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A three-level system with partially broken SU(3) symmetmyniersed in a metal, comprised of a unique

non-interacting ground state and two-fold degeneratetexkatates, exhibits a stable two-channel Kondo
fixed point within a wide range of parameters, as has beenrshowrevious work. Such systems can, for
instance, be realized by protons dissolved in a metal anddouthe interstitial space of the host lattice,
where the degeneracy of excited rotational states is gtemdrby the space inversion symmetry of the
lattice. We analyze the robustness of the 2CK fixed point wadpect to a level splitting of the excited
states and discuss how this may explain the behavior of thiekwawn di/dV spectra measured by Ralph
and Buhrman on ultrasmall quantum point contacts in a magfield.
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1 Introduction

New, exotic quantum states of matter can arise in electsystems, when two degenerate ground states
compete with each other and get entangled, leading to naitbhiehavior of the entropy and of the ther-
modynamic, magnetic and electric response. In the casedtim-1/2 two-channel Kondo (2CK) effect,
the spin-screening of a spin-1/2 impurity by the first and sy $econd of two identical, conserved con-
duction electron continua (channels), respectively, m@mpetition for each of these screening channels
to form a spin singlet [1]. However, in this system both theleoupling fixed point (decoupled spin-1/2
impurity) and the strong-coupling fixed point (a three-bdyind state comprised of the spin-1/2 impu-
rity and two conduction electrons) are doubly degeneratie la@nce, are unstable with respect to a small
coupling to the conduction band [1, 2]. As a result, a stabiermediate coupling fixed point is formed,
where an intricate, quantum-frustrated many-body grotate svith a non-vanishing zero-point entropy of
S(T = 0) = kpIn+/2is realized k3 denoting the Boltzmann constant [3,4]. The spin degreesafdom
need not be magnetic spin, but may be any two-dimensionaseptation of SU(2), i.e. a pseudospin 1/2.

Signatures of the 2CK effect have been observed experitheimaertain heavy-fermion compounds
[5, 6], where the Kondo degree of freedom might arise fronitariolegeneracy [7, 8]. However, not all
measured response quantities have been found to be in accerdiith 2CK behavior in these systems.
More recently, the 2CK fixed point has been predicted to gQisand then realized [10] in an an inge-
niously designed, fine-tuned semiconductor Qdot systenweder, perhaps the most intriguing as well
as controversial experiments regarding the 2CK effect nertie d1/dV spectroscopy measurements by
Ralph and Buhrman on ultrasmall Cu quantum point contadtsll]. They exhibit scaling behavior of the
conductance near zero bias, as expected from a 2CK systed¥[11%], without fine-tuning of parameters
as well as sharp conductance spikes at elevated bias. aliiegrscattering mechanisms [17, 18], different
from 2CK physics, cannot account for the complete body otexpental observations [15, 19]. A review
of theoretical and experimental aspects of 2CK physics edioind in Ref. [20].
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2 K. Ballmann and J. Kroha: Rotational quantum impuritiea imetal: stability of the 2CK fixed point

It is difficult to design realistic, microscopic models whigenerically, i.e., without fine-tuning, exhibit
a 2CK fixed point, because either the Kondo (pseudo)spin stnyror the channel degeneracy are easily
broken. Two-level systems (TLS), e.g., an ion in a doubld-petential, embedded in a metal, have
been put forward early-on as 2CK systems and have been ivegnstudied by Zawadowski and co-
workers [21-23]. These studies have lead to a profound stateting of the dynamics of TLS in metals.
However, it turned out that in the standard TLS model of aiglarin a double-well potential the 2CK
regime cannot be realized. This is because the Kondo caupld the tunneling rate and, hence, the
ground state level splitting are not independent pararmetethis model. It was shown that the two-
channel Kondo temperatuig, is always smaller than the level splitting, because of sdnggeffects [24]
and coupling to higher excited states [25], so that the pisyisi always dominated by the level splitting.
Despite extensions of the TLS model [26] it has remainedadiltfito stabilize a 2CK fixed point.

