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CHAPTER 1

Introduction

In the past few decades, advances in the development of quantum optical tools enabled the
physics community to investigate a broad range of phenomena in the context of light-matter
interaction. With the increased control of atomic motion, it became possible to create and control
quantum mechanical systems. A major breakthrough was the realization of Bose-Einstein
Condensation in an atomic vapor [1–3]. In particular, ultracold atoms in optical lattices, which
are artificial crystals of light, enabled experimentalists to simulate condensed matter systems
in a highly controllable way. A variety of theoretical models such as the Bose-Hubbard model
[4, 5] and the Fermi-Hubbard model [6] could be engineered experimentally and paradigmatic
theoretical predictions could be investigated. A striking example is the observation of the
superfluid to Mott-insulator transition for bosons trapped in an optical lattice [4, 5]. Several
propositions [7–12] suggest that the physics of the paradigmatic XXZ model can be realized
in either Bose-Bose or Fermi-Bose mixtures. In all such experimental setups it is, however,
inevitable that the system interacts with its environment, which leads to dissipation.

The Lindblad master equation was introduced to describe such dissipative open quantum
systems [13, 14] and has proven to be valid under the conditions present in atomic, molecular
and optical systems [15]. In those settings, the coupling of the environment onto the system
is small compared to the energy scales in either bath and system (Born approximation), the
energy non-conserving terms in the interaction Hamiltonian can be neglected (Rotating Wave
Approximation) and the action of the bath onto the system is fast compared to other time scales
in the system and thus adiabicity is given (Markov Approximation). Dissipative systems give
rise to exotic non-equilibrium dynamics. Decoherence may lead to a loss of quantumness,
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Chapter 1 Introduction

however, it could be shown that even under strong dissipation unitary dynamics can be preserved
on certain time scales [16, 17]. The dissipation can be engineered such that a desired steady
state is the attractor of the dynamics, e.g. enabling robust entangled state generation [18]. The
vast amount of unexplored physics in dissipative open quantum systems makes it a vibrant
research field in both experiment and theory.

From a theoretical point of view, it is interesting to look at models of reduced complexity,
which are well-understood in the isolated case at equilibrium and build upon this knowledge
to investigate the emerging physics in dissipative setups. In this manner the Lindblad master
equation is taken as a phenomenological equation, whose properties reveal information about
the system’s behavior. Following this line of argumentation, much progress has been made to
improve our understanding of one-dimensional XXZ chains of spin- 1

2 subject to a boundary-
drive. The XXZ model is a paradigmatic theoretical model to describe magnetic materials.
Exact analytical methods [19–21] were used to yield exact solutions for the non-equilibrium
steady state as a matrix product state.

A more general boundary drive, which allows to target arbitrary polarizations of the left and
right spins was proposed by Popkov et al. [22–27]. For fine-tuned parameters of the dissipation
and the system, intriguing non-equilibrium steady states with helical structure were found to
appear. For certain configurations these states are predicted, but fail to converge [25]. The aim
of this work is to uncover the conditions under which the predictions fail and understand the
physics of the occurring non-equilibrium steady states.

The present thesis is structured as follows. In Chapter 2, we familiarize the reader with
the language of open quantum systems and give details on the Lindblad master equation. We
introduce the XXZ model as an isolated system and define the boundary-driven XXZ chain. We
review known properties as the uniqueness of the steady state, symmetries and the emergence
of the spin helix states.

In Chapter 3, we present the numerical method of exact diagonalization, which is used to
solve the behavior of small systems, discuss the characteristics of the Liouvillian, the generator
of the Lindblad dynamics, and introduce the used physical observables.

In Chapter 4, we study the stationary perturbation theory in the limit of strong coupling. We
present the formalism that, to a large part, was developed in previous publications [24–27] and
calculate perturbative corrections starting from a general ansatz for the steady state in the limit
of infinite strong dissipation (Zeno limit). Subsequently, we make use of these findings to guess
the dynamics and validate it via time-dependent perturbation theory.

In Chapter 5 we look at the results. In a first section, we investigate the parameter space and
discover the underlying physics of the non-equilibrium steady state. After that, we identify the
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particular points for which pure states are expected, but do not occur. We then focus on the
situations for which a mixed state, composed of two helical states with opposite windings, seems
to be generated as steady state. We hypothesize this formally using the findings of stationary
perturbation theory and give evidence to support this hypothesis from different angles. In the
last section we confirm the three predicted time-scales of the time-dependent perturbation theory
using a case study via numerical time evolution.

In the end we will conclude, put the results in the broader context and discuss limitations as
well as possible implications for future research.
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CHAPTER 2

Boundary-Driven XXZ Spin-1
2 Chain

In the first section of this chapter, the concept of open quantum systems and the density matrix
formalism are introduced. Furthermore, a short introduction to the Lindblad formalism is given.
The second section presents the XXZ model as an isolated model. The focus lies on the final
section, in which the boundary-driven anisotropic Heisenberg chain is defined and some of its
important properties are discussed. This model will be thoroughly investigated throughout this
thesis.

2.1 Open Quantum Systems

Consider the following situation: A quantum mechanical system S living in the Hilbert space
HS is in contact with a bath B living in HB. We shall call the combined system an open quantum

system with Hilbert space H = HS ⊗HB where ⊗ denotes a tensor product (cf. 2.1).

2.1.1 Density Matrix Formalism

A system’s state is most generally described by its density matrix

ρ =
∑
α

ωαPα (2.1)

=
∑
α

ωα |ψα〉 〈ψα| , (2.2)
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Chapter 2 Boundary-Driven XXZ Spin-1
2 Chain

Figure 2.1: Sketch of an open quantum system. A system S with Hilbert space HS interacts with an
environment B with Hilbert space HB via an interaction Hamiltonian Hint.

where ωα are the weights of the projectors Pα = |ψα〉 〈ψα|. The weights ωα can be interpreted as
probabilities of the state |ψα〉 to be occupied. They are positive and satisfy the normalization
condition

∑
α ωα = 1. The density matrix is a positive semi-definite, hermitian matrix with trace

1:

ρ ≥ 0 ρ† = ρ Tr (ρ) = 1, (2.3)

where A† = (A∗)T denotes the conjugate transpose. As a hermitian matrix, ρ can be diagonalized
yielding a set of eigenvalues pi, which due to semi-definiteness ρ ≥ 0 are bigger or equal to
zero, and corresponding orthogonal eigenstates |φi〉. In its spectral decomposition, the density
matrix can be written as

ρ =
∑

i

pi |φi〉 〈φi| , (2.4)

with a normalization condition Tr(ρ) =
∑

i pi = 1.

The density matrix is often referred to as statistical operator. The purity of a statistical
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2.1 Open Quantum Systems

ensemble can be tested with the quantity

Tr
(
ρ2

)
≤ 1. (2.5)

The equal sign holds only for a pure state, or more precisely, a density matrix consisting only of
one projector with weight 1

ρ = |ψ〉 〈ψ| . (2.6)

For Tr
(
ρ2

)
< 1 the state consists of a statistical mixture.

The calculation of the expectation value of an observable Â is given by the trace of the product
between density matrix and operator 〈

Â
〉

= Tr
(
Â
)
. (2.7)

It will be convenient to remember that the most general density matrix of a spin- 1
2 system can

be given in terms of the Pauli matrices as

ρ = Aσx + Bσy + Cσz + D1, (2.8)

where

σx =

0 1
1 0

 σy =

0 −i

i 0

 (2.9)

σz =

1 0
0 −1

 1 =

1 0
0 1

.
The density matrix is particularly useful to describe composite systems [28] such as the system-
bath setting mentioned previously: Consider the total density matrix of HS ⊗HB. Let us denote
a basis of HS by {ψk} and a basis of HB as {φl}. Then, one can define the reduced density matrix

of the system as
〈ψk| ρS |ψk′〉 =

∑
l

〈ψk; φl| ρ |ψk′; φl〉 (2.10)

and similarly for the bath-reduced density matrix. By taking the partial trace over one subsystem,
the reduced density matrix can be obtained from the full density matrix

ρS = TrB
(
ρtotal

)
. (2.11)
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Chapter 2 Boundary-Driven XXZ Spin-1
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This can be of interest if the bath is intractable and only information of the system is of interest.

Having established the density matrix formalism, we can introduce a phenomenological
equation for the time evolution of the density matrix of the system S in contact with a bath B.

2.1.2 Lindblad Master Equation

In 1976, Lindblad derived a Markovian master equation, the so-called Lindblad master equation

(LME), [13, 14]

dρ
dt

= −i
[
H, ρ

]
+ D[ρ] (2.12)

= L[ρ].

where H denotes the Hamiltonian of the system S .D and L are functionals called dissipator and
Liouvillian (sometimes named Lindbladian), respectively. The Liouvillian consists of two terms:
The first term is known from quantum mechanics as the unitary part of the dynamics generated
by the Hamiltonian (often called Liouville-von Neumann equation). The second term, called
dissipator, describes the action of the bath onto the system.

The Lindbladian can be understood as a mapping of the density matrix at time ρ(t) to a later
time ρ(t + dt) and, as such, must preserve the key properties of the density matrix: hermiticity,
trace and positivity. This requirement sets restrictions onto the form of the dissipator. In its
most general form, it is given by

D[ρ] =
∑

j

Γ j

(
L jρL†j −

1
2
{L†j L j, ρ}

)
, (2.13)

where L j are Lindblad operators (or jump operators), which represent the action of the bath
onto the system that is parametrized by a coupling strength (or dissipation strength) Γ j. It is
important to mention that the Lindblad master equation is Markovian and thus time-local by
construction.

As mentioned in the introduction, microscopic derivations of the Lindblad master equation
make use of certain approximations on the system, the bath and its interactions. It has been
demonstrated in [15] that these approximations hold in atomic, molecular and optical (AMO)
settings. For more details regarding possible derivations, the reader is referred to [29]. In this
thesis, we use this equation as a phenomenological equation and assume validity.
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2.2 The XXZ Spin- 1
2 Chain

Stationary Lindblad Master Equation The full dynamical problem is often difficult to
solve, while solutions of the stationary Lindblad master equation for the non-equilibrium
steady states are attainable and give interesting insights into the underlying physics. The
non-equilibrium steady state solves the stationary Lindblad master equation

Lρ∞ = 0 (2.14)

where ρ∞ = ρ(t → ∞). In principle, the solution does not have to be unique.

The next section reviews the isolated XXZ chain. This section should serve as a basis for the
boundary-driven version that will be treated thereafter.

2.2 The XXZ Spin-1
2 Chain

The XXZ spin- 1
2 chain or (anisotropic Heisenberg chain) is a model which describes spins

in magnetic materials in one dimension. As a low-dimensional model, it has been studied
extensively during the last century and allowed for many exact theoretical results [30]. The
Hamiltonian of this one-dimensional model is given by

H = J
N−1∑
j=1

((
S x

jS
x
j+1 + S y

jS
y
j+1

)
+ ∆S z

jS
z
j+1

)
(2.15)

= J
N−1∑
j=1

(
1
2

(
S +

j S −j+1 + S −j S +
j+1

)
+ ∆S z

jS
z
j+1

)

where j is a spatial index denoting the site of the chain and S α
j = ~

2σ
α
j with α = x, y, z the

spin operators, which only act non-trivially on the corresponding site j. In the second line, the
transverse interaction was rewritten in terms of the raising and lowering operators S ±j = S x

j ± iS y
j .

The coupling constant (or exchange constant) J is chosen to be positive and set to unity in this
work. The anisotropy ∆ governs the interaction behavior of the Z-components of the spins and
makes this model a realistic candidate to describe magnetism in solid state materials [30].

The XXZ model in 1D exhibits three groundstate phases (cf. Figure 2.2). For ∆ < −1, the
Z-components of the spins align either in positive or negative Z-direction; the chain is said
to be in a ferromagnetic regime (FM). The excitation spectrum of this phase is gapped. The
transverse interaction dominates the behavior for −1 < ∆ < 1. This regime is gapless and
called the Luttinger liquid (or XY-phase). Furthermore, in the gapped antiferromagnetic phase
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(or Néel phase, AFM) ∆ > 1, the interaction is such that Z-components of the spins misalign.
These groundstate phases intuitive make sense, since, depending on whether ∆ < −1 or ∆ > 1,
neighboring spins minimize their energy by being aligned (FM) or misaligned (AFM). For those
cases in which |∆| > J, the spin flip term can be neglected.

Figure 2.2: Sketch of the groundstate phase diagram of the XXZ chain in 1D for positive coupling
constant J as a function of anisotropy ∆.

At this point, it is worth mentioning a few particular points on this axis: At ∆ = 0 the XXZ
model reduces to the XX model, which can be mapped to non-interacting spinless fermions
via a Jordan-Wigner transformation. The XXZ model becomes isotropic for ∆ = 1. For the
limit |∆| → ∞, the Z-component dominates and one recovers the (anti)ferromagnetic Ising
model. The XXZ model for spin-1

2 is an integrable model and exactly solvable via Bethe Ansatz
techniques (as reviewed in [31]).

In the preceding sections, the formalism to investigate open quantum systems was introduced
and the closed system model was discussed. All is set to finally define the open quantum system
that we will discuss throughout this thesis.

2.3 The Boundary-Driven XXZ Chain in 1D

The boundary-driven XXZ chain (or anisotropic Heisenberg chain) consists of a XXZ chain
coupled to polarization baths at the boundaries as illustrated in Figure 2.3. The polarization
baths polarize the boundary spins into certain directions parameterized by the azimuthal angle ϕ
and the polar angle θ (see Figure 2.4).
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2.3 The Boundary-Driven XXZ Chain in 1D

Figure 2.3: Sketch of a boundary-driven spin chain restricted onto the XY-plane for simplified visualiza-
tion. The boundary polarization bath acts through the Lindblad operators L1, LN onto the first and last
spins of the chain. The Hilbert space can be formally split into a boundary part (gray box) and a bulk part
(yellow box).

Figure 2.4: A coordinate system in 3D that illustrates the definition of azimuthal (ϕ) and polar (θ) angle.

The Lindblad master equation for this model is given by

ρ̇ = −i
[
H, ρ

]
+ ΓD[ρ] = L[ρ], (2.16)

D[ρ] =
∑

j={1,N}

(
L jρL†j −

1
2
{L†j L j, ρ}

)
, (2.17)

with specified Lindblad operators

L1(θL, ϕL) =
1
2

(
− sin θLσ

z
1 + (1 + cos θL)e−iϕLσ+

1 − (1 − cos θL)eiϕLσ−1
)
, (2.18)

LN(θR, ϕR) =
1
2

(
− sin θRσ

z
N + (1 + cos θR)e−iϕRσ+

N − (1 − cos θR)eiϕRσ−N
)
, (2.19)

where we made use of σ±j = 1
2

(
σx

j ± iσy
j

)
.

The coupling of the two baths has been chosen to be of equal strength. Thus, the dissipation
strength Γ can be pulled out of the dissipator. To understand the action of these Lindblad
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operators, consider the most general spin state and a state perpendicular to it

|Σ(θ, ϕ)〉 = e−iϕ/2 cos
θ

2
|+〉 + eiϕ/2 sin

θ

2
|−〉 , (2.20)

|Π(θ, ϕ)〉 = e−iϕ/2 sin
θ

2
|+〉 − eiϕ/2 cos

θ

2
|−〉 , (2.21)

where |±〉 denote spin up/down state. Acting on it with the Lindblad operators, one obtains

L1/N(θ, ϕ) |Σ(θ, ϕ)〉 = 0, (2.22)

L1/N(θ, ϕ) |Π(θ, ϕ)〉 = − |Σ(θ, ϕ)〉 . (2.23)

A spin state polarized in the direction of θ and ϕ is a dark state of the Lindblad operator,
which targets this direction. That also means that once the boundary spins point into the
targeted direction, the dissipator is zero and no dissipation acts on the system. Any arbitrary
state can be decomposed into components along |Σ(θ, ϕ)〉 and |Π(θ, ϕ)〉 resulting in |Ψ(θ, ϕ)〉 =

a |Σ(θ, ϕ)〉 + b |Π(θ, ϕ)〉. As the Lindblad operator acts on the arbitrary state

L1/N(θ, ϕ) |Ψ(θ, ϕ)〉 = −b |Σ(θ, ϕ)〉 (2.24)

it gets kicked into the dark, targeted state.

2.3.1 Quantum Zeno limit

In many cases, we will restrict the discussion to the so-called Quantum Zeno limit. In this
limit, the dissipation strength Γ tends to infinity. The boundary spins are fixed into certain
polarizations by the boundary baths. The behavior of the bulk part of the chain is governed by
the anisotropy ∆ as sketched in Figure 2.5.

Physically, this limit is equivalent to a continuous measurement of the quantum state of the
boundary spins: Consider a single measurement of an observable. The quantum state will
collapse onto an eigenstate of the eigenbasis of the observable. After the measurement, the
state will continue to evolve and, therefore, transition into other states. If, however, a second
measurement takes place at an infinitesimal small time step after the first, the state has no time
to evolve. It can be shown that transitions to other states have a vanishingly small probability
and the state will collapse into the same eigenstate as before. The state of the system is virtually
frozen. The argument can be extended to continuous measurements [32]. Furthermore, the Zeno
limit is not merely a theoretical concept, but an experimentally realizable situation [33]. For
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2.3 The Boundary-Driven XXZ Chain in 1D

the boundary-driven system in Zeno limit, it is tempting to think of it as a closed system with
fixed boundary conditions. However, the crucial difference lies in the dynamics: While a closed
system would evolve unitarily, in the Zeno limit, the unitary evolution decays over time due to
dissipation.

Figure 2.5: Sketch of a boundary-driven spin chain restricted onto the XY-plane in Zeno limit. The
boundary spins (gray) have fixed polarizations, whereas the bulk spins can move according to the
anisotropy ∆.

2.3.2 Spin Helix States

As has been shown in previous works [24–27] on the boundary-driven XXZ chain that the
interplay of a fine-tuned Hamiltonian and dissipation leads to the formation of a non-equilibrium
steady state with a helical structure (see Figures 2.6 and 2.7). Spin helix states occur precisely,
if

θL = θR = θ (2.25)

Φ = ϕR − ϕL , 0 (2.26)

γ =
Φ + 2πm

N − 1
(2.27)

∆ = cos γ (2.28)

Γ = ∞ (2.29)

where the difference of azimuthal angles of left and right boundary spin is called boundary

gradient Φ. This boundary gradient can be reached if starting from the left boundary, the
remaining (N − 1) spins are turned incrementally by an angle γ (see Figure 2.6). In doing so,
the spin chain makes m = 0, 1, . . . ,N − 2 windings (or revolutions) around the Z-axis.
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If all of the above conditions are fulfilled, the non-equilibrium steady state can be expressed
in a simple factorized form

|Ψhelix〉 =

N⊗
k=1

cos θ
2e

−iγ(k−1)
2

sin θ
2e

iγ(k−1)
2

 (2.30)

lim
Γ→∞

ρhelix(Γ) = |Ψhelix〉 〈Ψhelix| (2.31)

This state describes the precession of a spin around the Z-axis, with a constantly increasing
azimuthal angle.

Figure 2.6: Sketch of a spin helix state in the XY-plane. The first spin is aligned with X-axis, while the
boundary gradient is Φ = π

3 . The anisotropy ∆ is chosen such that the intermediate spins turn by an angle
γ = π

9 .

(a) (b) (c)

Figure 2.7: Illustration of spin helix states for N = 11 spins with a boundary gradient Φ = π
3 and winding

(a) m = 0, (b) m = 1 and (c) m = 2.

