparticle threshold exponents [61]. The
exponents of the CTMA solution are displayed in Fig. 1.5.2 (left panel) and
show, within the error bars, good agreement with the exact values, especially
the dependence on the impurity occupation number ng, characteristic for the
Fermi liquid fixed point.

The static spin susceptibility of the impurity was calculated from the spin
dependent occupation numbers n,, in a small magnetic field B as,

dM
(7)) = — 1.66
=G (1.66)
where M = gug ) 0ng, is the impurity magnetization and
dwe™P* ImG f4(w — 0
Ny = lim J dwe ™ ImGiyo (w — i0) (1.67)

A—oo [ dwe= P Im[>., G o (w — i0) + Ge(w — i0)]

Xi(T') is shown in Fig. 1.5.2 (left panel). It exhibits T-independent Pauli be-

havior for T < 0.5T with no singular behavior appearing down to the lowest
T counsidered [90], indicative of the Fermi liquid ground state with a com-
pletely screened local moment. As expected, x;(T) obeys scaling for at least
a range of Tk within a factor 10 [93], when plotted as a function of T/Tk.
For details of the comparison with the Bethe ansatz results in Fig. 1.5.2 (left
panel) see Ref. [90].

Fermi liquid behavior of the impurity electron Green’s function
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Gao(w) = [w Y il — an(w)]il ) (168)

and the impurity electron interaction self-energy Xy, (w) is of prime interest
especially for applications within DMFT. X, exhibits many features of Fermi
liquid behavior [90]. It has quadratic dependence on both, w and T, at low
w, T, with no sign of a spurious low-energy singularity down to the lowest T'
considered (T ~ 0.01 T). As discussed in detail in Ref. [90], the curvature of
the quadratic behavior in w and T is found to be in good agreement with the
exact Fermi liquid result, Yoo (w) = alw? + (7T)?]/T%, where a is an exactly
known prefactor. However, the position wg of the minimum of ImX,,(w) is
incorrectly shifted to wp &~ —T'k, and ImX,,(w — i0) acquires negative values,
thus violating the Friedel sum rule. When searching for the origin of this short-
coming, one must keep in mind that X, (w ~ 0) is determined via Eq. (1.68)
by both ImG, (w) and ReG,,(w), and thus, via the Kramers-Kronig relation,
by high-energy (potential scattering) contributions to G, (w). Hence, the er-
roneous shift wy may result from an unprecise calculation of G (w) at high
energies, either numerically or due to neglect of high-order potential scatter-
ing terms [94]. To correct this shortcoming, it has been suggested to add an
appropriate, phenomenological real constant to Xy, (w). Through selfconsis-
tency it acts like a chemical potential and shifts the minimum of ImX,, (w)
to w = 0. By inclusion of that single, real parameter, motivated by potential
scattering contributions, the full Fermi liquid behavior of X, (w) is recovered,
and G,(w) obeys the unitarity sum rule with good precision [90].

1.6 Renormalization group approaches

The renormalization group method is a powerful tool to calculate properties of
interacting many-body systems. In the context of strongly correlated electron
systems a first and seminal application of the method to the Kondo prob-
lem has been proposed by P. W. Anderson [95], who coined the term “poor
man’s scaling” for his method. While Anderson’s treatment is perturbative
in the exchange coupling constant of the Kondo model, and is therefore valid
only at not too low energies, Wilson devised a numerical RG method for the
Kondo model which he successfully implemented to cover the complete range
of energies [96]. While these early RG formulations were phrased in terms of
successive mappings of the Hamiltonian with continuously decreasing band
width compensated by correspondingly adjusted coupling constants, the later
Functional Renormalization Group (FRG) schemes make use of a mapping of
the complete set of Green’s functions under a continuous change of an infrared
cutoff. For the Kondo model, this is most conveniently formulated using the
pseudofermion representation of the local spin 1/2. The “poor man’s scal-
ing” approach to the equilibrium Kondo model is essentially a simplified FRG
formulation, in which the RG flow of the pseudofermion self energy and the
energy dependence of the exchange coupling function, as well as all higher
order couplings are neglected. It may be generalized to out of equilibrium
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situations, if the self-energy (the imaginary part of which describes the relax-
ation rate of the local spin) and the energy dependence of the coupling are
kept. It is actually even possible to extend the RG approach into the strong
coupling regime, provided the effect of the self-energy in controlling the flow
of the coupling is treated correctly. Finally, the FRG has been successfully
used to treat another strong coupling problem, that of frustrated quantum
spin systems on a lattice in pseudofermion representation.