In order to provide an explanation for the 2CK physics anthatsame time for the conductance spikes
observed in the Ralph-Buhrman experiments without finéatyirwe have earlier proposed and analyzed
the model of a dynamical impurity withatational degree of freedom, immersed in a metal [27]. In this
rotational impurity model (RIM) the Kondo SU(2) symmetnsisibilized by the space inversion symmetry
of the host material, while the channel degree of freedorhdgmagnetic) conduction electron spin, and
its degeneracy is guaranteed by time reversal symmetryingake first rotational doublet into account,
it was shown by perturbative renormalization group (RG} théis model generically has a stable 2CK
fixed point within a wide range of parameter values. In additithe conductance spikes were naturally
explained within the same model as Kondo-like transitiogsvieen a rotational doublet and the impurity
ground state. In the present paper we extend this study tbehavior in a magnetic field, Zeeman-
coupled to the magnetic moment of a rotating, charged partlo Section 2 we describe the model and
its renormalization group treatment in more detail and uBscbriefly, why charge screening effects or
higher excitations of the rotational impurity will not swessTx, in contrast to the case of a double-well
impurity [24, 25]. In Section 3 we present the results of teeyrbative RG for the RG flow of the energy
and the decay rate of the excited rotational doublet andaiitiqular, the phase diagram of the model in the
presence of a magnetic field, lifting the doublet degenehayconclude in Section 4 with a discussion of
the implication of the results for the interpretation of twductance spectroscopy measurements [11,12].

2 Microscopic model and renormalization group treatment

2.1 Hamiltonian

Hydrogen is easily dissolved in ionic form in noble metate Ipaladium or copper. The protons occupy the
interstitial spaces of the host lattice. If this lattice gbgpace inversion symmetry, like the Cu fcc lattice,
all excited states of a proton in the lattice potenial arebdipdegenerate, while it's ground state is unique.
The excited-state doublets may be visualized as rotorsstatk opposite rotational orientation, see Fig. 1
a). Taking only the first excited doublet and the ground stateaccount and considering that conduction
electron scattering can induce transitions between aryesitthree states, one obtains a three-level model
whose SU(3) symmetry is partially broken, due to the barellsplitting Ay between the ground and the
excited states [27]. The level scheme is shown in Fig. 1 bjgith the various couplings of conduction
electrons to the dynamical impurity. The corresponding Htaman reads,

H = lekchmckgm—i—Ao Z Y fm + Bo Z m [}, fm
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Fig. 1 a)Cu lattice with a rotational impurity at interstitial sit®lack dots define one layer of the Cu (111) plane,
light and dark grey dots define the layers above and belopeotisely. The blue dot is the impurity with a two-fold
degenerate rotational degree of freeddsjLevel scheme of the three-state quantum impurity, defirtiegcoupling
constants. The additional superscript carried bygtiié in Eq. 1 indicates the initial conduction electron stateobef
scattering, which is crucial for the RG treatment of exciéates [27].c) Impurity self-energy diagrams, where solid
lines represent conduction electron propagators and ddistes pseudo fermion progagators.

The first term is the usual conduction electron kinetic epefEhe conduction electron operatars,
carry theconserved magnetic spinr = i%, acting as the channel degree of freedom, and additionally
an SU(3) indexn = 0, 1, labelling lattice angular momentum states of the condnatiectrons which
may be changed in a scattering process. The prime on the skm {{1) indicates a restricted momentum
sum such thaEkm’ = ), comprises a summation over a unique and complete basisgiésifectron
states. The second term describes the two-fold degenerpteity statesyn = +1, with bare excitation
energy4, above the impurity ground state; = 0. In the presence of a magnetic field coupling to
the rotational motion (magnetic moment) of the charged intpyarticle, the excited states acquire an
additional Zeeman splitting2 By, described by the third term in Eqg. (1). We use Abrikosov'sym®-
fermion representation to describe the impurity levelserelf;, is the creation operator for the impurity
in statem = 0,£1. The defect dynamics are restricted by the constri@int Zm:()ﬂ i fm = 1.
The last two terms represent transitions between the leeal induced by conduction electron scattering,
including the potential scattering term for completenakbpugh it is an irrelevant operator. See Fig. 1 b)
for the definition of the coupling constants. The impurityecgtors are defined &, ,, = £, f,., and the
operators acting on the electronic Fock space are obtayedHtstitutingf,, — ", ckom in the above
expressions.