2.3.3 Uniqueness of the Non-Equilibrium Steady State

For our particular choice of Lindblad operators, it can be shown that the Lindblad master
equation has a unique non-equilibrium steady state. The argumentation follows a theorem
by Evans [21, 34], stating that the steady state is unique, if and only if the set of operators
M = {H, L1, LN} generate, under multiplication and addition, the entire algebra in H, which
in our case consists of the Pauli algebra. In [21], the proof is sketched for Lindblad operators
which correspond to θL = θR = 0, π and ϕL = ϕR = 0.
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2.3 The Boundary-Driven XXZ Chain in 1D

The uniqueness of ρ∞ underlines the fact that it is independent of the initial condition and
makes the non-equilibrium steady state an attractor of the dynamics. The formation of the steady
state in the long time limit is somehow robust.

2.3.4 Symmetries of the Model

We can make use of this uniqueness to find symmetries of the non-equilibrium steady state:
Every global transformation that leaves the stationary Lindblad master equation invariant, results
in a respective symmetry of ρ∞.

For instance, for N even, the unitary transformation Ueven = (I ⊗ σz)
⊗ N

2 leaves the Lindblad
master equation invariant, i.e. L[ρ∞] = 0 becomes L[ρ̃∞] = 0. It follows that ρ∞ = ρ̃∞ since the
non-equilibrium steady state is unique. Introducing the explicit dependence on the parameters
we can write

ρ∞ ≡ ρ∞(γ, θ,∆) (2.32)

ρ∞(γ, θ,∆) = Uevenρ
∗
∞(π − γ, θ,−∆)Ueven for even N (2.33)

where ρ∗∞ denotes the complex conjugate of the density matrix. This transformation allows to
map the steady state for positive ∆ to the steady state of negative ∆. In the same manner, the
transformation Uodd = (I ⊗ σz)

⊗ N
2 ⊗ I leads to

ρ∞(γ, θ,∆) = Uoddρ
∗
∞(γ, θ,−∆)Uodd for odd N. (2.34)

There is a symmetry, which can be thought of as a reversing transformation of the spin chain
given by

ρ(γ, θ,∆) = ΣxVR(ρ(γ, π − θ,∆))RVΣx (2.35)

with Σx = (σx)⊗N , V = (ei
φR
2 σ

z

)⊗N and R(A ⊗ B...W ⊗ Z)R = Z ⊗ W...B ⊗ A. For two sites, R

reduces to the permutation operator P12 has the explicit form

P12 =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

. (2.36)
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2 Chain

For more sites, R can be obtained using (P12)2 = 1 and P12P13 = P23P12, where P12 is pulled
to the right. Let us discuss a minimal example for this: Take a chain of two spins, whose first
spin is polarized with a polar angle θ1 and whose second spin is polarized with a polar angle
θ2. The transformation maps this onto a chain, whose first spin is polarized with a polar angle
π− θ2 and whose second spin is polarized with a polar angle π− θ1. This can be understood as a
mirroring in the middle of the chain and a mirroring with respect to XY-plane. Note, that for
θ = π

2 Equation (2.35) is a mapping onto itself.

To summarize, this chapter presented basic knowledge on density matrices, open quantum
systems, its treatment within Lindblad master equation formalism, the isolated and boundary-
driven XXZ model. In the next chapter, we will introduce the numerical techniques to investigate
the physics of the boundary-driven XXZ model.
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CHAPTER 3

Exact Diagonalization

In the previous chapters, we have established the research question (Chapter 1) and understood
the basic properties of the model (Chapter 2). This chapter deals with the methods that we use to
analyze the model. The first section on exact diagonalization explains how the XXZ model and
its corresponding Lindblad equation are implemented and solved for steady states, as well as for
the time evolution. The second section discusses perturbation approaches for the stationary and
the dynamical problem.

3.1 Exact Diagonalization of the Lindblad Superoperator

At the beginning of this section, the main concept of the exact diagonalization will be introduced,
followed by a sketch of the implementation with references to the code in Appendix A. After
that, we discuss how to obtain the steady state and the dynamic solution of the Lindblad master
equation.

Originally, exact diagonalization is a numerical method to solve the Schrödinger equation of a
quantum system. It is a practical technique to explore the relevant physics of small systems and
is often used to benchmark more elaborate algorithms. The exceptional advantage of the method
is, that no approximations are needed. For small systems, one can get the full information of the
energy spectrum and the full set of eigenstates. Due to the exponentially increasing dimension of
the Hilbert space of the problem, the method reaches its limits quite fast. Often one is restricted
to solving just for the groundstate or the lowest lying eigenstates.

The exact diagonalization can also be applied to solve the Lindblad master equation. In
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Chapter 3 Exact Diagonalization

general, this is a dynamical problem, that is governed by the time evolution operator. For our
case, this operator can be formally written as eLt. We seek to represent the Liouvillian L, which
governs the time evolution operator, in an appropriate basis, such that we can diagonalize it and
determine its complete eigensystem.

In practice, one has to carry out the following steps: First, one defines a basis, in which one
can represent the Liouvillian as a matrix. Then, its eigenvalues and eigenvectors are determined
using appropriate algorithms. That is enough to solve the Lindblad equation.

In this chapter, we detail the steps in solving the Lindblad superoperator via exact diagonaliz-
ation and by doing so, briefly explain the Python code that was used (see Appendix A). We first
set up the Hamiltonian of the system, which is given by Equation (2.16) and choose a basis for
its representation.

3.1.1 Definition of a Basis for Spin Systems

The following derivation follows the notation of [35]. For a spin-1
2 system each spin can occupy

MS = 2 different spin states: either spin at site j is down (s j = 0) or spin is up (s j = 1) in the
S z-eigenbasis. We can formulate a basis by assigning a value to each possible spin configuration

|K〉 = |s1, s2, . . . , sN〉 (3.1)

with

K =

N∑
j=1

s jM
j−1
s (3.2)

where N denotes the number of sites in the chain. This corresponds to converting a state given
by a binary list [sN , sN−1, . . . , s1], containing the values s j = {0, 1} for spin at site j down or up
respectively, to an integer number K.

3.1.2 Setting up the XXZ Hamiltonian

Having defined the basis, there are various ways to create the Hamiltonian. In this thesis, we
first set up the operators and subsequently construct the Hamiltonian out of the operators. In
order to find the operators in a given basis, one can exploit the information on the coupling
of different basis states through the operators. From now on we will set the reduced Planck’s
constant ~ = 1.

Let us focus on the example of the S + operator. We know the action of this operator onto
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3.1 Exact Diagonalization of the Lindblad Superoperator

spin up and down

S +
|↑〉 = 0 S +

|↓〉 = |↑〉 ; (3.3)

thus, to obtain the spin up operator S +
i for site i, one can loop over all basis states and determine,

whether the action of the operator connects the state to another basis state. By doing so, the
operator is obtained element by element. The same procedure can be applied to the other spin
operators having in mind their actions

S − |↑〉 = |↓〉 S − |↓〉 = 0 (3.4)

S z
|↑〉 = +

1
2
|↑〉 S z

|↓〉 = −
1
2
|↑〉 (3.5)

where S z, obviously, is diagonal and the remaining two

S x =
1
2

(
S + + S −

)
S y =

−i
2

(
S + + S −

)
(3.6)

can be obtained via combinations of S + and S −.

In the Python code (Appendix A), the above two steps are combined in a class object called
HeisenbergBasis, which requires the spin chain length N as an argument. Within this class,
functions are defined to generate the operators (e.g. sigma_x) and the Hamiltonian matrix (e.g.
via Pauli operators hamiltonian_pauliop) using the basis proposed above.

Since we want to treat the boundary-driven system and, hence, want to solve the Lindblad
master equation, another trick has to be applied. The Lindblad master equation is a matrix
equation and can be represented in a more tractable way by transforming it into so-called
superspace by reshaping (or vectorization). This has the side-effect of reducing computational
cost.

3.1.3 Reshaping the Lindblad Master Equation

There are two different ways to reshape a matrix (compare [36, 37]). In the code given in
the Appendix A, we chose to reshape the density matrix in the Fortran way using the Python
function np.reshape(A, (N,M), order=’F’) where A is the input matrix and (N,M) is the
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Chapter 3 Exact Diagonalization

desired shape. The following minimal example illustrates the reshaping:

ρ =

ρ11 ρ12

ρ21 ρ22

→ |ρ〉 =


ρ11

ρ21

ρ12

ρ22

. (3.7)

The above corresponds to reordering the matrix, such that one column is appended below the
next column

|α〉 〈β| → |β〉 ⊗ |α〉 . (3.8)

It was realized at a later stage of the work, that the standard way of reshaping is different, namely
row below row

|α〉 〈β| → |α〉 ⊗ |β〉 . (3.9)

The Lindblad equation, using the reshaping in (3.8), can be brought into the form

d
dt
|ρ〉 = L |ρ〉 , (3.10)

where the individual terms of the Lindblad master equation transform as follows (cf. [37])

−i
[
H, ρ

]
→ −i

(
1 ⊗ H − HT

⊗ 1
)
· |ρ〉 (3.11)

L jρL†j →
((

L†j
)T
⊗ L j

)
· |ρ〉 (3.12)

L†j L jρ→
(
1 ⊗ L†j L j

)
· |ρ〉 (3.13)

ρL†j L j →

((
L†j L j

)T
⊗ 1

)
· |ρ〉 . (3.14)

These operations are implemented in the functions unitary_lindblad, which creates the
unitary part, and dissipative_lindblad, which sets up the dissipator. dissipative_lindblad
takes as input a nested list containing all the parameters for the left and right Lindblad operators.
The Hilbert space and, thus, the Hamiltonian for a 1D spin chain has dimension dim(Hspin) ∼ 2N ,
whereas the Liouvillian in superspace has dimension dim(Lspin) ∼ (2N)2.

At this point, we have set up the Hamilton matrix in a well-defined basis and constructed
the Liouvillian as a matrix in superspace. This matrix can now be diagonalized using standard
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3.1 Exact Diagonalization of the Lindblad Superoperator

algorithms to obtain its eigenvalues and eigenstates.

3.1.4 Exemplary Eigenspectrum of a Liouvillian for our Model

Especially for the dynamics of the system it is important to take into account the structure of the
spectrum. For the diagonalization, we used the Python function np.linalg.eig, which returns
two arrays with the eigenvalues and the eigenvectors. In Figure 3.1 an exemplary spectrum is
shown, which is representative and reflects the generic case.

Figure 3.1: Exemplary spectrum of the Liouvillian. This spectrum was created using N = 4, Γ = 1000 and
randomly sampled values for the other parameters θL = 0.546, θR = 0.963, ϕL = 0.608, ϕR = 0.876,∆ =

0.905. On the left-hand side, the full spectrum is shown, whereas on the right-hand side, we zoomed into
the band at Re(λi) ≤ 0. The real part of the eigenvalues of the Lindbladian is smaller or equal to zero
(Re(λi) ≤ 0).

The diagonalization of the Liouvillian reveals a generic pattern. The real part of the eigen-
values of the Lindbladian is always smaller or equal to zero (Re(λi) ≤ 0), where the λ0 = 0 is
unique (2.3.3). The condition Re(λi) ≤ 0 reflects the trace-preserving property of the Liouvillian,
which eliminates unphysical states. If the eigenvalues were larger than zero, the time evolution
operator would diverge. For a large dissipation strength Γ � 1, the limit considered throughout
this thesis, the eigenvalues λ are organized in equidistant bands. The distance can be understood
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Chapter 3 Exact Diagonalization

in terms of the eigenvalues of the dissipator D

D[•] =
∑

j={1,N}

L j • L†j −
1
2

L†j L j • −
1
2
• L†j L j. (3.15)

where • serves as a placeholder. In our model, the Lindblad operators L j are acting locally on the
first and the last spin. Thus, we can split the dissipator in the corresponding two superoperators
D[•] = D1[•] + DN[•]. For each of them, we can introduce a complete orthonormal basis, {φαL}
with α = 1, . . . , 4 for the first and {φβR} with β = 1, . . . , 4 for the last spin, which solves the
associated eigenequations

D1[φαL] = λαφ
α
L (3.16)

DN[φβR] = µβφ
β
R.

For simplicity, we restrict this discussion to Lindblad operators of the form L1 = σ+ and L2 = σ−.
The general solution of the problem can be obtained by rotating the system in the appropriate
way and can be found in [24]. The eigenoperators and eigenvalues for the proposed simplified
Lindblad operators are summarized in Table 3.1.

φαL λα

φ1
L = σ+

1σ
− λ1 = 0

φ2
L = σ+

1 λ2 = −1
2

φ3
L = σ−1 λ3 = −1

2
φ4

L = σz
1 λ4 = −1

(a)

φ
β
R µβ

φ1
R = σ−Nσ

+ µ1 = 0
φ2

R = σ+
N µ2 = −1

2
φ3

R = σ−N µ3 = −1
2

φ4
R = σz

N µ4 = −1

(b)

Table 3.1: Exemplary eigensystems for (a) the left and (b) the right (a) the left and (b) the right with
Lindblad operators L1 = σ+ and LN = σ−.

The eigenvalues of the full dissipator D[•] = D1[•] + DN[•], thus, are given by the following
set of five (degenerate) numbers

E = {0,−
1
2
,−1,−

3
2
,−2}, (3.17)

which multiplied by Γ return the positions of the main bands on the real axis. The spread around
the real and imaginary axes depends on the Hamiltonian parameters. The real part of the stripes
has been found to have a width of the order 1

Γ
. The spread of the imaginary part, however, is

related to the eigenvalues of the dissipation-projected Hamiltonian, an object which will be
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3.2 Physical Observables

introduced later.
We denote the absolute value of the first eigenvalue |λ1| = |λ1 − λ0| with non-zero real part as

the gap. Its inverse gives the decay rate towards the steady states and, thus, defines the slowest
time scale in the system. Generally, we found that it scales like ∼ 1

Γ
, but, in certain situations, it

was found to scale like ∼ 1
Γ

3 . This will be specified further in the results.

3.1.5 Time Evolution and Steady State

The dynamics of our system is governed by the time-dependent Lindblad equation. We can
rotate the initial state into the eigenbasis of L, apply the time evolution operator eLt and rotate
back to the original basis

|ρ(t)〉 =

∑
i

|ρi〉
〈
ρi
〉−1 ∑

i

eλit |ρi〉 〈ρi|

 |ρ(0)〉 (3.18)

Consequently, by a full diagonalization, we can obtain the time evolution starting from an
arbitrary initial state. Due to the fact that Re(λi) ≤ 0, it immediately becomes clear that a unique
steady state (cf. Chapter 2.3.3) is reached for the long-time limit. The non-equilibrium steady
state can alternatively be obtained by solving the stationary Lindblad equation

Lρ = 0, (3.19)

which can be treated as an eigenequation. The above equation is then trivially solved by the
eigenstate corresponding to the eigenvalue that is equal to zero λ = 0→ ρsteady state. In contrast
to the time evolution, we directly identify the corresponding eigenstate to be the solution.

At this point, we have defined the model and know how to solve the governing equations of
motion. Next, we will introduce the quantities that will be used to characterize the states of the
chain.

3.2 Physical Observables

The purity of a density matrix, as mentioned above, can be calculated by Trρ. A more versatile
notion, however, is the concept of the von Neumann entropy. It is defined by

S VNE = −
∑

i

pi log2(pi) with ρ =
∑

i

pi |φi〉 〈φi| , (3.20)
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Chapter 3 Exact Diagonalization

where pi are the eigenvalues of the density matrix ρ. Since we defined the von Neumann entropy
using the binary logarithm, it has convenient properties:

• It vanishes for a pure state (log2(1) = 0.

• Consider a chain of spins with N = 3, whose first and last spin are fixed via Zeno limit
Lindblad action. If the middle spin is totally mixed, its density matrix will have two-fold
degenerated eigenvalue at 1

2 ; therefore, the maximal entropy will be at 1. Analogously, for
N = 4, S max = 2 etc.

Since we observe an open non-equilibrium system, it is interesting to study its transport
phenomena such as the magnetization current in Z-direction. We use the short notation ĵz

k =

ĵz
k→k+1 for the operator describing current flow from site k to site k + 1. It is defined by the lattice

continuity equation
d
dt
σz

k = ĵz
k−1 − ĵz

k, (3.21)

meaning that the change of magnetization at site k d
dtσ

z equals the magnetization current in and
out of this site. Additionally, we know from Heisenberg’s equation of motion that

d
dt
σz

k = i
[
H, σz

k

]
. (3.22)

The current operator follows from (3.21) and (3.22) via Pauli algebra

ĵz
k = 2J(σx

kσ
y
k+1 − σ

y
kσ

x
k+1) (3.23)

= 2iJ(σ+
kσ
−
k+1 − σ

−
kσ

+
k+1) (3.24)

with J the coupling constant. Since the magnetization current is locally conserved, it is constant
along the whole chain and

jz =
〈

ĵz
k

〉
. (3.25)

The next quantity will help to understand the occurence of states with a certain winding. We
will look at the following generalized discrete Fourier transform

f̂m(Φ) =
1

N − 1

N−2∑
k=0

fke
−iφ(m)k. (3.26)
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where m = 0, 1, . . . ,N − 2 denotes the winding number around Z-axis and

φ(m) =
Φ + 2πm

N − 2
fk = 2

〈
σ+〉 .

It cumulatively characterizes the polarization of the spins in xy-plane (recall that
〈
σ+〉 =〈

σx〉 + i
〈
σy〉) and the obtained f̂m(Φ) can be interpreted as weights for a winding m around

the Z-axis. For parallel boundary spins, the boundary gradient Φ is zero and the usual discrete
Fourier transform is recovered. We will refer to this quantity as winding weights.

It will turn out useful to gather analytical expressions for these physical observables for the
spin helix states from earlier works [25]:

S VNE(ρhelix) = 0 (3.27)

jz(ρhelix) = J sin θ sin γ (3.28)

f̂m(Φ) = sin θδm,m0
(3.29)

For a spin-helix state with winding number m0, corresponds to a γ =
Φ+2πm0

M , where Φ is the
boundary gradient, we find fk = eiϕ(m0)k.

3.3 Limitations of Exact Diagonalization

The exact diagonalization of the Lindbladian is limited to small system sizes N ≤ 7 due to
exponentially growing matrix sizes. The limiting factors are the memory usage and the runtime,
which usually scale cubically with the matrix dimension ∼ M3 (compare Table 3.2). However,
it is advantageous to use exact diagonalization since no approximations are made and the full
density matrix is obtained. This enables us to calculate a broad range of observables and to
thoroughly investigate small system behavior.

In this work, we restrict ourselves to the brute force method. However, in principle more
elaborate treatments can be chosen: Symmetries of the model are frequently exploited to
write the Hamiltonian or Lindbladian in a block-diagonal form. If the desired solution lies in
one of these symmetry sectors, the dimension of the matrix that is to be diagonalized can be
significantly reduced.

For the solution of the stationary problem, as mentioned before, only the eigenstate corres-
ponding to the eigenvalue λ0 = 0 has to be found. In this case iterative numerical diagonalization
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Chapter 3 Exact Diagonalization

N matrix size memory [GB]

4 256 0.000
5 1024 0.002
6 4096 1.296
7 16384 20.503
8 65536 1281.210

Table 3.2: Scaling of matrix size and memory with system size. This table illustrates the limitations of
exact diagonalization to small systems due to exponentially growing superspace. The memory estimation
for a full diagonalization for N = 8 was obtained by fitting a power law ∼ M3 with M denoting the matrix
dimension.

algorithms can be used (e.g. Lanczos). We tried this approach, but due to the limitations of our
computational resource it wasn’t practical: Starting from a random vector, too many Krylow
vectors would have been needed to satisfy a reasonable convergence threshold, which increased
runtime immensly.

