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Abstract. We show by exact numerical renormalization group calculations that a quantum
defect with a two-dimensional rotational degree of freedom, immersed in a bath of fermionic
particles with angular momentum scattering, exhibits an extended 2CK phase without fine-
tuning of parameters. It is stabilized by a correlation effect which causes the states with angular
momentum m = *+1 to be the lowest energy states of the defect. This level crossing with the
non-interacting m = 0 ground state is signaled by a plateau in the temperature-dependent
impurity entropy at S(T) = kpIn2, before the 2CK ground state value S(0) = kpln+v/2 is
reached.

1. Introduction

The two-channel Kondo (2CK) effect has intrigued condensed matter physicists ever since the
problem has been formulated by Noziéres and Blandin in 1980 [1]. It arises when two identical
baths or ”channels” of mobile fermionic particles compete for the formation of a singlet with
a quantum impurity spin S=1/2. As a result, an exotic quantum state of matter with a non-
vanishing zero-point entropy of S(0) = kpln+/2 is formed, and the very notion of particles
comprising the system breaks down [2, 3, 4]. However, the necessity of fine-tuning of system
parameters to the symmetry point where the quantum impurity degree of freedom is degenerate
as well as the two channels are identical (i.e., they have the same density of states and the same
coupling to the impurity), has hampered the physical realization of the 2CK effect in electronic
systems, see Ref. [5] for a review. For two-level systems (TLS) in a metal, proposed early-
on to exhibit the 2CK effect [6], it was shown that the Kondo temperature Tk is generically
lower than the TLS level splitting concatenated with the TLS tunneling transitions, so that the
2CK fixed point could not be reached [7, 8]. The realization in heavy-fermion lattice systems,
albeit supported by symmetries stabilizing the 2CK fixed point [5], has remained unconfirmed
due to the multitude of unclear experimental signatures [9, 10]. In an ingeneously designed
semiconductor quantum dot system 2CK signatures could only be observed by fine-tuning of
system parameters [11, 12].

In the present work we consider a rotational quantum defect immersed in a fermionic bath.
The defect can be comprised of an atomic particle bound in a flattened or effectively two-
dimensional harmonic oscillator potential. The three lowest quantum states of the isolated
defect are the ground state with angular momentum m = 0 and a doublet of degenerate angular
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momentum states m = %1, split off from the ground state by an excitation energy Ag, see
Fig. 1. Upon coupling to the itinerant fermion bath, transitions between these levels occur due
to angular momentum scattering. The system thus obeys a partially broken SU(3) symmetry.
We show by exact numerical renormalization group (NRG) calculations that in a wide range of
parameters the excited-state doublet m = £1 is down-renormalized by Kondo correlation effects
below the ground state of the non-interacting defect. Hence, this orbital momentum doublet
becomes the Kondo degree of freedom, termed pseudospin m = =41, and the quantum spin
o = £1/2 of the fermionic bath particles constitutes the channel degree of freedom, conserved
by the orbital angular momentum scattering. The degeneracy of the defect’s orbital doublet
is stabilized by spatial parity, while the channel degeneracy is guaranteed by time reversal
symmetry. The NRG calculations unambiguously show that this model exhibits an extended
2CK phase. It may explain the 2CK signatures observed in the early point contact spectroscopy
experiments by Ralph and Buhrman [13], including the conductance spikes at elevated bias and
their splitting in a magnetic field, as proposed by us earlier [14, 15]. We also propose that this
model may be realized physically in systems of ultracold atomic gases [16].

2. Model and numerical renormalization group
The system described above is represented by the model Hamiltonian [14, 15],
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Here the first term is the kinetic energy of the fermionic bath with spin ¢ = £1/2; the second one
describes the degenerate local doublet, m = +1, with the level spacing Ay above the impurity
ground state, m = 0. The third, fourth and fifth terms describe the interactions between the
impurity and the fermionic bath, where the capital operators S,,, denote the generators of
SU(3) in the impurity Hilbert space and the lower-case operators s,,, denote the generators
of SU(3) in the conduction electron Hilbert space, with coupling constants .J.,J, and g,(g}ml
as defined in Fig. 1. The transitions within the unbroken SU(2) subgroup in the degenerate
subspace of excited levels, m = £1, are written explicitly as the third term. The dynamics of
the impurity operators f,, fm are subJect to the constraint that the impurity is in one of its
three quantum states at any time, Q = Y ome 0,41 fm fm = 1. In Eq. (1), the angular momentum
of the mobile fermions with respect to the 1mpur1ty center, m = 0, +1, is written explicitly, while
the label k in the first term comprises all other, continuous fermion degrees of freedom. In order
to keep the number of coupling constants simple, we will show only the results for g,(,?}ml =g
and for Kondo coupling J, = J,/2 =: J or for J, = J, =: J. All parameters are given in units
of the unrenormalized half bandwidth D.

To analyze this model, we employed the NRG [17], adapting the algorithm outlined in Ref. [18]
to the present case. Since the Hamiltonian has a large symmetry group of (partially broken)
SU(3) x SU(2), the calculations are numerically demanding. Because the interaction involves



transitions between three levels [the fundamental representation of SU(3)], three Wilson chains
are required. Each one comes in two flavors, the conserved SU(2) channel degree of freedom,
spin 0 = £1/2. Therefore, each site of a Wilson chain has four states, |0), | 1), | |), and | 1),
i.e., in each renormalization group step the dimension of the Hilbert space grows by a factor
43 = 64. We exploited symmetries of the model [19] so as to decompose the total Hilbert space
into it’s conserved subspaces and to gain efficiency of the computer code.