2.2 Perturbative RG Analysis

We employ the one-loop (second-order perturbation themmydrmalization group to analyze the three-
level model, Eqg. (1). Transitions between the non-degeéeénapurity states Am = +1) necessarily
involve resonant, inelastic electron scattering, wherelantron initiates from or ends up in an excited
state. Therefore, it is not sufficient to calculate renorreal couplings at the Fermi energy, but it is crucial
to take the dependence of the renormalized coupling coisstarthe (initial) energy of the scattering elec-
trons into account [27]. The corresponding formalism hagially been developed for non-equlilibrium
Kondo systems at finite bias [28—30], but it is suitable far resent situation as well. We take the im-
purity dynamics on-shell, i.e. the pseudofermion energgual to the respective impurity level energy,

v = |m|A(D), in all expressions. The one-loop RG equations for the nmnbuplingsg,(,{zl then read,

dg’ETZ/)ﬂ w I+n— 1
W(D) = 2 Z g (Que) 957 () @(D aRALTES F?) (1= Omedne) — (exch.) (2)

je
—1<j+n—£<1

with ¢, = ¢\") = J1 andg\), = jm J./2, for j = +£1, m = £1. The exchange terms (exch.)
on the right-hand side (RHS) of Eq. (2) are obtained from ftinectiones by interchanging in thgs in-
and out-going pseudofermion indices and by interchanging> n everywhere. The energy arguments
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4 K. Ballmann and J. Kroha: Rotational quantum impuritiea imetal: stability of the 2CK fixed point

of the g’s on the RHS arise from energy conservation at each vertekitee Kronecker-factor excludes
non-logarithmic terms which do not alter the impurity statbe© step function in Eq. (2) cuts off the RG
flow of a particular term when the band cutdffis reduced below the intermediate-state enélgyof an
electron which, before the scattering process, had theggnefThis energy i$2,,, = w+(|n|—|¢|)A(D)+

(¢ —n)B(D). It depends on the renormalized level spaciki@)) and the renormalized Zeeman splitting
B(D). The cutoff also involves the decay rates of the intermedrapurity states [31]",,,(D). Although
A(D) andB(D) andT',,, (D), contain no leading logarithmic terms, they acquire an R@,flince they
are calculated from the 2nd-order self-energy diagrame/shio Fig. 1 c). The 1st-order diagram is real,
gives the same shift for all impurity states and, hence, doésontribute. SpecificallyA(D) andB(D)
are obtained during the RG flow as [27],

A(D—6D) = A(D) - dReSo(v =0) + %(5R621(u — A+ B)+0ReS 1 (v = A — B)) (3)
B(D D) = B(D)+ %(5Re§]1(u = A+ B)—6ReX (v =A-B)), (4)

wheresReY = ReX (D) — ReX(D — 6D).

2.3 Two-channel Kondo regime and stability against chacgeening

One of us and collaborators showed in Ref. [27] that in zergmeéc field (8, = 0) the model (1) has
generically a stable 2CK fixed point for a wide range of par@mse The 2CK phase occurs, because
the excited state doublet of the non-interacting impustgown-renormalized by Kondo-like interactions
below the non-interacting ground state and the system rhastflow to a stable 2CK fixed point. The
Kondo state is formed due to the unbroken SU(2) subgroup ¢8Bhithin the (initially excited) doublet

of the three-level system. Moreover, it was shown that spikethe differential conductance at finite
bias voltage arise from Kondo-enhanced transitions betiweeground and the excited states [27]. These
spikes are analogous to the well-known Kondo satelliterrasoes observed in rare-earth Kondo impurities
with several, crystal-field split, local orbitals [32].

It should be emphasized that in the RIM the 2CK Kondo tempieeas not reduced by charge screening
effects: The charge of any impurity is screened by the cotoluelectrons. In a TLS in a double-well
potential the spatial charge density distribution is cedpib the presumed Kondo pseudospin degree of
freedom and is altered by a pseudospinflip process. Thexedoty those low-energy electrons partici-
pate in the Kondo scattering which cannot screen the flippltg charge distribution instantaneously. As
shown in Ref. [24], this reduces the energy range availaimdéndo scattering from the bare conduc-
tion bandwidth to the TLS tunneling frequency and, thuspsepsed . By contrast, within the RIM
Kondo scattering occurs within space-inversion symmetion doublets which alters the phase, but not
the charge density distribution of the system. Therefdrarge density and Kondo degree of freedom are
independent, andx is not influenced by charge screening. Moreover, to real2€karegime in the RIM
it is not necessary to invoke transitions via higher excitedies in order to enhanég over the level split-
ting of the doublet — which can be prevented by the altergaiarity of the higher excited states [25]. This
is because in the RIM the excited-state doublet is degembsaspace inversion symmetry and because,
in any case, a possible level splittinds, and the Kondo couplingg, , J, are independent parameters.
Hence, the 2CK behavior can be cut off only by breaking thespaversion symmetry, e.g., by lattice
distortion, or, in a more controlled way, by a magnetic field.