Up to here, we have discussed the numerical methods that we use to obtain the exact stationary
state and the time evolution for small systems. To gain deeper understanding of the physics, we
employ perturbation theory.
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CHAPTER 4

Perturbation Theory

This chapter will give detailed calculations on both the time-independent and the time-dependent
perturbation theory. We start with the stationary problem and introduce the tools, which are
needed to comfortably calculate exact expressions for the specific case of the boundary-driven
XXZ chain. This discussion brings together ideas of previous works [24–27], merges them and
uses them to compute the perturbation theory for a general ansatz, leading to the discovery of
an underlying stochastic process. The results of the stationary problem motivate a heuristic
guess for the dynamics. This heuristic guess can then be validated by a formal time-dependent
perturbation theory in the last part of this chapter.

4.1 Stationary Perturbation Theory

We start the discussion on perturbation theory by considering the stationary problem. The
interesting limit in this problem is the strong coupling limit Γ � 1 limit, which contains the
extreme case of infinite coupling (Zeno limit).

For such a situation, we use a series expansion of the density matrix in powers of 1/Γ

ρ =

∞∑
n=0

ρ(n)

Γn (4.1)

where the expansion order is indicated by bracketed superscripts, which are not to be confused
with powers. We insert this series into the stationary Lindblad master equation and obtain an
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Chapter 4 Perturbation Theory

equality, which needs to be fulfilled at each order of Γ.

−i
[
H, ρ

]
+ ΓD[ρ] = 0 (4.2)

−i
[
H, ρ(0)

]
− i

[
H,
ρ(1)

Γ

]
− · · · + ΓD[ρ(0)] + ΓD[

ρ(1)

Γ
] + · · · = 0. (4.3)

At O(Γ), we find that the solution in Zeno limit has to be a dark state of the dissipator, therefore,

D[ρ(0)] = 0. (4.4)

For orders O(1) to O( 1
Γ

n ), we obtain a recurrence relation of the following form

ρ(n+1) = iD−1[[H, ρ(n)]] + M(n+1), (4.5)

where, due to the formal inversion of the dissipator, an auxiliary matrix M(n+1)
∈ KerD has to be

added as additional degree of freedom at each step. In principle this inversion is not trivial and
it will be treated more carefully in the next section. Furthermore, the properties of the density
matrix ρ have to be satisfied at all steps. For ρ(0) to be a physical state in Zeno limit, it has to
have unit trace. Hence, all higher orders are traceless. It can be shown that D−1[[H, ρ(n)]] for
n = 1, 2 is traceless and, consequently, the auxiliary matrix has to be traceless, TrM(m) = 0, as
well.

The inversion of the dissipator is not trivial. In the following section, we will approach this
issue and derive a condition for the dissipator to be invertible.

4.1.1 Secular Condition

At this point, it is necessary to have a closer look at the inversion of the dissipator. We follow
the argumentation and notation used in [24]. In the previous chapter, we have introduced the
concept of eigensystems for left and right dissipators (see Equation (3.16) and Table 3.1) which
we will use here.

Any arbitrary matrix χ can be expressed in terms of two bases

χ =

4∑
α=1

4∑
β=1

φαL ⊗ χαβ ⊗ φ
β
R. (4.6)
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4.1 Stationary Perturbation Theory

Since we know how the dissipator acts on the matrix χ,

D[χ] =

4∑
α=1

4∑
β=1

λαφ
α
L ⊗ χαβ ⊗ µβφ

β
R (4.7)

=

4∑
α=1

4∑
β=1

(λα + µβ)φ
α
L ⊗ χαβ ⊗ φ

β
R, (4.8)

we also know how the inverse disspator will act on it:

D−1[χ] =

4∑
α=1

4∑
β=1

1
λα + µβ

φαL ⊗ χαβ ⊗ φ
β
R. (4.9)

For our choice of basis vectors and, thus, eigenvalues (see Table 3.1) this expression for the
inverse disspator becomes singular, if α = β = 1. To eliminate this singularity, we require
χ11 = 0.

In order to arrive at an expression for the expansion coefficient χαβ, we introduce the comple-
mentary bases ({ψαL}, {ψ

β
R}) (see Table 4.1). These complementary bases are trace orthonormal

(Tr(φαLψ
γ
L) = δαγ, Tr(φβRψ

δ
R) = δβδ) to the eigenbases ({φαL}, {φ

β
R}).

ψαL

ψ1
L = 1

ψ2
L = σ−1

ψ3
L = σ+

1

ψ4
L =

σz
1−1
2

(a)

ψ
β
R

ψ1
R = 1

ψ2
R = σ−N

ψ3
R = σ+

N

ψ4
R =

σz
N−1
2

(b)

Table 4.1: Examplary trace orthonormal basis for (a) the left and (b) the right boundary spin space with
Lindblad operators L1 = σ+ and LN = σ−, which represents a rotated version of antiparallel boundaries.

We can now express the coefficients χαβ using these trace-orthonormal bases

χαβ = Tr1,N

(
(ψαL ⊗ 1⊗N−1)χ(1⊗N−1 ⊗ ψ

β
R)

)
, (4.10)

where Tr1,N is the partial trace over the subspace of the first and the last spin. We check, if this
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is consistent with Equation (4.17) by

χγδ = Tr1,N

(ψγL ⊗ 1⊗N−1)

 4∑
α=1

4∑
β=1

φαL ⊗ χαβ ⊗ φ
β
R

 (1⊗N−1 ⊗ ψδR)

 (4.11)

=

4∑
α=1

4∑
β=1

Tr1,N

(
ψ
γ
Lφ

α
L ⊗ 1⊗N−1χαβ1

⊗N−1 ⊗ φ
β
Rψ

δ
R

)
(4.12)

=

4∑
α=1

4∑
β=1

δαγχαβδβδ (4.13)

= χγδ. (4.14)

To ensure that no singularities are present, we check the element χ11, which has to be equal
to zero

χ11 = Tr1,N

(
(ψ1

L ⊗ 1⊗N−1)χ(1⊗N−1 ⊗ ψ1
R)

)
(4.15)

= Tr1,N (χ) !
= 0, (4.16)

where we made use of the definition ψ1
L = ψ1

R = 1. In another check for consistency, we have a
look at Tr1,N (χ), which has to vanish

Tr1,N (χ) = Tr1,N

(
D

[
D−1[χ]

])
(4.17)

= Tr1,N

D
 4∑
α=1

4∑
β=1

1
λα + µβ

φαL ⊗ χαβ ⊗ φ
β
R


 (4.18)

= Tr1,N

D


4∑
j=1

4∑
k=1

excluding j&k=1

1
λα + µβ

φαL ⊗ χαβ ⊗ φ
β
R


 (4.19)

=

4∑
j=1

4∑
k=1

excluding j&k=1

Tr(φαL) ⊗ χαβ ⊗ Tr(φβR) (4.20)

= 0, (4.21)

where in the last step, we used the tracelessness of φαL and φβR.

Turning back to solving the recurrence equation (4.5), we can identify χ with the commutator
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[H, ρ(n)] and arrive at the secular condition

Tr1,N([H, ρ(n)]) = TrHboundary
([H, ρ(n)]) = 0. (4.22)

To summarize, D has a non-zero kernel. This subspace consists of matrices of the form
ρ1 ⊗ A ⊗ ρN with A being an arbitrary 2N−2

× 2N−2 matrix. For ρ(n+1) to exist, we demand that
there is no overlap between [H, ρ(n)] and this subspace (secular condition). At this point, we are
all set to calculate higher order corrections in perturbation theory starting from a general ansatz
for the zeroth order.

4.1.2 General Ansatz

Our goal here is to better understand the steady state of the boundary-driven XXZ chain in the
limit of strong dissipation. In order to do so, we use the recurrence relation (4.5) and start from
a general ansatz for the steady state

ρ(0) = |e0
〉 〈e0
| ⊗ R(0), (4.23)

where we define

R(0) =

d1−1∑
α=0

να |α〉 〈α| , (4.24)

with the properties

d1−1∑
α=0

να = 1 (4.25)

|e0
〉 ∈ Hboundary (4.26)

|α〉 ∈ Hbulk. (4.27)

This ansatz consists of the pure targeted boundary spin states in Zeno limit |e0
〉 = |ψZeno

1 〉⊗|ψZeno
N 〉

on the boundaries and an arbitrary mixture of states α weighted by να in the bulk of the chain.
We denote by d0 the dimension of Hboundary (in our case Hboundary = C2

⊗C2 and thus d0 = 4) and
d1 the dimension of the bulk subspace. Previously, in investigations for the pure spin helix state
solutions, a special case of the reduced bulk density matrix was chosen, where R(0) = |0〉 〈0|.
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In the following, the above ansatz is inserted into the recurrence relation. At each order, the
secular condition has to be fulfilled, which will effectively determine the restrictions on the
state in the bulk. We will start by introducing a proper framework, which will simplify the
calculations substantially.

Let us introduce a complete basis in the subspace of the boundary spins Hboundary. Starting
from the targeted boundary spin states in Zeno limit |e0

〉, three additional, mutually perpendicular
states can be constructed in the following way

|e0
〉 = |ψ(θL, ϕL)〉 ⊗ |ψ(θR, ϕR)〉 , (4.28)

|e1
〉 = cosw |ψ⊥(θL, ϕL)〉 ⊗ |ψ(θR, ϕR)〉 − sinw |ψ(θL, ϕL)〉 ⊗ |ψ⊥(θR, ϕR)〉 , (4.29)

|e2
〉 = sinw |ψ⊥(θL, ϕL)〉 ⊗ |ψ(θR, ϕR)〉 + cosw |ψ(θL, ϕL)〉 ⊗ |ψ⊥(θR, ϕR)〉 , (4.30)

|e3
〉 = |ψ⊥(θL, ϕL)〉 ⊗ |ψ⊥(θR, ϕR)〉 , (4.31)

with the free parameter ω, which we fix for convenience to

w =
π

4
, (4.32)

and definitions for the spin states

|ψ(θ, ϕ)〉 =

(cos θ
2e−iϕ/2

sin θ
2eiϕ/2

)
, (4.33)

|ψ⊥(θ, ϕ)〉 =

( sin θ
2e−iϕ/2

− cos θ
2eiϕ/2

)
. (4.34)

In terms of this orthonormal basis, {|e j
〉} with j = 0, 1, 2, 3, we can split the XXZ Hamiltonian

in the following way:

HXXZ =

d0−1∑
j=0

d0−1∑
k=0

H jk (4.35)

= H00 +
∑
j,0

(H j0 + H0 j) +
∑
j,0

∑
k,0

H jk

=

d0−1∑
j=0

d0−1∑
k=0

|e j
〉 〈ek
| ⊗ h jk, (4.36)

where h jk = 〈e j
|H |ek

〉. Explicit expressions for h jk can be found in the Appendix B and were
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derived in [25]. At this point, it is important to note the hermiticity of the sub-Hamiltonians
h jk = h†k j and that h03 = 0 for N ≥ 2. The sum, thus, effectively runs from 0 to 2, if not otherwise
defined.

With this in mind, we can start calculating the first correction in perturbation theory

ρ(1) = iD−1
[
[H, ρ(0)]

]
+ M(1), (4.37)

where M(1) is an object of the dissipation-free subspace and can be written as |e0
〉 〈e0
| ⊗

m(1) with m(1) =
∑d1−1
α=0

∑d1−1
β0 m(1)

αβ |α〉 〈β|. We immediately notice that the secular condition
Tr1,N([H, ρ(0)]) = 0 has to be checked. The commutator can be simplified by using the expres-
sions (4.23), (4.35) and orthonormality of the basis {|e j

〉} to yield

[H, ρ(0)] =

H00 +
∑
j,0

(H j0 + H0 j) +
∑
j,0

∑
k,0

H jk

 (|e0
〉 〈e0
| ⊗ R(0)

)
(4.38)

−
(
|e0
〉 〈e0
| ⊗ R(0)

) H00 +
∑
j,0

(H j0 + H0 j) +
∑
j,0

∑
k,0

H jk

 (4.39)

=

|e0
〉 〈e0
| ⊗ h00 +

∑
j,0

(
|e j
〉 〈e0
| ⊗ h j0

) R(0) (4.40)

− R(0)

|e0
〉 〈e0
| ⊗ h00 +

∑
j,0

(
|e0
〉 〈e j
| ⊗ h0 j

) (4.41)

= |e0
〉 〈e0
| ⊗

[
h00,R

(0)
]

+
∑
j,0

(
|e j
〉 〈e0
| ⊗ h j0R(0)

− |e0
〉 〈e j
| ⊗ R(0)h0 j

)
. (4.42)

For the secular condition, we now need to take the trace over the boundary space and realize
that the second and third term of the expression vanish Tr1,N

(
(|e j
〉 〈e0
|
)

= Tr1,N

(
(|e0
〉 〈e j
|
)

= 0,
which leaves us with

Tr1,N

(
|e0
〉 〈e0
| ⊗

[
h00,R

(0)
])

=
[
h00,R

(0)
]

(4.43)

=

h00,
∑
α

να |α〉 〈α|

 (4.44)

=
∑
α

να
[
h00, |α〉 〈α|

] !
= 0. (4.45)

The trivial solution, να = 0 ∀α, is not physical, hence, the condition can only be satisfied if
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and only if |α〉 are eigenstates of h00 from which follows that

h00 |α〉 = λα |α〉 , (4.46)

where λα are the corresponding eigenvalues. Furthermore, we notice that H00 = |e0
〉 〈e0
| ⊗ h00

lies in the kernel of the dissipator and, therefore, is an object of the dissipation-free subspace. In
the following, we call h00 = 〈e0

|H |e0
〉 the dissipation-projected Hamiltonian. The total Hilbert

space, thus, is spanned by the vectors |ek
〉 ⊗ |α〉.

Approaching the first order correction, this result helps to simplify the commutator (4.42) to

[H, ρ(0)] =

2∑
j,0

(
|e j
〉 〈e0
| ⊗ h j0R(0)

− |e0
〉 〈e j
| ⊗ R(0)h0 j

)
. (4.47)

In the following, we discuss how to calculate the inverse dissipator, which in general is a
non-trivial operation. However, in our case, the dissipator only affects the boundary subspace
and, using the explicit form of D and the basis states {|e j

〉}, one can show that:

D
[
|e1
〉 〈e0
|
]

= −
1
2
|e1
〉 〈e0
| , (4.48)

D
[
|e2
〉 〈e0
|
]

= −
1
2
|e2
〉 〈e0
| , (4.49)

D
[
|e3
〉 〈e0
|
]

= − |e3
〉 〈e0
| , (4.50)

which by simply inverting gives

D−1
[
|e1
〉 〈e0
|
]

= −2 |e1
〉 〈e0
| , (4.51)

D−1
[
|e2
〉 〈e0
|
]

= −2 |e2
〉 〈e0
| , (4.52)

D−1
[
|e3
〉 〈e0
|
]

= − |e3
〉 〈e0
| , (4.53)

and enables us to write down the action of the inverse dissipator on the states we want to
calculate. The first-order correction can then be given by

ρ(1) = −2i
2∑

j,0

(
|e j
〉 〈e0
| ⊗ h j0R(0)

− |e0
〉 〈e j
| ⊗ R(0)h0 j

)
+ |e0
〉 〈e0
| ⊗ m(1). (4.54)

In a similar fashion, but a bit more lengthy and tedious, one can calculate the next order
commutator [H, ρ(1)] and the corresponding secular condition Tr1,N([H, ρ(1)]) = 0. A detailed
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calculation is given in Appendix B. By going through the calculation, one obtains the following
condition

Tr1,N([H, ρ(0)]) = [h00,m
(1)] + 4i

∑
j,0

Dh j0

[
R(0)

] !
= 0. (4.55)

The equation obtained for the secular condition at first order (4.55) is a matrix equation of
dimension 2N−2

× 2N−2. In order to better understand its properties, we look at its diagonal and
off-diagonal elements.

Let us now take into account the diagonal elements of this condition, which, with some
algebra (see Appendix B), can be brought into the form:

〈γ|Tr1,N([H, ρ(0)]) |γ〉 = 4i
∑
j,0

d1−1∑
α,γ

να

(∣∣∣〈γ| h j0 |α〉
∣∣∣2) − νγ d1−1∑

β,γ

(∣∣∣〈β| h j0 |γ〉
∣∣∣2) !

= 0. (4.56)

These equations set the conditions for the eigenvalues να, as will be explained further in the next
subsection.

In the same way, we can obtain a condition for the elements of the auxiliary matrix m(1) from
the off-diagonal elements of (4.55), yielding

〈γ|TrH0
[H, ρ(1)] |δ〉 = 〈γ| 4i

∑
k,0

Dhk0
[R(0)] |δ〉 + 〈γ| [h00,m

(1)] |δ〉 (4.57)

= 〈γ| 4i
∑
k,0

Dhk0
[R(0)] |δ〉 + (λγ − λδ) 〈γ|m

(1)
|δ〉

!
= 0. (4.58)

In principle, we can now proceed to higher orders of the stationary perturbation theory, since
the expressions necessary for ρ(2) and the subsequent secular condition at second order have
been derived. However, they are not needed in the frame of this work.

4.1.3 Interpretation of the Stochastic Matrix F

We started from a general ansatz for the non-equilibrium steady state in Zeno limit and
calculated perturbative corrections via a recurrence relation. At each order, the secular condition
set restrictions on the general ansatz, that we have made. A thorough analysis of the diagonal
condition (4.56) revealed that, combined with

∑d1−1
α=0 να = 1, it completely determines the

eigenvalues να for a non-degenerate h00. Furthermore, one can proof that the rank can be
predicted reliably even for a degenerate h00.
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To demonstrate this, let us define

Qαβ( j) =
∣∣∣〈α| h j0 |β〉

∣∣∣2 (4.59)

and use this to reformulate (4.56) as

d0−1∑
β

Fαβνβ = 0, (4.60)

where matrix F is a matrix with non-diagonal elements being real non-negative Fαβ =
∑3

j=1 Qαβ( j)
and the diagonal F elements satisfying the stochastic matrix rule,

Fαα = −

d1−1∑
be,α

Fβα. (4.61)

The vector |ν〉 contains all the eigenvalues, since

|ν〉 =


ν0

ν1
...

ν(d1−1)


. (4.62)

The stochastic matrix F̂, thus, has the following form:

F =

d0−1∑
j,0


−

∑d1−1
β,0 Qβ0( j) Q01( j) · · · Q0(d1−1)( j)

Q10( j) −
∑d1−1
β,1 Qβ1( j)

...
...

. . .
...

Q(d1−1)0( j) Q(d1−1)1( j) · · · −
∑d1−1
β,d1−1 Q(d1−1)(d1−1)( j)


(4.63)

Link to Markov Processes

The F matrix is said to be stochastic, as its column sum is zero [38]. This reminds us of
classical stochastic processes (Markov processes). Discrete Markov processes are described
by a transition matrix P. There can be right and left stochastic matrices depending on whether
the column sum or the row sum is equal to 1. As our matrix F has zero column sum, we focus
on left stochastic matrices. Such a transition matrix satisfies the eigensystem with eigenvalue
one 1P = 1, where 1 is a row vector with all elements being ones. As for a square matrix left
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and right eigenvalues are the same, the matrix also has a right column eigenvector P |π〉 = |π〉

with eigenvalue one, which can be identified to be the stationary probability vector [39, 40].
Furthermore, demanding irreducibility of this transition matrix, one can show via Perron-
Frobenius theorem, that this stationary vector with eigenvalue one has to be unique and it must
have non-negative entries.

The irreducibility can be understood in terms of a Markov chain. If one can go from every
site i to every site j and back, the chain is irreducible. On the contrary, there may be a decoupled
set of state that, does not communicate with the rest of the system. In such a case the chain is
reducible. The corresponding transition matrix would have a block structure.