1.6.1 “Poor man’s scaling” in the equilibrium Kondo model

The interaction of a Fermi sea with a quantum impurity, e.g. a local spin
exchange coupled to the local spin density of the Fermi system, gives rise to the
Kondo effect. Initially introduced to describe magnetic impurities in metals,
the Kondo problem is by now a ubiquitous phenomenon. The corresponding
s-d exchange Hamiltonian, or Kondo Hamiltonian for short, reads

1
H= Z Ekc,tgcka +J Z §cLUnglck,o, - S, (1.69)
ko kk'co’

where S = is the local spin 1/2 operator in pseudofermion representation,
Eq. 1.1, J is the exchange coupling constant and 7,/ is the vector of Pauli
matrices. We take a flat conduction electron DOS, N(w) = 556(Dg — |w|). If
we now transform this Hamiltonian to an equivalent one with reduced band
width D = Dy —dD, the physical properties of the system remain unchanged,
provided the exchange coupling is changed correspondingly. In order to cal-
culate the required adjusted value of J at the scale D, denoted J(D) one
may determine the effective coupling in perturbation theory in J. The low-
est (second order in J) correction terms §J are shown in Fig. 1.6.1, where
the dashed (solid) lines depict bare retarded pseudofermion (local Keldysh
conduction electron) Green’s functions. Differentiating §.J with respect to the
running band width D one finds that in lowest order in the dimensionless
coupling constant go = N(0)J the renormalized coupling g(D) obeys the RG
equation [95]

dg(D)
dn D

— 2+0(s") (1.70)

with the solution

1

9(D) = 2I(D/Tx) (1.71)

where Tx = Dgexp(—1/2go) is the Kondo temperature. One observes that
g(D) diverges at D = Tk. The divergence is removed by taking the pseud-
ofermion self-energy into account, the imaginary part of which describes the
relaxation rate for spin flip processes (see below). The above perturbative RG
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Fig. 1.7. Diagrammatic representation of the RG vertex in 2nd order of J. The
strokes indicate differentials with respect to the band cutoff D. Dashed and solid
lines depict bare retarded pseudofermion and local Keldysh conduction electron
Green’s functions, respectively.

result provides a valid description as long as the running coupling is small,
g(D) << 1. In the perturbative regime the Kondo effect, i.e. the screening
of the local spin by the conduction electron spins, begins to build up. The
screening is completed at the energy or temperature scale T << Tk, i.e. in
the strong coupling regime, not accessible by perturbative methods.

1.6.2 Functional RG for the Kondo model out of equilibrium

The Kondo problem experienced a revival in the mid 1990s, when it was
found that charge transport through nano structures may be dominated by
the Kondo effect, in the sense that the Kondo resonance at a quantum dot
may lead to perfect conductance through the dot, although it is only weakly
coupled to the leads [97,98]. The corresponding Kondo Hamiltonian of a local
spin exchange-coupled to the conduction electron spin densities in the two
leads at the dot and the transfer operator through the dot reads,

1
_ + ;
H= kz(ek - ua)ckaackaa + kk/z , Jaa’ickga’raa’ck/gzaz -8 (172)

where @ = L, R labels the leads and p, = +eV/2 denotes the chemical po-
tential shifts in the leads induced by an applied d.c. bias voltage V. In the
following the matrix of exchange couplings is assumed isotropic (Jpa = J).
As first proposed in [99-102], and later derived within a full functional
RG treatment [103], the “poor man’s scaling” approach may be generalized
to non-equilibrium by keeping the energy dependence of the coupling function
g(w) = J(w)N(0) and by observing that the RG flow is cut off at the scale of
the spin relaxation rate I'. The role of I" in suppressing the Kondo effect has
been demonstrated within NCA in [104]. The generalized RG equation may
be formulated as
dg(D;w)

dinD ;92@; aeV/2)0(D — /(v + aeV/2)? + I'?) (1.73)

This equation must be solved simultaneously with the relaxation rate at scale
D
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r=r Y [deg(Diw)fw = pa)ll - fo = o) (1.74)

a=L,R

where f(w) is the Fermi function of the conduction electrons. The charge
current is given by the expression

1= [dog? Do) = pa)l = fo = )] = L@ R) (L75)

Excellent agreement of the above theory with experimental data is found
provided the bias voltage, the applied magnetic field (Zeeman splitting B)
or temperature is sufficiently high, eV, B,T >> Tk so that the perturbative
expression of the RG S-function is applicable [99,100,105-110].

1.6.3 RG approach to the Kondo model at strong coupling

Motivated by the success of the generalized RG in non-equilibrium and the
insights gained from there, one may ask whether that formulation may be
extended to the strong coupling domain. This has been attempted back in
the 1970s by U. Larsen and R. Mattuck (LM) [111], who discovered that
the weak coupling RG equation, combined with the cutoff I" provided by the
relaxation rate shifts the singularity in g(D) from D = Tk down to D = 0.
In the limit 7' — 0 the relaxation rate I" was found to approach the value
Tk, the exchange coupling developed the singular behavior g(7') « 1/T and
the conductance assumed the exact unitarity limit. It is worth noting that
LM employed the pseudofermion representation with particle-hole symmetric
projection. The flaw in LM’s derivation was that the leading low temperature
corrections turned out to be linear in T instead of quadratic, as required by
Fermi liquid theory. This difficulty has been recently resolved by using the
correct form of the RG [-function in the strong coupling regime [112]. In
addition, it may be shown that while LM considered only the lowest (single
particle-hole excitation) contribution to I', all the higher order contributions
may be subsummed to give the same structure, but with modified numerical
coefficients. As shown in [112] the S-function in the strong coupling regime
grows as ¢°, and therefore faster than in the weak coupling limit. A useful
interpolation expression is
dg(D) _ [9(2+9))?