3. 2CK phase of the rotational defect model

In this section we present the results of our NRG analysis, in particular the phase diagram in the
plane of Kondo coupling J and level spacing Ag as well as the behavior of the Kondo temperature
Tk and of the entropy S(T') of the model in the 2CK phase. First we discuss how the 2CK
fixed point is identified and distinguished from a trivial potential scattering fixed point in the
renormalization group flow: For a Fermi liquid fixed point (single-channel Kondo or potential
scattering) the fixed point spectrum alternates between even and odd number of NRG iterations,
corresponding to even or odd total number of (pseudo)spins and due to the different energies
of the (pseudo)spin singlet or (pseudo)spin doublet (s = 1/2) states, see Fig 2. For the 2CK
fixed point there is no alternation of the spectra [19], because a complex spin-entangled state is
formed, independent of the parity of the particle number in the system, see Fig 3. Furthermore,
a Fermi liquid fixed point is characterized by an equidistant fixed point spectrum for large NRG
iteration numbers, while the 2CK fixed point spectrum is not equidistant [19]. The qualitatively
different fixed point spectra are shown in the NRG level flow diagrams of Figs. 2 (potential
scattering) and 3 (2CK), respectively. While for the pure 2CK model [1] the fixed point level
spacings are known from boundary conformal field theory [19], the fixed point spectrum of
our extended model, Eq. (1), shows deviations from these values due to additional potential
scattering terms present in our model. Nevertheless, the 2CK state may be distinguished from
the Fermi liquid fixed point by the non-equidistant level spacing. Comparison of Figs. 2 and 3
shows that the system changes, for given values of J and g, from potential scattering to 2CK
upon reducing the level spacing Ag.
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Figure 2. NRG energy level flow for the
parameters J = J;, = J,/2 = 0.2, g =
0.002, Ag = 0.14, and NRG discretization
parameter A = 4 [18]. Potential scattering
fixed point: alternation between even (black
dots) and odd (red dots) number of iterations;
equidistant fixed point spectra for even and
odd iterations, respectively.
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Figure 3. NRG energy level flow for the
parameters J = 0.2, g = 0.002, Ay =
0.13, and NRG discretization parameter A =
4 [18]. 2CK fixed point: mno alternation
between even (black dots) and odd (red dots)
number of iterations; non-equidistant fixed
point spectrum.
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Mapping out the different fixed points in the N(0)J — Ag plane, with N(0) the density of
states at the Fermi energy, we obtain the phase diagram of our model as shown in Fig. 4. The
data points shown are unstable fixed points separating the 2CK regime (above) from the trivial
potential scattering regime (below the line). It is seen that the model generically exhibits an
extended 2CK phase for a wide range of system parameters. In determining the phase boundary
numerically, it must be observed that a minimal coupling strength .J is necessary in order for
the 2CK fixed point to be detectable by the NRG within NNV iteration steps. This threshold J
must be subtracted from the numerically determined critical value of J in order to obtain the
2CK phase boundary that would be obtained after N — oo iterations. J may be estimated
as follows. The minimal resolvable energy by NRG after N steps is Fmin = D - A~N/2, where
D is the half bandwidth and A the discretization parameter. The minimal Kondo temperature

resolvable by NRG is, therefore, Tk min = D exp[—1/(2N(0)J] = Epin. Combining the last two
equations, one obtains for the threshold, N(0)J = 1/N InA, i.e., N(0).J = 0.0144 for our NRG
parameters N=25 A = 3. This threshold has been subtracted in the phase diagram, Fig. 4.
Good quantitative agreement is found with the results of a perturbative renormalization group
treatment for small coupling values, as described in Refs. [14, 15].

It is known that in the pure 2CK model [1] the 2CK fixed point corresponds to an intermediate
coupling strength of J*/D =~ 0.7 [19]. Hence, at this coupling strength Tk should reach up to
the band width, T} /D =~ 1, and decay exponentially on both sides of J*. The latter has been
shown due to a strong/weak coupling duality of the 2CK model [1, 20]. It is different from the
single-channel Kondo model, where the fixed point is at strong coupling, J — oco. Our NRG
calculations show that this behavior is also true for the rotational defect model, Eq. (1): Fig. 5
shows T for this model as a function of J for various values of the level spacing A, calculated
by NRG. It exemplifies that large values of Tk may be realized in this model.

Finally, we discuss the temperature 7" dependence of the impurity contribution to the entropy
S(T), as shown in Fig. 6. For T" > Ay, all three impurity levels are thermally excited, and
S(T)/kp = In3. As T is reduced below Ag, but T > Tk, the entropy obtains a plateau at
S(T)/kp ~ In2. This indicates, that for T" < Ay not the bare excited state doublet is frozen
out, but a level crossing occurs induced by Kondo correlations, so that the m = +1 doublet
becomes the interacting impurity ground state and can host Kondo fluctuations even at the
lowest energies. Because of the SU(2) channel symmetry, the system is then bound to flow
to the 2CK fixed point for T' < Tx. This is confirmed by the 2CK zero-point entropy of
S(0)/kp = In /2 [3] which is achieved in Fig. 6 at the plateau for T < Tk.
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Figure 5. The Kondo temperature Tx as a Figure 6. The impurity contribution to
function of the coupling constant J = J;, = J,/2 the entropy is shown as a function of
is shown for various Ag and for ¢ = 0.01J. The temperature 7. Three plateaus can be
inset shows the same on a logarithmic scale. clearly distinguished, see text.

To summarize, we have demonstrated the existence of an extended 2CK phase in a rotational
impurity model with partially broken SU(3) symmetry. We have also shown that at the 2CK
fixed point coupling, J* = 0.7, Tx reaches up to the band cutoff, as expected for a 2CK system,
so that large Tk values can be achieved in this model.
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