Furthermore there may be absorbing states, that, once entered, cannot be left anymore. In
terms of elements of the transition matrix, there would be non-zero element Pi→ j, but zero
elements P j→i. We will encounter such a structure for situations, which lead to finite rank
stationary states in the results.

This discussion is related to our stochastic matrix by a simple shift F = P − 1. The elements
Fαα can be interpreted as transition rates to go from state |β〉 to |α〉

Fαα = ωβ→α. (4.64)

Thus, we can make use of the rich theoretical background of Markov transition matrices. The
theorem of Perron-Frobenius, that states, that for non-negative matrices there exists a non-
degenerate non-negativ eigenvector of the form (4.62) exists. The normalization condition
(4.25) in this case can be interpreted as probability conservation. This theorem is particularly
useful to determine the number of non-zero values in the vector |nu〉 and thus of the rank of the
non-equilibrium steady state. The following theorem and proof was proposed by Popkov [41].

Reliable Rank Prediction

Theorem 1 Let |α〉 be an eigenbasis of the dissipation-projected Hamiltonian h00 ((4.46)). Let,

then, the matrix F defined through ((4.60)), to have the property

Fr+1,α = Fr+2,α = . . . = Fd1−1,α = 0 (4.65)

α = 1, 2, . . . r.

for some r. Then, the non-equilibrium steady state converges to a state with the rank r in the

Zeno limit Γ→ ∞.
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Proof 1 First, note that due to Perron-Frobenius theorem, a solution of ((4.60)) is unique. Let

us show that a solution |π∗〉 = {ν1, ν2, . . . νr, 0, 0, . . .} of ((4.60)) exists. Indeed,
∑
β Fαβ |π

∗
〉β = 0

for α ≥ r + 1 is satisfied trivially due to ((4.65)). For the remaining α = 1, 2 . . . r, the equations∑r
β=1 Fαβ |π

∗
〉β = 0 have a unique solution (up to normalization) due to the fact that the submatrix

of F of size r × r with elements Fαβ, α, β ≤ r is a stochastic matrix as well, to which the Perron-

Frobenius uniqueness property applies. From the global uniqueness property we deduce that |π∗〉

with r non-zero entries is a unique solution of ((4.60)). If the spectrum of h00 is non-degenerate,

then ((4.24)) follows from the commutation property ((4.45)) and the rank of non-equilibrium

steady state is equal to r. If the spectrum of h00 is degenerate, then due to degeneracies, instead

of ((4.24)) we have from ((4.45))

R(0) =

r∑
α=0

ν′α |α
′
〉 〈α′| , (4.66)

where the set {|α′〉} are some linear combinations of the vectors {|α〉} in the degeneracy subspaces

of h00, and the set {ν′α} is generically different from the set {να} for this very reason. However,

the rank of the non-equilibrium steady state R(0) is preserved under any linear operation on it’s

basis.

We conclude, that the non-equilibrium steady state rank is equal to r irrespectively of whether
the spectrum of h00 is degenerate or not. Further treatment of the case when the spectrum of h00

is degenerate is given in the following section.

Degeneracies of h00

For particular dissipation at the boundaries, the dissipation-projected Hamiltonian h00 has
degeneracies. The expansion of the reduced density matrix R(0) =

∑d1−1
α=0 να |α〉 〈α| is not unique

for this case. In the degeneracy subspaces we can have any linear combination of eigenvectors
which form an orthogonal set. In order to cope with this problem, we have to employ a
perturbation, which lifts the degeneracy and which is continuous in the sense that R(0)(ε) →

limε→0

R(0). The degeneracies occur due to symmetries. The perturbation that we choose has to break
these underlying symmetries. For any generic system parameters this statement is correct,
however for certain configurations (e.g. spin helix state situation) we have singular behavior and
by perturbing the system in the wrong "direction", we can miss these singular points. In that
sense we also have to preserve certain symmetries. Unfortunately, we were not able to clarify
this issue further.
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Discussion

The dimension of the dissipation-projected Hamiltonian is dim(h00) ∼ 2N−2
×2N−2, and therefore

the diagonalization can be easily performed for up to 14 sites. However, the limiting procedure
is solving the system of equations in Equation (4.60). As F is a stochastic matrix, it is singular
Det(F) = 0, thus the matrix is not invertible and the system has no unique solution per se. The
normalization condition

∑
i νi = 1 fixes this problem.

In conclusion, the secular condition at zeroth order gives us the information that the non-
equilibrium steady state in Zeno limit can be built of eigenvectors of the dissipation-projected
Hamiltonian (see (4.46)), which can be analytically constructed via (B.1). Furthermore, the
secular condition at first order determines the weights of these eigenvectors from a set of
equations given by (4.60). Again, we have all the ingredients to construct the matrix F exactly.
In this fashion, we can construct the non-equilibrium steady state in Hbulk Zeno limit. Before
we start introducing the time-dependent perturbation theory, let us first guess the dynamics by
heuristic argumentation.

4.1.4 Heuristic Guess for the Dynamics

We have discussed the spectrum of the Liouvillian in some detail in Section 3.1.4 and seen that
the eigenvalues are organized in stripes. The distance between these stripes is of the order of
Γ. We have identified the eigenvalue equal to zero as the non-equilibrium steady state, towards
which excitations (states in higher strings) decay exponentially fast ∝ e−Γt(see Figure 3.1).

According to this, for large Γ the effective dynamics only takes place in the dissipation-free
subspace obtained by TrH0

(H) = h00 (string around Re(λ) = 0). At t = 0, the density matrix can
be written as

ρ(t = 0) = ρ1 ⊗ R(t = 0) ⊗ ρN (4.67)

= |e0
〉 〈e0
| ⊗ R(t = 0) (4.68)

h00 |α〉 = λα |α〉 (4.69)

R(t = 0) =
∑
α,β

ραβ(t = 0) |α〉 〈β| , (4.70)

with the bulk density matrix, which can be represented by eigenvectors of h00. As h00 is
hermitian, the eigenvalues λα are real. The time evolution of this bulk density matrix, neglecting
the decaying part entering due to the Lindblad operators, for a fast time scale is simply unitary
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and thus, given by the von Neumann equation yields

∂R(tfast)
∂tfast

= −i[h00,R] (4.71)

⇔ 〈α|
∂R(tfast)
∂tfast

|β〉 = −i 〈α| [h00,R] |β〉 (4.72)

⇔
∂Rαβ(tfast)
∂tfast

= −i
(
〈α| h00R − Rh00 |β〉

)
(4.73)

⇔
∂Rαβ(tfast)
∂tfast

= −i
(
λα − λβ

)
〈α|R |β〉 . (4.74)

The solution of the above differential equation is given by

R(tfast) =
∑
α,β

ραβ(t = 0)ei(λβ−λα)t
|α〉 〈β| , (4.75)

where the diagonal elements of this matrix can be expressed as

〈α|R(tfast) |α〉 = ραβ(tfast) = ραβ(tfast = 0) ≡ να(tfast). (4.76)

Eventually, the unitarily oscillating off-diagonal elements will decay due to the dissipation.
According to what we have seen in the previous chapter for longer times, the dynamics is
governed by a stochastic process. The continuous-time Markov process can be written as

∂να(tslow)
∂tslow

=
∑
β,α

νβωβ→α − να

∑
β,α

ωα→β (4.77)

= Fαβνβ. (4.78)

4.2 Time-Dependent Perturbation Theory

As we have seen in the preceding section, the solution for the stationary Lindblad master
equation in Zeno limit for the boundary-driven XXZ model is in principle determined by an
underlying Markov process in the dissipation-free subspace. In this chapter, we want to see
whether we recover such a process in the time-dependent perturbation theory.
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4.2.1 Dyson Expansion of the Semigroup

The behavior above was, more or less, guessed from the results obtained through time-
independent perturbation theory. In principle, it is possible to use time-dependent perturbation
theory to clarify at which time scales these processes occur.

The derivation follows [16, 17] and uses a similar notation. We start with the time-dependent
Lindblad equation,

∂ρ

∂t
= −i

[
H, ρ

]
+ ΓD[ρ] = Lρ, (4.79)

and divide it by Γ. By rescaling time as Γt → t, we obtain an equation with a perturbative term
in the limit of strong dissipation Γ >> 1:

∂ρ

∂t
= −

i
Γ

[
H, ρ

]︸     ︷︷     ︸
Kρ

+ D[ρ]︸︷︷︸
L0ρ

= (L0 + K)ρ = Lρ, (4.80)

where the linear operator L0 denotes the dissipator and K = − i
Γ

[H, •] is the commutator with
the Hamiltonian. It is instructive to think of these operators as living in the superspace. This
time-dependent Lindblad equation has a formal solution,

ρ(t) = eLt︸︷︷︸
E(t)

ρ(0) = E(t)ρ(0), (4.81)

for which the time evolution operator E(t) can be expanded as

E(t) = eL0t +

∫ t

0
eL0t1 KE(t1)dt1. (4.82)

We confirm this to be true up to a constant, by comparing the derivatives of (4.81) and (4.82):

∂E(t)
∂t

(4.81)
= LE(t) = (L0 + K)E(t) (4.83)

(4.82)
= L0E(t) + eL0te−L0t︸   ︷︷   ︸

=1

KE(t) = (L0 + K)E(t). (4.84)

Now, we can iterate (4.82) to arrive at the standard Dyson expansion that is familiar from
time-independent perturbation theory. Up to second order, we can then write the time evolution
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operator as

E(t) = eL0t
(
1 +

∫ t

0
dt1e−L0t1 KeL0t1 +

∫ t

0
dt1e−L0t1 KeL0t1

∫ t1

0
dt2e−L0t2 KeL0t2 + . . .

)
. (4.85)

Up to here, we just formally expanded the time evolution operator E(t). Now, we introduce
the projector onto the kernel of the dissipator (kernel of L0) which in our specific case is
P0 = |e0

〉 〈e0
| ⊗ Tr1,N(•), where • serves as a placeholder. We define the projector onto the

complementary subspace by Q0 := 1 − P0. This results in a full spectral decomposition with
the properties P0 + Q0 = 1 and P0Q0 = 0. Let us see how this projector acts on the dissipator

L0P0 = P0L0 = 0 (4.86)

and, consequently,

eL0tP0 = P0eL0t = P0, (4.87)

as only the zeroth order of the expansion of eL0t = 1 + L0t + . . . survives.

Similarly, we can ask how the time evolution operator E(t) behaves under a projection P0. To
do so, we use the properties explained above to write

E(t)P0 = eL0t
(
1 +

∫ t

0
dt1e−L0t1 KeL0t1 +

∫ t

0
dt1e−L0t1 KeL0t1

∫ t1

0
dt2e−L0t2 KeL0t2 + . . .

)
P0

(4.88)

= P0 + eL0t
∫ t

0
dt1e−L0t1 KeL0t1P0 + eL0t

∫ t

0
dt1e−L0t1 KeL0t1

∫ t1

0
dt2e−L0t2 KeL0t2P0.

(4.89)

Let us focus on the second term and insert the spectral decomposition:

eL0t
∫ t

0
dt1e−L0t1 KeL0t1P0 = eL0t

∫ t

0
dt1e−L0t11KeL0t1P0 (4.90)

= eL0t
∫ t

0
dt1e−L0t1(P0 + Q0)KeL0t1P0 (4.91)

= tP0KP0 + eL0t
∫ t

0
dt1e−L0t1Q0KP0. (4.92)
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4.2 Time-Dependent Perturbation Theory

Now, we modify the second term by splitting the integral using substitutions such that

eL0t
∫ t

0
dt1e−L0t1Q0KP0 = eL0t

(∫ −∞

0
dt1 · · · +

∫ t

−∞

dt1 . . .

)
(4.93)

= eL0t
∫ −∞

0
dt1e−L0t1Q0KP0 −

∫ −∞

t
dt1eL0(t−t1)Q0KP0. (4.94)

Here, we first perform the following substitution

t1 → −t̃1, (4.95)

dt1 → −dt̃1, (4.96)

(4.97)

where the boundaries change as

0→ 0, (4.98)

−∞ → ∞, (4.99)

t → −t. (4.100)

Thus, we obtain

eL0t
∫ t

0
dt1e−L0t1Q0KP0 = −eL0t

∫ ∞

0
dt̃1eL0 t̃1Q0KP0 +

∫ ∞

−t
dt̃1eL0(t+t̃1)Q0KP0. (4.101)

Next we substitute in the second integral

t + t̃1 → u, (4.102)

dt̃1 → du, (4.103)

(4.104)

where the boundaries change as

∞ → ∞, (4.105)

−t → 0, (4.106)

43



Chapter 4 Perturbation Theory

which leaves us with

eL0t
∫ t

0
dt1e−L0t1Q0KP0 = −eL0t

∫ ∞

0
dt̃1eL0 t̃1Q0KP0 +

∫ ∞

0
dueL0uQ0KP0. (4.107)

Using a simple renaming of t̃1, u→ t, we can now write

eL0t
∫ t

0
dt1e−L0t1Q0KP0 =

(
eL0t
− 1

) (
−

∫ ∞

0
dteL0tQ0

)
︸                ︷︷                ︸

:=S

KP0 (4.108)

=
(
eL0t
− 1

)
SKP0, (4.109)

where S is the pseudo-inverse of the dissipator with the property

L0S = SL0 = Q0. (4.110)

This operator is bounded; recall that the eigenvalues L0 are real and negative.

Up to here we have:

E(t)P0 = P0 + tP0KP0 +
(
eL0t
− 1

)
SKP0 + eL0t

∫ t

0
dt1e−L0t1 KeL0t1

∫ t1

0
dt2e−L0t2 KeL0t2P0,

(4.111)

where tP0KP0 with K = − i
Γ

[H, •] leads to a unitary evolution. The third term is more difficult
to interpret. Looking at

1
(
eL0t
− 1

)
= (P0 + Q0)

(
eL0t
− 1

)
= Q0

(
eL0t
− 1

)
, (4.112)

we see that this term accounts for processes driving the system out of the dissipation-projected
subspace (note that Q0 projects onto the complementary space) and that these processes are
instantaneously erased by dissipation (see first term P0). Let us look at the time-scales, at which
these processes appear (remembering the rescaling Γt → t) by taking the norm:∥∥∥P0

∥∥∥ ∼ ∥∥∥Q0

∥∥∥ ∼ 0, (4.113)

‖S ‖ ∼ 1, (4.114)

K ∼
1
Γ
. (4.115)

Then, the first three terms of the expansion of the time evolution operator stand for processes
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4.2 Time-Dependent Perturbation Theory

which occur on the following time scales:

E(t)P0 = P0 + tP0KP0︸   ︷︷   ︸
O(1)

+
(
eL0t
− 1

)
SKP0︸              ︷︷              ︸

O( 1
Γ

)

+ . . . . (4.116)

Next, we want to learn what happens at the 2nd order. Instead of E(t)P0, we look at P0E(t)P0:

P0eL0t
∫ t

0
dt1e−L0t1 KeL0t1

∫ t1

0
dt2e−L0t2 KeL0t2P0 = (4.117)

= P0

∫ t

0
dt1

∫ t1

0
dt2KeL0t1−L0t2 KP0 (4.118)

= P0

∫ t

0
dt1

∫ t1

0
dt2KeL0t1−L0t2(P0 + Q0)KP0 (4.119)

=
t2

2
(P0KP0)2 + P0K

∫ t

0
dt1eL0t1

∫ t1

0
dt2e−L0t2Q0KP0, (4.120)

where we recognise the pseudo-inverse in the right term, (4.121)

=
t2

2
(P0KP0)2 + P0K

∫ t

0
dt1

(
eL0t
− 1

)
SKP0,

the term with unity matrix can be integrated, (4.122)

=
t2

2
(P0KP0)2

− tP0K(P0 + Q0)SKP0 + P0K
∫ t

0
dt1eL0tSKP0

Let us concentrate on the last term of (4.123) and use the spectral decomposition

P0K
∫ t

0
dt1eL0tSKP0 = P0K

∫ t

0
dt1eL0t(P0 + Q0)SKP0 (4.123)

= tP0KP0SKP0 + P0K
∫ t

0
dt1eL0tQ0SKP0. (4.124)

Collecting all terms at order two gives:

P0eL0t
∫ t

0
dt1e−L0t1 KeL0t1

∫ t1

0
dt2e−L0t2 KeL0t2P0 = (4.125)

=
t2

2
(P0KP0)2︸        ︷︷        ︸

O(1)

− tP0KQ0SKP0︸            ︷︷            ︸
O( 1

Γ
)

+P0K
∫ t

0
dt1eL0tQ0SKP0︸                          ︷︷                          ︸
O( 1

Γ
2 )

.

(4.126)
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To summarize, the evolution in the dissipation-free subspace (recognizing that the P0KP0

terms can be exponentiated) reads

P0E(t)P0 = etP0KP0 − tP0KQ0SKP0 + O(
1
Γ2 ). (4.127)

We conclude that in total we observe three different processes, which take place at different
times:

• at t ∼ 1
Γ
, thus, almost instantaneously the system is projected by the strong dissipation into

the decoherence-free subspace

• at t ∼ 1, the evolution is governed by P0KP0 ∼ −i[h00, •]

• at t ∼ Γ the term ∝ P0KQ0SKP0 ∼ K2 will set in

We know that the stochastic matrix equation is proportional to K2 and we explicitly see
elements of h0k and hk0, which, after first inspection, also arise in this newly derived term.
Therefore, we assume the stochastic process will also emerge at this order in time-dependent
perturbation theory.

By performing the Dyson expansion of the time evolution operator E(t), we identified three
time scales, which in fact confirm the heuristic argument. In the long time limit, as expected,
the behavior will be governed by the underlying stochastic process that we have identified in the
stationary perturbation theory.
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CHAPTER 5

Results

In this chapter, we present the results of our investigations. We will start by giving an overview
of the parameter space of the model and the physics of the non-equilibrium steady states in
a case study, where we recover the predicted spin helix states and some of their properties.
Particular focus will be cast on the points where a pure statea is naively expected, but not
encountered. A more detailed analysis is performed for those points, for which the fine-tuned
system and dissipation parameters give rise to a state of rank 2. In the last section of this
chapter, we perform another case study to confirm the predicted three different time scales in the
dynamics and qualitatively see if the results of the strong coupling perturbation theory remain
valid for smaller dissipation strengths.

5.1 Exploring the Parameter Space

For a fixed system size N, we can adjust seven free parameters: The action of the bath on the
boundary spins with a dissipation strength Γ modifies their polarization on the left and on the
right θL, θR, φL, φR. Besides that, the internal parameters of the Hamiltonian, coupling constant
J and anisotropy ∆, govern the behavior of the chain. In the following, the coupling strength of
neighboring spins will be fixed to J = 1 and we set ~ = 1.

In the following case study, we restrict the targeted spin polarization to lie in XY-plane
(θL = θR = π

2 ). The boundary spin polarization will be fixed due to strong coupling (Γ = 1000),
while the anisotropy is changed in the range from −1.5 to 1.5.
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5.1.1 Case Study I: Fixed Boundaries, Changing Anisotropy

The specific case that we want to look at in this section should be representative of the generic
situation that we encountered during the investigation of the whole parameter space. We perform
an exemplary analysis for a chain of six spins (N = 6), whose first spin points along the X-axis
φL = 0 and whose last spin is chosen to lie in XY-plane with an angle φR = π

3 . The chain
length of six spins is the maximal length that can still be comfortably computed using exact
diagonalization (cf. Chapter 3). The expectation values for all spin operators σα with α = x, y, z

for each spin are shown in Figure 5.1. The Z-component of each spin is zero for every anisotropy
value. Due to the strong dissipation strength, the first and last spin are effectively pinned into
the targeted directions

〈
σx

1
〉

= 1
〈
σ
y
1

〉
= 0〈

σx
6
〉

= cos φR,
〈
σ
y

6

〉
= sin φR.