dnD 2+ 2g 6D - 1) (1.76)

This equation may be solved analytically to give

g(D) = \/1 +1/In(vV/D2 4+ I'?/Tg) — 1 (1.77)

where Tk has been defined above. Here the relaxation rate is given by the
self-consistent equation
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r

2 / / !

P(T) = 3¢*(7) [ dode! Fw) (o = ) f(-0) S (1.79)
where f(w) denotes the Fermi functions of both, conduction electrons and
pseudofermions. At temperatures 7" < I the integral may be evaluated to
give I'*(T) = cxg*(T)T? (cs = 372/4 ), which when combined with Eq.(69)
results in a finite value of the relaxation rate, I' = Tk + crT?/Tx + O(T?)
(cp = ¢y —1/2 ) and a diverging coupling g(T') = ¢,/T'. The conductance G
through a Kondo dot in the linear response regime is given by

I r
w2+ 17?2 (W)2+417?

G - 392Y/dwdw’f(w’)f(w — ') f(—w)

1.79
o (1.79)

where G is the conductance quantum and Y is the correction factor intro-
duced in the section on particle-hole symmetric projection above (Y — 1 as
T — 0). One observes that G/Gy — 1 as T — 0 (unitarity).

1.6.4 Functional RG approach to frustrated Heisenberg models

The pseudofermion representation of spin operators may also be used in lat-
tice models. Here again the p-h symmetric projection is useful, particularly
when one is interested in the low temperature behavior (7' <« J). The more
conventional approximation schemes (random phase approximation, FLEX
approximation) when applied to the Heisenberg model on the square lattice
have been shown to provide good results [65]. The effect of the exact projection
via Popov-Fedotov has been found to be only important at higher tempera-
tures, as expected [19]. Systems of recent interest are frustrated Heisenberg
models, with competing interactions. Any approximate treatment should be
carefully balanced as to not prefer one type of correlations over another one.
A systematic treatment of all interaction channels may be achieved by em-
ploying the functional RG method [113-115]. A first study of a frustrated
Heisenberg model at T" = 0 using the pseudofermion representation and the
FRG method provided excellent results on the phase diagram of the J; — J>-
model [22]. Similar to the treatment of the Kondo model by FRG mentioned
above, one keeps only the two first RG-equations out of the infinite hierarchy
of equations. It is necessary to keep the full energy dependence of self-energy
and two-particle vertex functions. In addition, it turns out to be important
to keep a three-particle correlation contribution in the form of self-energy in-
sertions in the B-function of the RG equation for the couplings [116]. In this
way the Ward identities may be approximately satisfied. While this method
cannot yet be used to calculate properties of the ordered state, it allows to
identify phases without long-range order by studying whether the RG flow
runs smoothly all the way to A = 0 (A is the infrared cut off parameter of
FRG), which indicates a phase without LRO, or whether the flow becomes



34 R. Frésard, J. Kroha, and P. Wélfle

unstable at some finite A , pointing to the existence of LRO. A recent ap-
plication to the J; — Jy — Js-model yielded again excellent agreement with
complementary methods [117].

1.7 Conclusion

We have reviewed the most prominent auxiliary particle techniques and their
applications to strongly correlated electron systems, using a variaty of approx-
imation schemes, ranging from saddle-point approximations, possibly with
Gaussian fluctuations, to conserving approximations to renormalization group
methods. It was seen that the Kotliar-Ruckenstein representation, especially
in its spin rotation invariant and spin-charge symmetric formulation, is partic-
ularly useful for identifying complex spin and/or charge ordered groundstates
in mean-field like approximations, since it treats all spin and charge states on
a lattice site on the same footing. Regarding the Hubbard model on the square
lattice, unrestricted Hartree-Fock calculations point towards a huge number
of solutions. An indication that this is also realized using slave bosons on
the saddle-point level is provided by Fig. 1.3, but identifying the numerous
competing phases remains a challenge. Conserving approximations provide a
versatile tool for implementing the constraint on the auxiliary particle number
and, hence, for a thorough treatment of fluctuations without resorting to a
mean-field as a starting point. This appears necessary in particular for quan-
tum impurity systems, where magnetic ordering does not occur. The NCA
and the CTMA have been discussed as the most prominent examples of this
approach. Finally, Larsen’s particle-hole symmetric projection technique may
provide a promising tool for describing the complete RG flow from the weak
coupling regime to the strong coupling fixed point within a diagrammatic RG.
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