3 Results in finite magnetic field

We have investigated the appearance of 2CK physics in teedlevel model (1) in the presence of a finite
doublet splitting or magnetic field3, > 0, according to Egs. (2), (3) and (4)

Fig. 2 a) shows an example of the RG flow of the excited doubletl$ (n = +1) relative to the initial
ground state levelrt = 0) for a finite magnetic fieldBy,. By was chosen of the order of the Kondo
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Fig. 2 a)Perturbative RG flow of the level spacings between the ihitexcitedm = +1 states and then = 0 state
for By = 145 - T, Tk = 1.7-107° Dy, Ag = 5.9 - Tic and.J, = Jj| = 0.015 N(0), g9}, = {7 = J, /2. Dy is
the bare high-energy cutoff. The inset shows the RG flow of¢léparts of the self-energies for = 0 andm = +1.

b) RG flow of the imaginary part of the 2nd-order impurity levelfsenergies for the same parameters. The inset is a
blow-up of the region where the level crossing occurs.

temperaturel’x was determined here and throughout as the cutoff vAlder which the dimensionless
Kondo coupling reached (0)J, (w = 0) = 1 in zero magnetic field, withV(0) the density of states
at the Fermi level. The inset of Fig. 2 a) shows the flow of thesball real parts of the impurity self-
energies. The differenc®eX,,—1 (A+B)—ReX,—¢(0) andReX,,— —1 (A—B)—ReX,,—0(0) provide the
renormalization of the level spacings D) + B(D), respectively. As the inset shows, this renormalization
is negative and initially stronger than the bare spacifsgst By, thus causing a level crossing with the
m = 0 state. If this level crossing occurs for both states= +1, as seen in Fig. 2 a), 2CK behavior
is realized at the lowest energies, involving the two neddgenerate local levels = +1 and the two
conduction electron channels with magnetic spia: +1/2, similar to theB, = 0 case [27]. Although
the perturbative RG calculations cannot access this diy@ogrelated regime, the level crossing occurs in
general at an early state of the renormalization, whereehteigbative RG calculations are well controlled,
so that the occurence of a 2CK fixed point can be safely prdlidiowards low energies, the 2CK behavior
will be cut off only at the scale of the Zeeman splittidag (D — 0).

After the level crossing has occured in the RG flow, the legabrmalization®eX +; become grad-
ually small, and the level spacings D) + B(D) become nearly constant. The Zeeman splitting, i.e., the
spacing between the = 41 and them = —1 states, remains nearly constant during the entire RG flow.
This level flow can be understood from the behavior of the iimay parts of the impurity self-energies,
shown in Fig. 2 b) for the same set of parameters, since rekinaaginary parts are related by Kramers-
Kronig relations: Before the level crossing occures, the tw= +1 states are excited states and, thus,
have a large decay rate, proportional to the imaginary pétteir selfenergiedm> 4, while the on-shell
decay rate of the impurity ground state,= 0 is zero (Fig. 2 b), inset). Via Kramers-Kronig, this causes
a strong, initial down-renormalization of th®(D) + B(D) and, hence, a level crossing. After the level
crossing, then = —1 state is the lowest-lying level, and its on-shell decay vatg@shes [blue, dashed line
in Fig. 2 b)]. The decay rate of the = 0 state, in turn, starts to grow as the band cufoffs further
reduced, due to the increasing coupling constgﬁfg(D). This counter-acts the increaseAfD) and
causes it to level-off at low energies. Eventually, trdosi to them = 0 state are frozen out when the
cutoff is reduced below its (renormalized) excitation giyeBelow this stage of the renormalization the
m = 0 decay rate decreases again [black line in Fig. 2 b)]. Theydexda of the Zeeman-splihh = 1
level [red, dashed line in Fig. 2 b)] follows that of the = 0 level, however shifted towards lower en-
ergies, because of its lower excitation ene®y(D), above then = —1 state. Since for the parameter
values of Fig. 2 the initial Zeeman splitting is relativeipall compared td\, level renormalizations of the
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6 K. Ballmann and J. Kroha: Rotational quantum impuritiea imetal: stability of the 2CK fixed point

m = +1 and them = —1 state are nearly the same, so that the Zeeman splitfihgemains essentially
unrenormalized.