However, in the numerics Γ is still finite and there are fluctuations in the order of ∼ 10−7 around
these values.

Similar to the discussion in Section 2.2 for the Z-components, it is possible to understand
the behavior of the spins in XY-plane qualitatively in the Luttinger liquid phase, where the
transverse hopping terms dominate. For anisotropies close to ∆ = −1 and ∆ = 1, the spins
tend to align and misalign, respectively. As expected, we observe a gradual change of X- and
Y-components, when going from one to the next spin (Figure 5.1). These transitions occur close
to ∆ = −1, however, sudden changes are observed in those components close to ∆ = −1.

The density profile will be useful to understand more complex quantities like the entropy,
which is shown in Figure 5.3. The entropy as function of the anisotropy shows a qualitative
behavior that reflects the general case. Coming from a plateau at ∆→ −∞, it drops to zero close
to (or at) ∆ = −1, then rises to a maximum at ∆ = 0 and falls to zero again close to (or at) ∆ = 1,
until it settles to a plateau at ∆→ ∞. In between, for certain anisotropies, kinks appear in the
entropy.

Let us now try to elucidate the features observed in Figure 5.3. At ∆ = 0, the XXZ model
reduces to a XY model and one can show that the previously derived stochastic matrix F is
symmetric and, thus, has equal left and right eigenvector. Furthermore, as we indicated in
Section 4.1.3, the left eigenvector with eigenvalue zero is always the unit vector. Consequently,
the right eigenvectors are equal to the unit vector and all the weights να are the same, as is the

48



5.1 Exploring the Parameter Space

−1

0

1

spin 1

〈σxj 〉
〈σyj 〉
〈σzj 〉 spin 2 spin 3

−1 0 1

anisotropy ∆

−1

0

1

d
en

si
ty

p
ro

fi
le
〈σ
α j
〉

spin 4

−1 0 1

spin 5

−1 0 1

spin 6

Figure 5.1: Density profiles of a spin chain of length N = 6 and Lindblad operators targeting θL = θR = π
2 ,

φL = 0, φR = π
3 with a dissipation strength Γ = 1000 as function of the anisotropy ∆, which is varied

from −1.5 to 1.5, with a resolution of 600 points.

case for a totally mixed state.

The pure states (S VNE = 0) occur, where density profiles have pure spin helix states. These
were introduced above in Section 2.3.2. They occur at the predicted anisotropy values ∆ =

cos Φ+2πm
N−1 with m = 0, 1, . . .N − 2, which are marked by dashed lines in all figures of this case

study. Using the notion of winding weights in Figure 5.3 the different helicities can be identified.
Corresponding to these states, the steady state magnetization current jz shown in Figure 5.3 is
given by Equation (3.28).

In between two helical steady states, the spin chain undergoes transitions, during which
the state of the system gets mixed (non-zero entropy) and different contributions of winding
states occur. In Figure 5.3 the steady state transits from a helix state with winding m = 2 at
∆ ≈ −0.114 to a helix state with winding m = 3 at ∆ ≈ −0.669. In the intermediate range, a
state with winding m = 2 remains dominant until suddenly at ∆ ≈ −0.7 its contribution drops
and eventually crosses the rising contribution of winding m = 3. This behavior is clearly visible
in the current as well, where the m = 3 contribution leads to a sudden change of sign of the
magnetization current (see [22]).
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Figure 5.2: For a spin chain N = 6 and dissipatively targeted θL = θR = π
2 , φL = 0, φR = π

3 and
Γ = 1000 (a) shows the von Neumann entropy as function of the anisotropy and (b) shows the current as
function of the anisotropy. The dashed lines indicate anisotropies for which pure helix states are predicted
(∆ = cos Φ+2πm

N−1 ) and the red one marks the anisotropy at which the spin helix state doesn’t occur.

The behavior of these winding weights between the spin helix states of winding m = 3 at
∆ ≈ −0.669 and the totally mixed state ∆ = 0 is more complex. The contribution of m = 2 and
m = 3 remain dominant with a certain oscillating behavior until all windings have the same
weight in the mixed state.

The fact that a transition from a pure winding state to another pure winding state always
passes through an intermediate mixed phase, suggests to interpret these as topological sectors 1.

It is striking that the predicted helix state with winding m = 4 at ∆ = cos 15
5 = cos 5

3 = 0.5
is suppressed. In Figure 5.4 the expected and the actually encountered spin configurations
(polarization in XY-plane) are sketched. It is apparent that the first and the fourth spin would be

1 The notion of a winding number immediately gives rise to associations with topology. Topology, as discussed in
solid state systems, refers to topological invariants in the manifold in k-space that lead to the formation of edge
states. The simplest model where topology can be described is the so-called Su-Schrieffer-Heeger model (or SSH
model) [42]. In the spin chain context, the winding number describes an actual winding in spin space. Strictly
speaking, the winding number is only well defined for parallel boundary spins. As far as this study is concerned,
the incidence of winding numbers does not have any further consequences as robustness of the system against
perturbations or the formation of edge states.
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Figure 5.3: Weights for states with winding number m around Z-axis for a spin chain N = 6 and
dissipatively targeted θL = θR = π

2 , φL = 0, φR = π
3 and Γ = 1000. The dashed lines indicate anisotropies

for which pure helix states are predicted (∆ = cos Φ+2πm
N−1 ) and the red one marks the anisotropy at which

the spin helix state doesn’t occur.

antiparallel in this situation.

(a) (b)

Figure 5.4: Sketches of (a) the expected steady state and (b) the actual steady state found by numerics of
a chain with N = 6, θ = π

2 , φL = 0, φR = π
3 and anisotropy ∆ = 0.5. The size of the arrows is related to

the pureness of the state and reconstructed from the expectation values for the X- and Y-components.

From this, the question arises whether we can find more points like this, for which the pure
helix states are predicted but cannot form. In the next section, we will have a closer look at
these points.
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5.1.2 γ-Dependence

In this section, we identify these interesting points more systematically by fixing the left
boundary spin to the x-axis and swiping through the incremental turning angle γ from 0 to π
(still for θ = π

2 ). The remaining parameters are chosen to fulfill conditions for the spin helix
states to occur (φR = (N − 1)γ and ∆ = cos γ). Naively, it is expected that the entropy for this
scenario is zero except for γ = 1

2 and, thus, ∆ = 0, as discussed in the previous section.
However, as can be seen at the exemplary plot for N = 6 in Figure 5.5 the entropy shows a

couple of peaks, at fractions of π of the form nπ
m where n,m ∈ N and m < N. The low resolution

of 120 points on this axis is not enough, to well resolve the singular points. A more formal
treatment of this can be found in [25]. Physically, for these values of γ we encounter the same
situation as in Figure 5.4: Whenever two or more spins in the chain should theoretically be
collinear, a pure helix state fails to converge.
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Figure 5.5: Entropy as function of the incremental turning angle γ for a spin chain of length N = 6, whose
first spin is fixed via strong dissipation (Γ = 1000) to the X-axis and the last spin follows φR = (N − 1)γ
and ∆ = cos γ.

In Chapter 4.1.3, we mentioned that we can reliably determine the rank of the non-equilibrium
steady state in Zeno limit by making use of the conditions on the states (Equation (4.46)) and
the conditions on their weights (Equation (4.60)). We also argued that solving the system of
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N γ rank full rank

3 π
2 2 2

4 π
2 4 4
π
3 ,

2π
3 2

5 π
2 8 8
π
3 ,

2π
3 5

π
4 ,

3π
4 2

6 π
2 16 16
π
3 ,

2π
3 11

π
4 ,

3π
4 6

π
5 , . . . ,

4π
5 2

7 π
2 32 32
π
3 ,

2π
3 22

π
4 ,

3π
4 16

π
5 , . . . ,

4π
5 7

π
6 ,

5π
6 2

8 π
2 64 64
π
3 ,

2π
3 43

π
4 ,

3π
4 36

π
5 , . . . ,

4π
5 22

π
6 ,

5π
6 8

π
7 , . . . ,

6π
7 2

9 π
2 128 128
π
3 ,

2π
3 85

π
4 ,

3π
4 72

π
5 , . . . ,

4π
5 57

π
6 ,

5π
6 29

π
7 , . . . ,

6π
7 9

π
8 ,

3π
8 ,

5π
8 ,

7π
8 2

Table 5.1: Summary of ranks for various spin chains of lengths N ≤ 9 with anisotropy ∆ = cos mπ
n and

m, n ∈ N. Solving the system of equation 4.60, we obtain a vector |nu〉. As we are dealing with numerical
data, we used an absolute tolerance of atol = 10−10 to determine which entries of the vector are zero. The
γ values highlighted in red will be treated in Section 5.1.3.

equations defined by the stochastic matrix, makes larger system sizes amenable. In Table 5.1, we
summarize the ranks of the non-equilibrium steady states, which occur for incremental turning
angles γ of the form nπ

m up to N = 9. At this point, we are limited to systems N ≤ 9, since we
have to count the zero (or non-zero) eigenvalues for the determination of the rank. For larger
systems, it gets more difficult to distinguish numerically between zero values from small, finite
values. In Table 5.1, we assumed the eigenvalue to be zero up to a threshold να < 10−10.
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We re-confirm that the non-equilibrium steady state has full rank for γ = π
2 (∆ = 0). Having

identified the ranks of these particular values of the incremental turning angle γ for system
lengths N ≤ 9 (cf. Table 5.1), certain patterns for the ranks could be identified:

r
(

π

N − 1

)
= 2, (5.1)

r
(

π

N − 2

)
= N, (5.2)

r
(

π

N − 3

)
= 1 +

(
N − 1

2

)
, (5.3)

r
(

π

N − 4

)
= 149 − 49

(
N − 1

1

)
+ 13

(
N − 1

2

)
−

(
N − 1

3

)
, (5.4)

where the usual binomial coefficients are defined by
(

n
k

)
= n!

k!·(n−k)! . This suggests a general
formula for the rank of a spin chain with length N and an incremental turning angle γ = π

N−x

with x ∈ N

r
(

π

N − x

)
= α1

(
N − 1

0

)
+ α2

(
N − 1

1

)
+ · · · + αx

(
N − 1
x − 1

)
. (5.5)

For the next rank r
(

π
N−5

)
, we require the corresponding five values to determine the five occurring

integer coefficients αi with i = 1, . . . , 5.

In the last section, we found that, whenever two spins in the chain are collinear, a pure helix
state fails to converge. We analyzed similar situations for up to N ≤ 9 and found a pattern in the
ranks of the resulting steady state density matrices. In the following section, we confirm our
physical intuition for simple cases and analytically determine the corresponding non-equilibrium
steady state.

5.1.3 Analytical Results for Small Systems N = 3, 4, 5

We investigated three simple situations with few degrees of freedom (marked in red in Table 5.1).
In that way, using the Software Wolfram Mathematica and employing the exact analytical
expressions for the perturbation theory, we got analytical results for the density matrices with
dependence on the following parameters:

Case 1: N = 3, γ = π/2, θ = θL = θR, φL = 0, φR = π

Consider a system of three spins: In Zeno limit we target a pure state at the boundaries, where

54



5.1 Exploring the Parameter Space

the first spin points along positive X-direction and last spin point along negative X-direction
(φL = 0, φR = π), but this time with a variable polar angle (θL = θR = θ). The incremental
twisting angle is γ = π

2 and the anisotropy is ∆ = cos γ = 0. For θ = π
2 , we expect a totally

mixed state, but the dependence on θ is non-trivial. The remaining spin in the middle is pure
and we chose a general ansatz for its density matrix

ρ11(θ) =
1 + A(θ)

2
(5.6)

ρ22(θ) =
1 − A(θ)

2
. (5.7)

At first order of the stationary perturbation theory, we added a general traceless auxiliary matrix

m(1) =

a b

c −a

. (5.8)

At the secular condition Tr1,N([H, ρ(0)]) = 0, the free parameter A(θ) was determined and fixed
the density matrix to

ρ(θ) =

 2 cos(θ)
cos(2θ)+3 + 1

2 0

0 4 sin4( θ2 )
cos(2θ)+3

 . (5.9)

Case 2: N = 4, γ = π/3, θ = θL = θR, φL = 0, φR = π

Similarly, we looked at a system of four spins with anti-parallel boundary spins, with γ = π
3

and have ∆ = 1
2 . This time, we chose an ansatz for the bulk, where both spins are expressed in

the most general density matrix with a total of 16 variables (remember Equation(2.8)). Again, at
first order, a general, traceless auxiliary matrix m(1) was added (+ 15 variables). At the secular
condition Tr1,N([H, ρ(0)]) = 0, the initial 16 variables were completely determined resulting in a
density matrix

ρ(θ) =

16 cos4( θ
2 )(3 cos(2θ)+13)

60 cos(2θ)+9 cos(4θ)+187 −
2(3 cos(2θ)+13) cot( θ

2 ) sin2(θ)
60 cos(2θ)+9 cos(4θ)+187

2(3 cos(2θ)+13) cot( θ
2 ) sin2(θ)

60 cos(2θ)+9 cos(4θ)+187 −
4(3 cos(2θ)+13) sin2(θ)

60 cos(2θ)+9 cos(4θ)+187

−
2(3 cos(2θ)+13) cot( θ

2 ) sin2(θ)
60 cos(2θ)+9 cos(4θ)+187

sin(θ)(25 sin(θ)−3 sin(3θ))
60 cos(2θ)+9 cos(4θ)+187 −

4(3 cos(2θ)+1) sin2(θ)
60 cos(2θ)+9 cos(4θ)+187

2(3 cos(2θ)+13) sin2(θ) tan( θ
2 )

60 cos(2θ)+9 cos(4θ)+187
2(3 cos(2θ)+13) cot( θ

2 ) sin2(θ)
60 cos(2θ)+9 cos(4θ)+187 −

4(3 cos(2θ)+1) sin2(θ)
60 cos(2θ)+9 cos(4θ)+187

sin(θ)(25 sin(θ)−3 sin(3θ))
60 cos(2θ)+9 cos(4θ)+187

2(cos(θ)−1)(3 cos(2θ)+13) sin(θ)
60 cos(2θ)+9 cos(4θ)+187

−
4(3 cos(2θ)+13) sin2(θ)

60 cos(2θ)+9 cos(4θ)+187
2(3 cos(2θ)+13) sin2(θ) tan( θ

2 )
60 cos(2θ)+9 cos(4θ)+187

2(cos(θ)−1)(3 cos(2θ)+13) sin(θ)
60 cos(2θ)+9 cos(4θ)+187

16(3 cos(2θ)+13) sin4( θ
2 )

60 cos(2θ)+9 cos(4θ)+187 .


(5.10)

The diagonalization of this matrix revealed that only two eigenvalues are non-zero for all polar
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angles θ

ν1(θ) =
13 + 3 cos 2θ2

187 + 60 cos 2θ + 9 cos 4θ
(5.11)

ν2(θ) =
36 sin θ4

187 + 60 cos 2θ + 9 cos 4θ
(5.12)

ν3(θ) = ν4(θ) = 0, (5.13)

which was tested against the exact diagonalization results in Figure 5.6 and which is consistent
with the prediction in Table 5.1 for θ = π

2 . Furthermore, a look at the winding weights revealed
that the windings m = 1 and m = 2 have the same weight for all θ, see Figure 5.6.
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Figure 5.6: (a) Eigenvalues of the density matrix and (b) winding weights as function of polar angle θ
for a spin chain N = 4, γ = π/3, θ = θL = θR, φL = 0, φR = π. We were able to analytically solve the
Lindblad master equation via perturbation theory and obtained analytical expressions (5.11) - (5.13) for
the eigenvalues of the density matrix depending on θ. This result was confirmed by exact diagonalization.
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Case 3: N = 5, γ = π/3, θ = θL = θR = π/2, φL = 0, φR = 4π/3

In the same way, we investigated the situation for five spins with γ = π/3 and a boundary
gradient Φ = 4π/3. Due to exponentially growing complexity, we restricted this example
to θ = π/2. The density matrix could be determined and is given in the Appendix C. The
diagonalization returned exactly five non-zero eigenvalues out of eight (see Table 5.3).

We diagonalized the dissipation-projected Hamiltonian for this situation and found that the
eigenvalue equal to zero is two times degenerate. The corresponding eigenvectors can be found
in Appendix C. Furthermore, we identified the eigenvectors of the steady state ρ∞ with the
eigenvectors of h00 by calculating the elements 〈α| ρ∞ |β〉, where α, β = 0, . . . 7. In Table 5.3,
we listed the results for the identification. Note that the degeneracy subspace is spanned by
the eigenvectors |6〉 , |7〉 and any orthogonal combination can be chosen to be the proper basis.
Analytically, we know that the spin helix state corresponding to the boundary gradient Φ = 4π

3

is an eigenvector of h00 and we found it to be this subspace. We also set the spin helix state
as first basis vector of the degenerate subspace and obtained the second via Gram-Schmidt
orthogonalization.

We checked explicitly that ρ∞ obeys the reversal symmetry in Equation (2.35) and confirmed
that the five projectors, which it is composed of, do as well.

spin 〈σx〉 〈σy〉 〈σz〉

1 1 0 0
2 0.678414 −0.244166 0
3 0.193833 −0.335728 0
4 −0.127753 −0.709607 0
5 −0.5 −0.866 0

Table 5.2: Density profile of the non-equilibrium steady state for N = 5, γ = π/3, θ = θL = θR = π/2, φL =

0, φR = 4π/3.

The analytic treatment again confirmed the calculation of ranks via the stochastic matrix F.
Furthermore, we have seen that the appearance of rank 2 states is linked to symmetrical setups in
which exactly two winding states play equally dominant roles. In the next section, we produce a
situation for which a pure helix state description breaks down and a rank 2 state is generated.
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analytic να numeric να eigenvectors of h00 using |Ψ⊥helix〉

ν1
9

908

(
33 + 7

√
17

)
0.6132 |5〉

ν2
1

227

(
37 + 8

√
10

)
0.2744 A |7〉 + B |8〉 3i

√
5(3i+

√
5)

−10+8,
√

10
|Ψhelix〉 + |Ψ

⊥
helix〉

ν3
1

227

(
37 − 8

√
10

)
0.0515 C |7〉 + D |8〉 3

√
5(3−i

√
5)

10+8,
√

10
|Ψhelix〉 + |Ψ

⊥
helix〉

ν4
9

908

(
33 − 7

√
17

)
0.0410 |4〉

ν5
9

454 0.0198 |2〉
ν6 0 0 |1〉
ν7 0 0 |3〉
ν8 0 0 |6〉

Table 5.3: The eigenvectors of the non-equilibrium steady state for N = 5, γ = π/3, θ = θL = θR =

π/2, φL = 0, φR = 4π/3 are given in its analytic representation and its numerical values. We identified the
corresponding eigenvectors with eigenvectors of the dissipation-projected Hamiltonian h00. In the last
column we used the fact, that one spin helix state is an eigenvector of h00 in the degenerate subspace,
built a basis in that subspace via Gram-Schmidt orthogonalization and expressed the eigenvectors of ρ in
terms of this new basis.

5.1.4 Breakdown of Pure Description

The system we treat here consists of N = 4 spins with a boundary gradient Φ = π
3 and spins

lying in XY-plane θ = π/2. The dissipation strength was chosen to be Γ = 1000 for the numerics.
In Figure 5.7, we look at the entropy and the winding weights for variable anisotropy in −1.5 to
1.5 and observe what happens if the boundary gradient is slightly tilted towards the X-axis and
finally is Φ = 0.

We directed our focus on the two pure helix states with winding m = 1 and m = 2 which
arise at ∆m=1 = −0.766 and ∆m=2 = −0.174 for Φ = π

3 . First, we note that for four sites, there
is a total of N − 1 = 3 different windings. Two clockwise windings m = 2 correspond to one
anticlockwise winding m = −1.

When decreasing the boundary gradient Φ, the two anisotropies at which pure helix states
occur approach each other. For Φ = π

100 , we observe two closely singular kinks in the entropy
related to the pure states and a sudden change from unit contribution of m = 1 to m = −1. In
the case of parallel boundaries, however, these two windings have the same contribution. The
third weight for m = 0 is small but finite because the helix states are not mutually orthogonal.
The entropy at ∆ = −0.5 is S VNE ≈ 1, which can be understood when diagonalizing the
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Figure 5.7: Entropy and winding weights for the breakdown of the pure helix state description for a spin
chain N = 4 with changing boundary gradient Φ. The boundary setting is illustrate above each column.
From left to right the boundary gradient is decreased. The dashed lines indicate anisotropies for which
pure helix states are predicted (∆ = cos Φ+2πm

N−1 ). The anisotropies at which the helix states with m = 1
and m = −1 ocurr, approach each other (red arrows) until they coincide (red dashed line)

corresponding density matrix. It has two eigenvalues

ν0 = 0, 265 (5.14)

ν1 = 0, 735 (5.15)

→ S VNE = 0.834. (5.16)

The above generation of a rank 2 state suggests that for the symmetrical setup of parallel
boundary spins, two helix states with opposite winding number are superposed. In the following,
we made an ansatz to describe the reduced density matrix of the non-equilibrium steady state.
The bulk density matrix is hermitian and has only two eigenvalues and, thus, can be build by
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two eigenvectors which need to be orthogonal. We expect it to be of the following form

|u〉 = |Ψhelix(+)〉 (5.17)

|v〉 = |Ψhelix(−)〉 (5.18)

ρ = λ1 |u〉 〈u| + λ2 |v〉 〈v| , (5.19)

with λ1/2 being related to the winding weights. Unfortunately, for even system sizes the spin
helix states are not orthogonal to each other and the overlap is finite and real

〈u | v〉 = η , 0 (5.20)

η = η∗. (5.21)

We took this into account and used the following ansatz

ρ(B) = |u〉 〈u| + |v〉 〈v| + B (|u − v〉 〈u − v|) (5.22)

⇔ ρ(B) |u〉 = |u〉 + 〈v|u〉 |v〉 + B |u − v〉 (〈u|u〉 − 〈v|u〉) , (5.23)

using 〈u | v〉 = η and 〈u | u〉 = 1 (same for v) to get the system of equations

ρ(B) |u〉 = |u〉 + η |v〉 + B |u − v〉 (1 − η) (5.24)

ρ(B) |v〉 = |v〉 + η |u〉 + B |u − v〉 (η − 1) (5.25)

where we can set b = B(1 − η) and obtain

ρ

|u〉
|v〉

 =

1 + b η − b

η − b 1 + b

|u〉
|v〉

. (5.26)

Solving for eigenvalues of the matrix, we find that

λ1 = 1 + η (5.27)

λ2 = 1 − η + 2b, (5.28)

with the corresponding eigenvectors

eλ1
=

11
 & eλ2

=

−1
1

. (5.29)
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On the one hand, we know the ratio of the eigenvalues we obtain

λ1(B)
λ2(B)

=
1 + η

1 − η
1

1 + 2B
, (5.30)

and on the other hand, in the case of N being even and θ = π
2 , we have been able obtain such

ratios of the eigenvalues numerically

N = 4 :
32

52 (5.31)

N = 6 :
172

152 . (5.32)

Furthermore, as for N even and θ = π
2 the overlap of two spin helix states with opposite windings

can be shown to be η = 〈u|v〉 = ( i
2 )N−2, we deduce

λ1(B)
λ2(B)

=

(
λ1(0)
λ2(0)

)2

=

(
1 + η

1 − η

)2

(5.33)

→ B = −
η

1 + η
=

4
−4 + ( i

2 )−N . (5.34)

Here, we used mainly heuristic arguments. It is instructive to see that in the limit of N → ∞,
the spin helix states will be orthogonal and, thus, B must be 0. In the following, we assume that

the pattern for the ratio remains of the type η =

(
(N−2)2

∓1
)2(

(N−2)2
±1

)2 . Inserting B into the ansatz, one can

show with some algebra that

ρ(η) = |u〉 〈u| + |v〉 〈v| −
1

1 + 2N−2 |u − v〉 〈u − v| . (5.35)

From the eigenvectors in Equation (5.29), we deduced that the eigenvectors of the density matrix
are of the form |u ± v〉. Exploiting this, we can express our vectors in the following form:

|u〉 =
1
2
|u + v + (u − v)〉 (5.36)

|v〉 =
1
2
|u + v − (u − v)〉 . (5.37)
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Plugging this into the earlier result (5.35) and normalizing to Tr(ρ) = 1, we get

ρ =
(1 + η) |u + v〉 〈u + v| + (1 − η) |u − v〉 〈u − v|

2
(
(1 + η)2 + (1 − η)2

) . (5.38)

For N being odd, one can perform the same calculation noting that the overlap for general θ
is given by

〈u | v〉 = icos(θ). (5.39)

In order to avoid the overlap being imaginary (and, thus, being able to reuse the above procedure),
we can multiply by a phase

|u〉 = e−i π4 |ṽ〉 (5.40)

|v〉 = ei π4 |ṽ〉 (5.41)

〈ũ|ṽ〉 = cos(θ) = ηodd. (5.42)

By performing the exact same steps as before, we end up with

ρ =
(1 + ηodd) |ũ + ṽ〉 〈ũ + ṽ| + (1 − ηodd) |ũ − ṽ〉 〈ũ − ṽ|

2
(
(1 + ηodd)2 + (1 − ηodd)2

) . (5.43)

Let us summarize. In the preceding Section 5.1.1, we presented an exemplary analysis of the
non-equilibrium steady states of a setting, in which the boundary spin polarizations are fixed
via dissipation to certain azimuthal angles, while the anisotropy was variable. Over the course
of the study, many situations like this have been investigated and the systematics behind the
appearance of particular (singular) points of Γ has become clearer. We found a pattern that we
explained in Section 5.1.2. Using the example of small systems and treating them analytically
in Section 5.1.3, we furthermore, showed that the eigenvectors contributing to these states of
reduced rank have a simple structure. The precise structure for situations, in which a rank 2
state appears, was understood and could be generated as demonstrated in 5.1.4. The aim of
the following section is to formalize our findings of the appearance of rank 2 states by stating
a hypothesis. Subsequently, this hypothesis will be supported by numerical and analytical
evidence.
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5.2 Rank 2 Hypothesis

Hypothesis 1 Consider a boundary-driven XXZ model in 1D as introduced in 2.3 with para-

meters Γ → ∞ (in Zeno limit), targeted states at the boundary defined by polar angles

θL = θR = θ and boundary gradients Φ = ϕR − ϕL = 0,±π. The anisotropy is ∆ = cos γ
with γ = (Φ + 2πm)/(N − 1) and m = 0, 1, . . .N − 2, but excluding explicitly all γ of the form xπ

y

with x, y ∈ N+ for which the fraction x
y

can be reduced and for which x = 0. For these settings,

the dissipation-projected Hamiltonian h00 = 〈e0
|H |e0

〉 has two degenerate eigenvectors with

eigenvalue zero of spin helix structure (2.31) with opposite winding

|Ψhelix(+)〉 =

|Ψhelix(θ, ϕ)〉 , when N is even,

ei π4 |Ψhelix(θ, ϕ)〉 , when N is odd,
(5.44)

|Ψhelix(−)〉 =

|Ψhelix(θ,−ϕ)〉 , when N is even,

e−i π4 |Ψhelix(θ,−ϕ)〉 , when N is odd,
(5.45)

and an overlap
〈
Ψhelix(+)

∣∣∣ Ψhelix(−)
〉

= η, η∗ = η. Building an orthonormal basis out of these

eigenvectors

|0〉 =
1
√

2

1√
1 + η

(
|Ψhelix(+)〉 + |Ψhelix(−)〉

)
, (5.46)

|1〉 =
1
√

2

1√
1 − η

(
|Ψhelix(+)〉 − |Ψhelix(−)〉

)
, (5.47)

one can obtain, making use of h j0 |Ψhelix〉 = κ(θ, ϕ)δ j,1 |Ψhelix〉 where κ(ϕ, θ) = −i
√

2 sin θ sinϕ,

that

h j0 |0〉 = a0, δ j,1 |1〉 with a0 =

√
1 − η
1 + η

κ(ϕ, θ), (5.48)

h j0 |1〉 = a1, δ j,1 |0〉 with a1 =

√
1 + η

1 − η
κ(ϕ, θ), (5.49)
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and, consequently, the following elements of the stochastic matrix F (see Equation (4.63))

F1,0 ≡ ω0→1 =
∣∣∣a0

∣∣∣2 , (5.50)

F0,1 ≡ ω1→0 =
∣∣∣a1

∣∣∣2 (5.51)

Fα,0 = Fα,1 = 0, α > 1. (5.52)

Following the line of argumentation in Section 4.1.3, such a setup leads to the generation of a

non-equilibrium steady state of rank 2 with eigenvalues determined by (4.60) and (5.52)

lim
Γ→∞

ρNES S (Γ) = |e0
〉 〈e0
| ⊗

(
ν1 |1〉 〈1| + ν2 |2〉 〈2|

)
(5.53)

ν1 =
(1 + η)2

2 + 2η2

ν2 = 1 − ν1 =
(1 − η)2

2 + 2η2 .

The above hypothesis asserts in simpler terms that the non-equilibrium steady state for a
boundary-driven XXZ chain, where first and last spin are dissipatively set parallel or antiparallel,
avoiding situations of (anti)parallel spins in the bulk and excluding ∆ = −1, 0, 1, can be described
by two spin helix states of opposite winding. Intuitively, a superposition of states with positive
and negative windings makes sense, since due to symmetry no direction is preferred. Note that
our conclusion (5.53) assumes generic non-zero elements of the stochastic matrix Fα,β , 0 for
β > 1. Heuristically, from Mathematica, analyzing systems of finite size N <= 10 in these
setups, we can confirm this.

A general form of the overlap η can be obtained heuristically

η(N, θ) =



(N−2)/2∑
n=0

An cos((2n)θ), when N is even,

(N−2−1)/2∑
n=0

Bn cos((2n + 1)θ), when N is odd,

(5.54)

(5.55)

and coefficients for small systems N ≤ 8 are listed in the Tables 5.4. Note that for the particular
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polar angle θ = π
2 , the expression for the overlap simplifies to

η(N,
π

2
) =


( i
2

)N−2

, when N is even,

0, when N is odd,
(5.56)

(5.57)

where for odd systems, the corresponding spin helix states of opposite winding are orthogonal
and the overlap vanishes.

N A0 A1 A2 A3

4 −5
8 −3

8 0 0
6 63

128
60

128
5

128 0
8 − 858

2048 −1001
2048 − 182

2048 − 7
2048

(a)

N B0 B1 B2

3 1 0 0
5 −7

8 −1
8 0

7 198
256

55
256

3
256

(b)

Table 5.4: Coefficients for the overlap η for (a) even and (b) odd system size and a boundary gradient
Φ = π.

The hypothesis forms a basis for discussion and can be tested. In the following, we will
provide supporting evidence for it and even proof its validity for small system sizes up to N = 13.
We start by presenting results from exact diagonalization.

5.2.1 Numerical Evidence

For system sizes which are solvable via exact diagonalization we checked the predicted state
(5.53) against the numerical non-equilibrium steady state and obtained correspondence up to
errors of the order 1

Γ
. However, we focused the numerical investigation on the parallel boundary

spins Φ = 0, where the anisotropy is simplified to cos ((2πm)/(N − 1)) and N is even to ensure
N − 1 being prime. By setting N − 1, we naturally exclude all reducible fractions of γ. In the
∆-dependence plot for the entropy and the Fourier coefficients in Figure 5.8, one clearly sees
that two windings dominate with the same weights denoted with dashed lines. We explicitly
checked the numerically obtained non-equilibrium steady states to the predicted ones and found
agreement up to corrections 1/Γ, due to the numerically finite dissipation strength.

As a side remark, we notice that the rank 2 state has no net magnetization current. This
is particularly interesting, because the two spin helix states that it consists of carry a current.
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Figure 5.8: (a)Entropy and (b) winding weights as function of the entropy for a spin chain N = 6 with
dissipatively oriented (Γ = 1000) parallel boundary spins. The entropy is maximal at ∆ = 0. Dashed
lines indicate anisotropies for which pure helix states are predicted (∆ = cos Φ+2πm

N−1 ), in this case there
double dashed lines at ∆ = −0.809 and ∆ = 0.309

However, these currents are of equal strength and opposite sign, so they cancel out.

5.2.2 Analytical Evidence

Eigenvectors of h00

In the hypothesis, we claim that the dissipation-projected Hamiltonian has two eigenvectors
corresponding two eigenvalue zero. These can be given by (5.45). At this point, we quickly
refer to Table 5.5, where we checked the two-fold degeneracy of the zero eigenvalue explicitly
for all γ satisfying our requirements and θ = π

2 . Furthermore, we analytically confirmed in a
lengthy, but straightforward, calculation that (5.45) are eigenvectors h00 with eigenvalue zero
(the definition can be found in Appendix B) in the specific case of boundary gradient Φ = 0
(thus φL = φR = 0). At this point, we want to refer to the article [25], where the calculation
is sketched for the case of a single spin helix state, instead of boring the reader with another
tedious calculation.

66



5.2 Rank 2 Hypothesis

Theorem and Proof for Rank 2 State

We mentioned in Section 4.1.3 that the rank of the non-equilibrium steady state can only be
predicted reliably via the stochastic matrix F, if the generic elements are non-zero. We have
tested this for attainable system sizes. The stochastic matrix F in these rank 2 situations has the
general from

F =



F00 F01 F02 · · · F0N

F10 F11 F12 · · · F1N

0 0 F22 · · · F2N
...

...
...

. . .
...

0 0 FN2 · · · FNN


. (5.58)

We define the submatrix on the lower right

K =


F22 · · · F2N
...

. . .
...

FN2 · · · FNN

 . (5.59)

The calculations of the 2nd order perturbation theory and the corresponding secular condition
suggest that this submatrix is crucial for the determination of the elements of the auxiliary
matrix m(1) and, thus, indirectly for the validity of our hypothesis.

Let me sum up the idea of the following theorem. The rank of the non-equilibrium steady
state is determined by the equation ∑

γ

Fγγ′νγ′ = 0. (5.60)

For the hypothesis to be true, F should have a unique eigenvector with only ν0, ν1 , 0 and the
existence of a unique eigenvector is coupled to the form of its submatrix K. It determines the
values να = 0 for α > 1 through ∑

α>1

Kαγ′νγ′ = 0. (5.61)

If Det(K) = 0, in principle, there exists an eigenvector να , 0. However, if we demand
Det(K) , 0, there can only be a unique set να = 0 for α > 1. Following this line of argumentation,
we came up with a theorem, which we will proof by showing the necessary and sufficient
condition.
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Theorem 2 For the system of equations∑
γ

Fγγ′νγ′ = 0, (5.62)

there exists a unique solution with ν0, ν1 , 0 and να = 0 where α > 1 if and only if

Fα0 = Fα1 = 0 ∀α > 1 (5.63)

detK , 0 (5.64)

F01, F10 , 0. (5.65)

Let us start to prove this theorem by checking if the conditions for the theorem are sufficient.
To do so, we assume the theorem to be true and see if everything is consistent.

Proof 2

Sufficiency

We can rewrite ∑
γ

Fγγ′νγ′ = 0 (5.66)

into equations for each row of F∑
γ

F0γνγ = 0 (5.67)∑
γ

F1γνγ = 0 (5.68)∑
β

Kαβνβ = 0 with α, β > 1 (5.69)

where K is a submatrix of F as showed above. With the condition Det(K) , 0, equation (5.69)
can only be fulfilled if

νβ = 0 ∀β > 1. (5.70)

Thus, the initial equation (5.74) reduces to a system of two equationsF00 F01

F10 F11

ν0

ν1

 =

−F10 F01

F10 −F01

ν0

ν1

 = 0, (5.71)

where we have used (5.97) and the property of the stochastic matrix that the sum of each
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column has to be 0. Another property of the stochastic matrix is that it has zero determinant

Det(F) = 0 and, thus, its column vectors are linearly dependent. The two equations that we get

are equivalent, so we end up with

−F10ν0 + F01ν1 = 0 (5.72)

which together with the normalization condition
∑

k νk = ν0 + ν1 = 1 gives us

ν0 =
F01

F10 + F01
. (5.73)

At this point, we see that in order for ν0, ν1 , 0, indeed, F01, F10 , 0 has to be true. Up to here,

there are no inconsistencies, the condition is sufficient.

Necessity

Now, we also want to show that the conditions in the theorem are necessary. In order to do

so, we need to show that we can derive the conditions only given the statement: "For the system

of equations ∑
γ

Fγγ′νγ′ = 0, (5.74)

there exists a unique solution with ν0, ν1 , 0 and να = 0 where α > 1."

We use knowledge about the vector νγ to write

F00 F01

F10 F11

ν0

ν1

 = 0, (5.75)

Fα0ν0 + Fα1ν1 = 0, (5.76)

and, thus, conversely:

Fαγ′νγ′ = 0, with α > 1. (5.77)

From the stochastic property (columns add up to zero) of the matrix F, we know

F00 = −F10 −
∑
α>1

Fα0 = −F10 − a, (5.78)

F11 = −F01 −
∑
β>1

Fβ1 = −F01 − b, (5.79)
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or in matrix form

F′
ν0

ν1

 =

−F10 − a F01

F10 −F01 − b

ν0

ν1

 = 0. (5.80)

For this to exist with non-zero ν0, ν1, the determinant of this matrix has to be zero:

detF′ =
(
−F01 − a

) (
−F10 − b

)
− F10F01 (5.81)

= F01b + aF10 + ab !
= 0. (5.82)

Because all terms are positive, they have to vanish one by one. At this step, there are several

possibilities, which we need to check for consistency:

1. suppose: F01, F10 = 0 and ab = 0

• to ensure ab = 0, we start by setting a = 0, b , 0

The matrix F′ then becomes:

F′
ν0

ν1

 =

−a 0
0 −b

ν0

ν1

 = 0 (5.83)

→ bν1 = 0. (5.84)

But here we have a contradiction, as b , 0 and ν1 , 0.

• the same would happen if a instead of b is not zero

→ At least one of the elements F01, F10 has to be non-zero.

2. suppose: F01 = 0, F10 , 0 The matrix F′ then becomes:

F′
ν0

ν1

 =

−F10 − a 0
F10 −b

ν0

ν1

 = 0 (5.85)

→ (F10 + a)ν0 = 0 (5.86)

→ F10ν0 + bν1 = 0. (5.87)

As F10 and a are both positive, the first equation would only vanish if F10 = a = 0, which

again contradicts our supposition.
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3. suppose: F01 , 0, F10 = 0 The matrix F′ then becomes

F′
ν0

ν1

 =

−a F01

0 −F01 − b

ν0

ν1

 = 0, (5.88)

→ −aν0 + F01ν1 = 0, (5.89)

→ (F01 + b)ν1 = 0. (5.90)

Again, the second equation would only vanish, if F01 = b = 0, which contradicts our

supposition.