Them = +1 level renormalization is shown in Fig. 3 a) for various magngelds By. For stronger
magnetic fields the level renormalizations, as well as theagleates become slightly smaller, because
resonant scattering within the = +1 doublet is reduced. For magnetic fields up to the order of the
Kondo temperatur&’y and not too large initial level spacingy,, bothm = +1 doublet states cross the
m = 0 level. This implies 2CK behavior in the energy range < £ < Tx. However, if By 2 10 - Tk,
the level crossing occurs only for one or none of the- +1 states. In this case, the fixed point is a weak
coupling potential scattering impurity. These resultslbasummarized in a phase diagram in terms of the
coupling constantd, g and the level spacingi, and By, see Fig. 3 b). The 2CK phase of the system
is defined as the regime where bath= =+1 levels cross then = 0 level. It occurs to the upper left
of the phase boundary lines shown in Fig. 3 b) for varid4s For each value of3, the critical Kondo
couplingJ for realizing the 2CK phase is in good approximation a quiéeifanction of the level spacing
0o [phase boundary lines in Fig. 3 b)]. This is a consequencaefact that for not too larg#, the
level crossing occurs at an early stage of the RG flow and,eéhanay well be described in 2nd-order
perturbation theory. Deviations from the quadratic bebtiaeccur for strong magnetic field [blue triangles
in Fig. 3 b)], where the level crossing occurs later in the R@/flsee Fig. 3 a)] and 2nd-order perturbation
theory is not sufficient. For finité, the critical Kondo coupling is non-zero even for vanishiig, as
expected. However, the 2CK phase is still realized in a waagye of parameters.

4 Discussion and summary

To conclude, we have proposed and studied a three-levetwmampurity model with partially broken
SU(3) symmetry, comprised of a degenerate excited-staiieleicand a unique ground state, which exhibits
a generic two-channel Kondo (2CK) fixed point. This model rhayrealized by the rotational states of a
hydrogen ion (proton) in the interstitial space of the hattide of a noble metal. It qualitatively explains
two seemingly distinct features of the differential con@duce experiments by Ralph and Buhrman [11,
12] on the same footing, namely the zero-bias anomaly (ZB#gracteristic of 2CK behavior and the
conductance spikes at elevated bias. The ZBA is due to a demormalization of the doublet below the
non-interacting impurity ground state and Kondo scattgfiom this doublet, while the spikes at elevated

8 T T T T T T T T T
4_ ]
60+ T =1.3.10D
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<T,=15-10'D
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Fig. 3 a)Level renormalization for different magnetic field for Tx = 2 - 107°Dg, Ay = 25 - Tk andJ, =

Jj| = 0.015 N(0), g,(,{()) = g((){,)l = J1 /2. The curves of Zeeman-split doublets = +1 for the same magnetic field
By are plotted in the same coldr) Phase diagram in the plane #f= J, = J) = g,(,{()) and A, for different values
of By. The symbols mark the boundary between the 2CK phase (upippahd the potential scattering phase (lower
right). The values of 'k given in the figure are for the respective parameter valtes J) marked by the arrows. The
solid lines are straight line fits to the data points.
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bias are due to Kondo-enhanced transitions between ingpgnitund and excited states [27]. We have
discussed that charge screening effects do not reduce th@okemperaturé’x of the present rotational
impurity model, in contrast to the case of two-level syst§2d$. Since Kondo coupling and splitting of the
doublet are independently controllable parameters of théah Kondo transitions via virtual excitations
of higher excited states are not required in order to enhtdnrecikondo tmeperature. Rather, real transitions
to excited states, induced by finite bias, are expected tbteanultiple conductance spikes [27], which
are also observed experimentally [11, 12]. We have alsoyaedlthe effect of a Zeeman splitting of the
rotational doublet by an external magnetic fiédd A moderately strong field? < T does not destroy
the 2CK phase of the model, although the 2CK zero-bias camitecanomaly will be cut off at the lowest
energies by the Zeeman splitting. This behavior of the mizdallso observed experimentally [12]. In the
three-level model the Zeeman splitting of the= 41 doublet also splits the transition energi®st B
between then = 0 and then = +1 orm = —1 states, respectively, which mark the positions of the finite
bias conductance spikes. A splitting of the conductandeespn a magnetic field is, therefore, expected if
their width is smaller than the Zeeman energy. This will heegtigated in forthcoming work [33].

We are indepted to L. Borda, E. Fuh Chuo and especially A. dawaki for numerous useful discus-
sions. This work was supported by DFG through SFB 608 and §fanKR1762/2.
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