4. suppose: F01 , 0 and F10 , 0

• consequently, to ensure Det(F′ = 0) also a = b = 0

Shortly, remember that a = b = 0 means∑
α>1

Fα0 = 0 (5.91)∑
β>1

Fβ1 = 0 (5.92)

and, as all elements in these sum are positive, Fα0, Fα1 = 0 ∀α. Let us look at the matrix

F′:

F′
ν0

ν1

 =

−F10 F01

F10 −F01

ν0

ν1

 = 0, (5.93)

→ −F10ν0 + F01ν1 = 0 (5.94)

→ F10ν0 − F01ν1 = 0, (5.95)

which has a solution for:
ν0

ν1
=

F01

F10
. (5.96)

This is consistent with (5.75) and (5.76). This does not yet fix ν0, ν1n which can be done

using normalization such that ν0 + ν1 = 1.

Out of (5.97) to (5.99), it remains to be shown that K , 0. Suppose for a moment Det(K) = 0:

The consequence of this would be that for Kαβν̃β =, there exists a non-zero solution for the set

ν̃ = {ν2, ν3, . . . , νN} and, thus, a non-zero set ν = {ν0, ν1, ν2, ν3, . . . , νN} which again contradicts

our starting requirements.

71



Chapter 5 Results

Thus, Det(K) , 0. And with this we have shown that the conditions in the theorem are also

necessary, thus, the theorem is proven.

To verify that for a given system the rank 2 state is the unique non-equilibrium steady state,
we just need to satisfy

Fα0 = Fα1 = 0 ∀α > 1 (5.97)

detK , 0 (5.98)

F01, F10 , 0. (5.99)

This can be done by diagonalizing the dissipation-projected Hamiltonian h00 and constructing
the matrix F. This was done for up to N = 13 and the results are summarized in Table 5.5.
Furthermore, we illustrate for values of γ, which do not fit into the hypothesis in Table 5.6, that
the above is not trivially given.

N rfull Φ γ Deg(λ0) in h00 F01 , 0, F10 , 0 F0α = F1α = 0 Det(K , 0)

4 4 0 2π
3 ,

4π
3 2 X X X

π π
3 ,

5π
3 2 X X X

5 8 0 - 2 X X X

π π
4 ,

3π
4 ,

5π
4 ,

7π
4 2 X X X

6 16 0 2π
5 ,

4π
5 ,

6π
5 ,

8π
5 2 X X X

π π
5 ,

3π
5 ,

7π
5 ,

9π
5 2 X X X

7 32 0 - 2 X X X

π π
6 ,

5π
6 ,

7π
6 ,

11π
6 2 X X X

8 64 0 2π
7 ,

4π
7 , . . . ,

12π
7 2 X X X

π π
7 ,

3π
7 ,

5π
7 ,

9π
7 ,

11π
7 , 13π

7 2 X X X

9 128 0 - 2 X X X

π π
8 , . . . ,

15π
8 2 X X X

10 256 0 2π
9 ,

4π
9 ,

8π
9 ,

10π
9 , 14π

9 , 16π
9 2 X X X

π π
9 ,

5π
9 ,

7π
9 ,

11π
9 , 13π

9 , 17π
9 2 X X X

11 512 0 - 2 X X X

π π
10 ,

3π
10 ,

7π
10 , . . . ,

13π
10 ,

17π
10 2 X X X

12 1024 0 2π
11 , . . . ,

20π
11 2 X X X

π π
11 , . . . ,

9π
11 ,

13π
11 , . . . ,

21π
11 2 X X X
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N rfull Φ γ Deg(λ0) in h00 F01 , 0, F10 , 0 F0α = F1α = 0 Det(K , 0)

13 2048 0 - 2 X X X

π π
12 ,

5π
12 ,

7π
12 ,

11π
12 , 2 X X X

12π
12 ,

17π
12 ,

19π
12 ,

23π
12

Table 5.5: Table confirming the conditions (5.97) to (5.99) for all the incremental turning angles γ
corresponding to the hypothesis and sorted by corresponding boundary gradient Φ for system sizes up to
N = 13. Furthermore, the degeneracy of the eigenvalues λ0 = 0 of the dissipation-projected Hamiltonian
obtained by diagonalization is validated to be two.

N rfull Φ γ ∆ Deg(λ0) in h00

4 4 π π
3 ,

3π
3 -1 1

6 16 π 5π
5 -1 1

7 32 π 3π
6 ,

9π
6 0 8

8 64 π 7π
7 -1 1

10 256 0 6π
9 ,

12π
9 −1

2 8
π 3π

9 ,
15π

9 , (
9π
9 ) 1

2 , (−1) 8 (1)

11 512 π 5π
10 ,

15π
10 0 32

12 1024 π 11π
11 -1 1

13 2048 π 3π
12 ,

9π
12 ,

15π
12 ,

21π
12 ± 1

√
2

8

Table 5.6: Table illustrating that the degeneracy of the eigenvalue λ0 = 0 of the dissipation-projected
Hamiltonian can not be trivially predicted and confirming that for the explicitly excluded values for γ in
the hypothesis a rank 2 state indeed fails.

By combining the proof with numerical testing, we have proven the existence of a rank 2
state for all suggested situations for system sizes up to N = 13. With a fine-tuned Hamiltonian
and specific dissipation in Zeno limit at the boundary, we can reliably generate an entangled
state in the XXZ chain. In the next paragraph, we want to see, whether we can determine the
error for finite dissipation strength Γ.
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Perturbative Corrections onto Rank 2 State for Finite Γ

For a finite dissipation strength Γ, higher order corrections of the perturbation expansion enter
the non-equilibrium steady state. In order to examine how big these corrections are and how
they are calculated, let us first recapitulate the corrections for a pure spin helix state

ρ(Γ) = |ψ〉 〈ψ| +
ρ(1)

Γ
+
ρ(2)

Γ2 + . . . . (5.100)

Let us have a look at the quantity 1 − Tr(ρ2), which determines the purity for such a state and
finite Γ

1 − Tr(ρ(Γ)2) = 1 − Tr
(
(|ψ〉 〈ψ| +

ρ(1)

Γ
+
ρ(2)

Γ2 + ...)(|ψ〉 〈ψ| +
ρ(1)

Γ
+
ρ(2)

Γ2 + ...)
)

(5.101)

= 1 − 1 −
2
Γ

Tr
(
(|ψ〉 〈ψ| ρ1

)
+ O(

1
Γ2 ). (5.102)

We are specifically interested in the term ∼ 1
Γ
. We know that

ρ(1) = iD−1
[
[H, ρ(0)]

]
+ M(1) (5.103)

= −2i[H, ρ(0)] + M(1) (5.104)

= −2i[H, ρ(0)] + |e0
〉 〈e0
| ⊗ m(1). (5.105)

With this, we can calculate

Tr(ρ(0)ρ(1)) = −2iTr
(
ρ(0)[H, ρ(0)]

)
− 2iTr

(
ρ(0)(|e0

〉 〈e0
| ⊗ m(1))

)
(5.106)

= −2i 〈0|m(1)
|0〉 . (5.107)

It was shown analytically [25] that this element vanishes and thus

1 − Tr(ρ2) = O(
1
Γ2 ). (5.108)

In a similar fashion, we can calculate the quantity Tr((ρ(0))2)−Tr(ρ(Γ)2) for the rank 2 situation
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as

ρ(Γ) = ρ(0) +
ρ(1)

Γ
+
ρ(2)

Γ2 + ... (5.109)

ρ(0) = |e0
〉 〈e0
| ⊗

(
ν0 |0〉 〈0| + ν1 |1〉 〈1|

)︸                     ︷︷                     ︸
R(0)

. (5.110)

We know immediately that Tr
(
ρ(0)

)
= ν2

1 + ν2
2 < 1. Similarly to before:

Tr(ρ(0)ρ(1)) ∝ ν0 〈0|m
(1)
|0〉 + ν1 〈1|m

(1)
|1〉 . (5.111)

For Tr((ρ(0))2) − Tr(ρ(Γ)2) = O( 1
Γ

2 ), these two elements have to vanish.

Using the explicit ρ(0) for N = 4,Φ = 0,∆ = 2π
3 and the explicit inverse dissipator, we can

solve for higher order density matrices and corresponding secular conditions. At each order, a
general bulk matrix M(n) is added. The matrix m(1) represented in the eigenbasis of h00 can be
completely determined via secular conditions at first and second order:

m(1) =


0 0 3i

34 0
0 0 0 0
− 3i

34 0 0 0
0 0 0 0

 (5.112)

Note that, here, this representation is written in the basis of eigenvectors of h00. The order of
the eigenvectors is such that the third and fourth column/row lie in the degenerate subspace of
eigenvalue 0.

The off-diagonal elements m(1)
αβ of this result can be verified by the analytical expression

(4.58). Furthermore, equations for m(1)
0α and m(1)

1α with α > 1 can be obtained using the explicit
form of the states |0〉 , |1〉

m(1)
0α =

ν0

2
−i

λ0 − λα

〈
0
∣∣∣ h10

∣∣∣α〉 (5.113)

m(1)
1α =

−ν0

2
−i

λ1 − λα

〈
1
∣∣∣ h10

∣∣∣α〉 . (5.114)

Using the secular conditions at second and third order, we can obtain the matrix m(2) in the

75



Chapter 5 Results

same manner:

m(2) =


36
85 0 − 99

170 0
0 18

17 0 0
− 99

170 0 −1782
1445 0

0 0 0 − 72
289 .

 (5.115)

Following the same procedure, the auxiliary matrices for N = 5,Φ = 0,∆ = π
4 can be

obtained and are given in Appendix C.2. Unfortunately, the elements m(2)
01 and m(2)

10 could not
be determined in this case. Based on the two analytically obtained matrices m(1) for N = 4, 5,
where the elements of (5.111) vanish, we claim that the corrections for finite Γ scale like ∼ 1

Γ
2 .

Further evidence has to be collected to support this claim.

5.3 Time evolution: Relaxation Towards Spin Helix State

In the previous sections, we focused on the non-equilibrium steady states and used the results
of stationary perturbation theory to further understand the numerics. This section focuses on
the time evolution and compares it to the prediction gained from time dependent perturbation
theory.

We show data on the numerical time evolution for a system of N = 4 spins. The dissipation
with strength Γ targets boundary spins θL = θR = π

2 , φL = 0, φR = π
3 . Furthermore, the anisotropy

is set to ∆ = cos π
9 such that the non-equilibrium steady state of this situation is a spin helix state

with winding m = 0. Initially, we prepare the chain in a pure state

ρ(0) =
1
2
|↑↓↓↑ + ↑↑↑↑〉 〈↑↓↓↑ + ↑↑↑↑| . (5.116)

5.3.1 Identification of Time Scales

In order to compare the time evolution to the predicted behavior in Section 4.1.4, we projected
the reduced density matrix at each time step onto the eigenbasis of the dissipation-projected
Hamiltonian h00. As defined in (4.76), the diagonal elements of the reduced density matrix
in that basis are equal to the weights να which are governed via the stochastic matrix F

(see Equation (4.78)). We solved the four differential equations for this particular case with
Mathematica. Here, all numbers are rounded to three decimal places and a scaling factor ξ for
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the time is introduced

ν0(ξt)→− 0.462e−5.440ξt + 0.298e−4.540ξt + 0.221e−3.310ξt (5.117)

ν1(ξt)→0.183e−5.440ξt + 0.087e−4.540ξt + 0.049e−3.310ξt (5.118)

ν2(ξt)→0.123e−5.440ξt
− 0.802e−4.540ξt + 0.929e−3.310ξt (5.119)

ν3(ξt)→1.000 + 0.157e−5.440ξt + 0.417e−4.540ξt
− 1.200e−3.310ξt. (5.120)

We fitted the obtained formula for the occupations to the data (see Figure 5.9) and determined
the scaling factor ξ = 1

1000 = 1
Γ

with a maximal standard deviation of ≈ 10−8. In Section 4.1.4,
we, thus, called tslow = t

Γ
.
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Figure 5.9: Comparison of analytics and numerics for the time evolution of (a) diagonal elements and (b)
the off-diagonal element ρ12 of the density matrix of an initial state (5.116) for dissipation characterized
by Γ = 1000, θL = θR = π

2 , φL = 0, φR = π
3 and anisotropy ∆ = cos π

9 . The non-equilibrium steady state
is expected to be a pure spin helix state with winding m = 0. For the off-diagonal element, time was
mapped onto a phase angle and the plot shows relatively small times up to t = 100.

In Figure 5.9, we look at the off-diagonal element 〈1| ρ(t) |2〉 of the reduced density matrix
projected onto the eigenbasis of h00 in a representation for which time is mapped onto a phase.
In Equation (4.75), we did not account for any decay, hence, the predicted element oscillates
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with a constant frequency, while the numerically obtained element clearly decays. Note that the
time in this figure only goes up to t = 100. Already for times t = 1000, we observe that the real
and imaginary parts of 〈1| ρ(t) |2〉 have decayed to values ≈ 10−4.

Up to here we have recovered the time scale, at which the stochastic process dominates, and
the time scale, at which unitary dynamics is observed. We want to go further and see if for small
times t ∼ 1

Γ
, the system relaxes to the dissipation-free subspace. Let us have a look on entropy

and the winding weights.

In Figure 5.10, we see, indeed, that the initial entropy is zero, as well as the entropy in the
long time limit. Furthermore, we observe that the entropy rises once at a time t ≈ 7 · 10−4

before it relaxes to almost zero. The entropy reaches a maximum of S VNE ≈ 1, 29 at t ≈ 52 and
decreases in the long time limit to zero as we approach the pure helix state.
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Figure 5.10: Winding weights and entropy for the time evolution of an initial state (5.116) for dissipation
characterized by Γ = 1000, θL = θR = π

2 , φL = 0, φR = π
3 and anisotropy ∆ = cos π

9 . The non-equilibrium
steady state is expected to be a spin helix state with winding m = 0.

Interesting behavior can be seen in the current: At initial times, it stays constant until it starts
to oscillate between jz

min ≈ −0.75 and jz
max ≈ 0.75, then, the amplitude of these oscillations

decays and eventually the current settles to the predicted (cp. 3.2) jz
SHS = sin π

9 ≈ 0.342.

Figure 5.10 shows the winding weights over the course of time evolution. It seems strange
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Figure 5.11: Density profiles for the short time scale of the time evolution of an initial state (5.116) for
dissipation characterized by Γ = 1000, θL = θR = π

2 , φL = 0, φR = π
3 and anisotropy ∆ = cos π

9 . The
non-equilibrium steady state is expected to be a spin helix state with winding m = 0

that all the weights start at zero for the initial state. However, looking at the initial state (5.116)
and the definition of the weights in Equation (3.26), we realize that, initially, the boundary
spins point up, thus, have zero components in xy-plane and, similarly, the bulk spins are in a
superposition of up and down with zero components in xy-plane. We conclude that

〈
σ+〉 is zero

for all spins and so are the weights. This changes within t ≈ 10−4, where all the weights start
having equal value. On the intermediate time scale, decaying oscillations are visible and the
expected relaxation towards the spin helix states with winding m = 0 can be observed for long
times.

The kinks at very short times of the order t ∼ 1
Γ

strongly indicate the instantaneous relaxation
towards the decoherence-free subspace. We can confirm this with Figures 5.11 and 5.12, where
we plotted the density profile of all four spins for small times t ∈ [0, 0.01] and for long times
t ∈ [0, 10000]. Indeed, the first and last spin get changed from the initial polarization in Z-
direction towards the targeted directions. The bulk spins rarely move during these initial times.
On the long run, the boundary spins are basically frozen into the dissipatively targeted direction
and the bulk spins show oscillatory behavior in an intermediate time range, which decays until
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all spins reach the spin helix state configuration.
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Figure 5.12: Density profiles for the long time scale of the time evolution of an initial state (5.116) for
dissipation characterized by Γ = 1000, θL = θR = π

2 , φL = 0, φR = π
3 and anisotropy ∆ = cos π

9 . The
non-equilibrium steady state is expected to be a spin helix state with winding m = 0

5.3.2 Validity of Stochastic Prediction for Finite Γ

The perturbation theory was performed for the strong coupling limit, so are the derived formula
for the weights να. In the following, we want to discuss qualitatively for which sizes of Γ

the results remain valid. For that we ran the same time evolution as described above, but for
Γ = 1, 10, 50. In Figure 5.13 the three situations are plotted and compared to the solutions
(5.117) to (5.120) with ξ = 1

Γ
.

For Γ = 50 the prediction of the strong coupling perturbation theory coincides well with
the numerics. The smaller Γ gets, the more fluctuations can be observed in the time evolution.
Physically, the boundary spins are not fixed in the targeted direction, but rather fluctuate around
it. The analytic solution does not describe this behavior, however, the prediction for the long
time limit seems to hold.

In this section, we compared the predictions for the dynamics made in the strong coupling
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perturbation theory with a numerical case study for N = 4. We could demonstrate that all the
three described processes occur. The stochastic time evolution discovered for strong dissipation,
on long time scales, agrees well with the numerics for finite Γ = 50, however, doesn’t describe
the details for smaller Γ.

0 20 40 60 80 100

time t

0.0

0.2

0.4

0.6

0.8

1.0

ρ
ii

Γ = 50

0 2 4 6 8 10

Γ = 10

0 2 4 6 8 10

Γ = 1

ρnumerics11

ρnumerics22

ρnumerics33

ρnumerics44

ρFmatrix11

ρFmatrix22

ρFmatrix33

ρFmatrix44

Figure 5.13: Comparison of analytic stochastic time evolution of the occupation ρii to the numerics for
finite dissipation strengths Γ = 50, 10, 1 for N = 4 spins.
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CHAPTER 6

Conclusion

The XXZ model is one of the few physical models, that due to its reduced complexity, has
attracted immense theoretical interest over the past. Furthermore, it is experimentally realizable
and thus testable. In this thesis, we studied a boundary-driven version of the XXZ model,
pursuing two aims: First, to investigate the surprising failure of the generation of pure states
with helical structure, which were theoretically expected from the for certain strong dissipation
and a fine-tuned Hamiltonian. Second, to better understand the fundamental physics inherent to
dissipative systems and described by the Lindblad formalism.

With the aim of answering these two research questions, we made substantial progress in
the development of a thorough description of the strong coupling limit via stationary and time-
dependent perturbation theory. We found that for times of the order of the dissipation strength,
one can effectively describe the dynamics by a classical Markov process (Chapter 4). Making
use of this stochastic process and its formalism, we were able to understand and proof the
generation of an entangled non-equilibrium steady state consisting of two projectors. These
occur, precisely when Lindblad operators polarize the boundary spins of the chain into a parallel
configuration in Zeno limit, while the XXZ Hamiltonian takes specified values for the anisotropy
(Chapter 5).

In a first step, we laid the foundations for the description of open quantum systems by the
Lindblad master equation, for the XXZ model and the corresponding boundary-driven XXZ
chain in Chapter 2. We mainly used the exact diagonalization (Chapter 3) to obtain the non-
equilibrium steady state or the dynamics of small systems of length N ≤ 7. It is important to
highlight that for our particular model a unique steady state exists (Section 2.3.3) and that the
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spectrum of the Liouvillian in the strong coupling limit is structured in bands, whose lowest
lying band can be associated with the dissipation-projected Hamiltonian (Section 3.1.4).

Chapter 4 introduced the theoretical framework that we used to treat the model with a
particular focus on the stationary problem. To solve the perturbative recurrence equation for
the strong coupling limit, we have to ensure invertibility of the dissipator at each order, which,
for our particular model, can be derived exactly and leads to a condition that we called secular
condition (Section 4.1.1). In this thesis, we used a general ansatz, which assumes a pure state at
the boundaries targeted by the strong dissipation and an arbitrary mixture of states in the bulk
of the XXZ chain. Employing the recurrence relation and imposing the secular condition, we
derived at 0th order, that these bulk states have to be eigenstates of the dissipation-projected
Hamiltonian. Furthermore, at 1st order, we found that the weights of these states are determined
by a stochastic matrix and the resulting rate equations (Sections 4.1.2 and 4.1.3). Based on
these findings, we made a guess for the dynamics and confirmed via more formal Dyson
expansion in a time-dependent perturbation theory that for strong dissipation the system enters
the decoherence-free subspace very fast (t ∼ 1

Γ
), followed by an intermediate unitary evolution

(t ∼ 1), which eventually decays and gets dominated by a stochastic process (t ∼ Γ) (Sections 4.2
and 4.1.4).

The derivation of these technical results was closely intertwined with the mostly numerical
results presented in Chapter 5. In an extensive study of the large parameter space of this model,
we could first recover the well-understood appearance of pure non-equilibrium steady states
with helix structure, discuss its topological nature and, most importantly, interpret the particular
behavior appearing for certain parameters (Section 5.1.2). The Sections 5.1.1 illustrates the
type of analysis that was performed. Restricting ourselves to the Zeno limit, we found that,
for anisotropy ∆ = 0 always a totally mixed steady state is generated. In contrast, the steady
state for ∆ = −1, 1 converges to a helical pure state with antiferromagnetic or ferromagnetic
alignment of the spins. Whenever the boundary polarization and the anisotropy are chosen such
that one or more spins are aligned to the same axis no such helical states are generated and the
non-equilibrium steady state is of finite rank.

The main result of this thesis (Section 5.2) is the confirmation of the hypothesis that targeting
(anti)parallel boundary spins via dissipation in Zeno limit and setting specific anisotropies
leads to the generation of non-equilibrium steady states of rank 2 for chains of lengths up to
N = 13. Using perturbation theory, we derived a set of conditions, which are formally proven in
a theorem, and validated numerically for these small systems. Furthermore, as showed in the last
Section 5.3 of the results, we could confirm the results of the time-dependent perturbation theory
via numerical results of time evolutions. In this thesis, we made use of the rather fundamental
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exact diagonalization which set natural restrictions on the system sizes one can study. This
was helpful in the sense, that we could focus on the microscopic details and test the behavior
of sensible observables. This knowledge could be significantly expanded by more elaborate
techniques. In the realm of exact diagonalization one could go further by exploiting symmetries.
To confirm the predicted rank 2 state for larger systems, matrix product state algorithms seem to
be favorable. Furthermore, given the underlying stochastic process in our problem, it would
be exciting to investigate how purely stochastic Monte-Carlo methods can be used to predict
steady states.

We have seen indications for particular properties of the XXZ model or more specific the
dissipation-projected Hamiltonian at anisotropies related to roots of unity. The XXZ chain
with boundary fields has been solved via Bethe Ansatz [31], even at these root of unity values
solutions were obtained [43]. It would be interesting to study the integrability of our model in
more detail and discuss the influence of integrability on the systems properties (e.g. transport
properties [44]).

The broader field of open quantum systems is evolving at a fast pace and a thorough literature
study would be necessary to see whether our results can be generalized onto other models. For
example there is a notion of a pointer basis, whose off-diagonal elements decay in the long-time
limit. The diagonal elements are determined by rate equations, similar to our findings. Yet,
how to obtain this pointer basis for different models is not clear and remains to be studied.
Another approach for the description of the relaxation dynamics is the adiabatic elimination.
The dissipation drives the system into the decoherence-free subspace on a fast time scale, which
can be adiabatically eliminated [45–47]. The system then evolves via an effective Lindblad
equation, which takes into account second order processes These are not included in our
stochastic equations. It would be necessary to compare these results in detail in order to see if
the more formal and technical discussion of the perturbation (Chapter 4) could be generalizable
to other models in the strong coupling limit and help to advance the understanding of dissipative
generation of non-equilibrium steady states.

One example of a well-controlled dissipative generation of an entangled non-equilibrium
steady state was presented in this thesis. Once this model can be realized in experiments [11,
12], a strongly dissipative system could be paradoxically used to generate entangled states in
robust fashion [18], which, in turn, could be of use for quantum information purposes.
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APPENDIX A

Code

# This code was developed using the following versions:

#>>> import sys

#>>> print(sys.version)

#3.6.1 |Anaconda 4.4.0 (64-bit)| (default, May 11 2017, 13:09:58)

#[GCC 4.4.7 20120313 (Red Hat 4.4.7-1)]

#>>> import numpy

#>>> numpy.version.version

#’1.12.1’

#>>> import scipy

#>>> scipy.__version__

#’0.19.0’

# It was tested to be compatible with earlier versions, as on the used

Cluster in the AG Kollath at HISKP.

import numpy as np

import scipy.linalg

import scipy.optimize

# In this class, we define the operators using the usual Z-eigenbasis. It

takes the spin chain length N as input.

class HeisenbergBasis(object):
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def __init__(self, number_of_spins):

self.N = number_of_spins

def int2bin(self, integer):

bin_list = []

for x in range(self.N):

temp = integer % 2

integer = integer // 2

bin_list.append(temp)

return bin_list[::-1]

def bin2int(self, bin_list):

integer = 0

temp = bin_list[::-1]

for x in range(self.N):

if temp[x] == 1:

integer += 2 ** x

return integer

# Spin operators

def s_plus(self, spin):

s_plus = np.zeros([2 ** self.N, 2 ** self.N]) + 1j * np.zeros([2

** self.N, 2 ** self.N])

for i in range(2 ** self.N):

for j in range(2 ** self.N):

i_bin = self.int2bin(i)

j_bin = self.int2bin(j)

if i_bin[spin] == 1 and j_bin[spin] == 0:

same_state = True

for k in range(self.N):

if k != spin and i_bin[k] != j_bin[k]:

same_state = False

if same_state:

s_plus[i, j] += 1

return s_plus

def s_minus(self, spin):

s_minus = np.zeros([2 ** self.N, 2 ** self.N]) + 1j * np.zeros([2

** self.N, 2 ** self.N])

for i in range(2 ** self.N):

for j in range(2 ** self.N):

i_bin = self.int2bin(i)

j_bin = self.int2bin(j)
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if i_bin[spin] == 0 and j_bin[spin] == 1:

same_state = True

for k in range(self.N):

if k != spin and i_bin[k] != j_bin[k]:

same_state = False

if same_state:

s_minus[i, j] += 1

return s_minus

# Pauli matrices

def s_x(self, spin):

s_x = 0.5 * (self.s_plus(spin) + self.s_minus(spin))

return s_x

def s_y(self, spin):

s_y = -1j * 0.5 * (self.s_plus(spin) - self.s_minus(spin))

return s_y

def s_z(self, spin):

s_z = np.zeros([2 ** self.N, 2 ** self.N]) + 1j * np.zeros([2 **

self.N, 2 ** self.N])

for i in range(2 ** self.N):

i_bin = self.int2bin(i)

if i_bin[spin] == 1:

s_z[i, i] += 0.5

elif i_bin[spin] == 0:

s_z[i, i] -= 0.5

return s_z

def sigma_x(self, spin):

return self.s_x(spin) * 2

def sigma_y(self, spin): y

return self.s_y(spin) * 2

def sigma_z(self, spin):

return self.s_z(spin) * 2

def hamiltonian_spinop(self, jx, jz): # in terms spin operators

hamilton_matrix = np.zeros([2 ** self.N, 2 ** self.N]) + 1j * np.

zeros([2 ** self.N, 2 ** self.N])

for i in range(self.N - 1):

hamilton_matrix += 1.0 / 2.0 * jx *\
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(np.dot(self.s_plus(i), self.s_minus(i +

1)) +\

np.dot(self.s_minus(i),self.s_plus(i + 1)

)) +\

jz * np.dot(self.s_z(i),self.s_z(i + 1))

return hamilton_matrix

def hamiltonian_pauliop(self, jx, jz): # in terms of Pauli matrices

hamilton_matrix = np.zeros([2 ** self.N, 2 ** self.N]) + 1j * np.

zeros([2 ** self.N, 2 ** self.N])

for i in range(self.N - 1):

hamilton_matrix += 2 * jx * (

np.dot(self.s_plus(i), self.s_minus(i + 1)) +\

np.dot(self.s_minus(i),self.s_plus(i + 1))) + jz *\

np.dot(self.sigma_z(i),self.sigma_z(i + 1))

return hamilton_matrix

def initial_state(self, bin_list):

initial_state = np.zeros([2 ** self.N, 1]) + 1j * np.zeros([2 **

self.N, 1])

temp = self.bin2int(bin_list)

initial_state[temp] = 1

return initial_state

# Lindblad operator as defined by Slava

def lindblad_op(self, spin, lamda, theta, phi):

operator = -np.sin(theta) * self.sigma_z(spin) + \

(1 + np.cos(theta)) * np.exp(-1j * phi) * self.s_plus(

spin) - \

(1 - np.cos(theta)) * np.exp(1j * phi) * self.s_minus(

spin)

operator_lamda = lamda * np.identity(2 ** self.N) + 1/2.0 *

operator

return operator_lamda

def fourier_k(self, spin, dens_mat): # spin = spin site number

return measurement(2 * self.s_plus(spin), dens_mat)

def fourier_n(self, m, phi, dens_mat):

temp = 0

for i in range(self.N - 1): # effectively to N-2 = M-1
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temp += self.fourier_k(i, dens_mat) * np.exp(

-1j * ((phi + 2 * np.pi * m) / (self.N - 1)) * i)

return 1.0 / (self.N - 1) * temp

def spin_current_operator(self, const, site1, site2):

spin_current = 2 * 1j * const * (

np.dot(self.s_plus(site1), self.s_minus(site2)) - np.dot(self

.s_minus(site1), self.s_plus(site2)))

return spin_current

# Diagonalization

def eigensystem(matrix):

eig_val, eig_vec = np.linalg.eig(matrix)

idx = eig_val.argsort()[::1]

eigen_values = eig_val[idx]

eigen_vectors = eig_vec[:, idx]

return eigen_values , eigen_vectors

# Diagonalization for hermitian matrices

def eigensystem_herm(matrix):

eig_val, eig_vec = scipy.linalg.eigh(matrix)

idx = eig_val.argsort()[::1]

eigen_values = eig_val[idx]

eigen_vectors = eig_vec[:, idx]

return eigen_values , eigen_vectors

def time_evolve(initial_state , eigen_values , eigen_vectors , time):

if initial_state.shape[0] == initial_state.shape[1]: # case for a

density matrix

eig_diag = np.diag(np.exp(time * eigen_values))

state_t = np.dot(np.dot(eigen_vectors , \

np.dot(eig_diag , np.linalg.inv(

eigen_vectors))), vectorize(

initial_state))

else: # case for a ket

eig_diag = np.diag(np.exp(- 1j * time * eigen_values))

state_t = np.dot(np.dot(eigen_vectors , \

np.dot(eig_diag ,np.transpose(np.conjugate

(eigen_vectors)))), initial_state)

return state_t
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def density_matrix(state):

dens_mat = np.dot(state, np.transpose(np.conjugate(state)))

return dens_mat

def normalize_densmat(dens_mat):

return dens_mat / np.trace(dens_mat)

def pureness(dens_mat):

return 1 - np.trace(np.dot(dens_mat, dens_mat))

def neumann_entropy(dens_mat):

eigen_values , eigen_vectors = np.linalg.eig(dens_mat)

temp = 0

for i in range(eigen_values.shape[0]):

temp += -np.dot(eigen_values[i], np.log2(eigen_values[i]))

return temp

def measurement(operator , state): # state can be ket or density matrix

if state.shape[0] == state.shape[1]: # case for a density matrix

exp_val = np.trace(np.dot(operator, state))

else: # case for a ket

exp_val = np.asscalar(np.dot(np.transpose(np.conjugate(state)),

np.dot(operator , state)))

return exp_val

def vectorize(matrix):

vector = np.reshape(matrix, (matrix.shape[1] ** 2, 1), order=’F’)

return vector

def reverse_vectorize(vector):

matrix = np.reshape(vector, (int(np.sqrt(vector.shape[0])), int(np.

sqrt(vector.shape[0]))), order=’F’)

return matrix
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def partial_trace_1(matrix, dim): # tracing out the first subsystem (

square matrices of dimension dim)

new_dim = int(matrix.shape[0] / dim)

temp = np.zeros([new_dim, new_dim]) + 1j * np.zeros([new_dim, new_dim

])

for i in range(dim):

temp += matrix[i * new_dim:(i + 1) * new_dim, i * new_dim:(i + 1)

* new_dim]

return temp

def partial_trace_N(matrix, dim): # tracing out the last subsystem (

square matrices of dimension dim)

new_dim = int(matrix.shape[0] / dim)

temp = np.zeros([new_dim, new_dim]) + 1j * np.zeros([new_dim, new_dim

])

for i in range(new_dim):

for j in range(new_dim):

for k in range(dim):

temp[i][j] += matrix[i * dim + k][j * dim + k]

return temp

def unitary_lindblad(hamiltonian): # vectorized unitary part

unit_lind = -1j * (np.mat(np.kron(np.identity(hamiltonian.shape[1]),

hamiltonian)) - np.mat(

np.kron(np.transpose(hamiltonian), np.identity(hamiltonian.shape

[1]))))

return unit_lind

# In the following we vectorize the dissipator

def both_multi(operator):

operator_conj_trans = np.transpose(np.transpose(np.conjugate(operator

))) # create the conjugate transpose

result = np.kron(operator_conj_trans , operator) # do the tensor

product LtxL

return result

def left_multi(operator):

operator1 = np.dot(np.transpose(np.conjugate(operator)), operator) #

dot Lt and L together
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result = np.kron(np.identity(operator.shape[1]), operator1) # do the

tensor product 1xLtL

return result

def right_multi(operator):

operator1 = np.dot(np.transpose(np.conjugate(operator)), operator) #

dot Lt and L together

result = np.kron(np.transpose(operator1), np.identity(operator.shape

[1])) # do the tensor product LtLx1

return result

# Generates the dissipator. Takes the nested list lindblad_list as

argument:

# arguments = [[lamda_1, theta_L, phi_L], [lamda_2, theta_R, phi_R]]

# gammas = [Gamma, Gamma]

# lindblad_list = [sites, operators , arguments , gammas]

def dissipative_lindblad(lindblad_list):

diss_lind = 0

for i in range(len(lindblad_list[0])):

temp1 = both_multi(lindblad_list[1][i](lindblad_list[0][i],

lindblad_list[2][i][0], lindblad_list[2][i][1],

lindblad_list[2][i][2]))

temp2 = left_multi(lindblad_list[1][i](lindblad_list[0][i],

lindblad_list[2][i][0], lindblad_list[2][i][1],

lindblad_list[2][i][2]))

temp3 = right_multi(lindblad_list[1][i](lindblad_list[0][i],

lindblad_list[2][i][0], lindblad_list[2][i][1],

lindblad_list[2][i][2]))

diss_lind += lindblad_list[3][i] * temp1 - lindblad_list[3][i] *

0.5 * (temp2 + temp3)

return diss_lind

def correlator(site1, site2, operator_a , operator_b , dens_mat):

corr = measurement(np.dot(operator_a(site1), operator_b(site2)),

dens_mat) - measurement(

operator_a(site1), dens_mat) * measurement(operator_b(site2),

dens_mat)

return corr
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# Code for the F matrix construction. We just use analytical expressions.

analyticBasis = HeisenbergBasis(1)

X = np.flipud(np.fliplr(analyticBasis.sigma_x(0)))

Y = np.flipud(np.fliplr(analyticBasis.sigma_y(0)))

Z = np.flipud(np.fliplr(analyticBasis.sigma_z(0)))

U = np.identity(2)

SP = np.flipud(np.fliplr(analyticBasis.s_plus(0)))

SM = np.flipud(np.fliplr(analyticBasis.s_minus(0)))

def MiddleSite(mat1, site, numsites0):

return np.kron(np.identity(2 ** (site - 1)), np.kron(mat1, np.

identity(2 ** (numsites0 - site))))

def XXZ(N, Delta):

hXXZ = (np.kron(X, X) + np.kron(Y, Y)) + Delta * (np.kron(Z, Z) - np.

kron(U, U));

temp = np.zeros([2 ** N, 2 ** N]) + 1j * np.zeros([2 ** N, 2 ** N]);

for site in range(1, N):

temp += MiddleSite(hXXZ, site, N - 1)

return temp

def vec0(theta, phi):

vec0 = np.zeros([2, 1]) + 1j * np.zeros([2, 1])

vec0[0] = np.cos(theta / 2.0) * np.exp(-1j * phi / 2.0)

vec0[1] = np.sin(theta / 2.0) * np.exp(1j * phi / 2.0)

return vec0

def vec0perp(theta, phi):

vec0perp = np.zeros([2, 1]) + 1j * np.zeros([2, 1])

vec0perp[0] = np.sin(theta / 2.0) * np.exp(-1j * phi / 2.0) # np.

random.rand()

vec0perp[1] = -np.cos(theta / 2.0) * np.exp(1j * phi / 2.0) # np.

random.rand()

return vec0perp

def projector(N, vec_L, vec_R):
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dens_L = density_matrix(vec_L)

dens_R = density_matrix(vec_R)

projector = np.kron(dens_L, np.kron(np.identity(2 ** (N - 2)), dens_R

))

return projector

def h00direct(N, Delta, theta_L, phi_L, theta_R, phi_R):

h00 = partial_trace_1(

partial_trace_N(np.dot(XXZ(N, Delta), projector(N, vec0(theta_L,

phi_L), vec0(theta_R, phi_R))), 2), 2)

return h00

def C00(theta, phi, Delta):

return np.sin(theta) * (np.exp(-1j * phi) * SP + np.exp(1j * phi) *

SM) + Delta * (np.cos(theta) * Z - U)

def h00analytical(N, Delta, theta_L, phi_L, theta_R, phi_R):

res = XXZ(N - 2, Delta) + np.kron(C00(theta_L, phi_L, Delta), np.

identity(2 ** (N - 3))) + np.kron(

np.identity(2 ** (N - 3)), C00(theta_R, phi_R, Delta))

return res

# Perturbation to lift degeneracies of h00

def h00perp(N, Delta, theta_L, phi_L, theta_R, phi_R, epsilon1, epsilon2)

:

temp1 = np.kron((1 / 2.0) * (U + (1 / np.sqrt(2)) * (Y + Z)),

np.kron(np.identity(2 ** (N - 2)), (1 / 2.0) * (U + X

)))

h00perp = partial_trace_1(partial_trace_N(np.dot(XXZ(N, Delta), temp1

), 2), 2)

return h00perp

# def h00perp(N, Delta, theta_L, phi_L, theta_R, phi_R, epsilon1,

epsilon2):

# temp1 = partial_trace_1(partial_trace_N(np.dot(XXZ(N,Delta),

projector(N,vec0perp(theta_L,phi_L),vec0(theta_R,phi_R))),2),2)

# temp2 = partial_trace_1(partial_trace_N(np.dot(XXZ(N,Delta),
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projector(N,vec0(theta_L,phi_L),vec0perp(theta_R,phi_R))),2),2)

# h00perp = epsilon1*temp1 + epsilon2*temp2

# return h00perp

def uniq(lst):

last = object()

for item in lst:

if item == last:

continue

yield item

last = item

def sort_and_deduplicate(lst):

return list(uniq(sorted(lst, reverse=False)))

def GetDegenerateSubspaces(eiv, precision_in_digits):

roundedEiv = [round(element, precision_in_digits) for element in eiv]

spaces = []

for i in range(len(roundedEiv)):

spaces.append([j for j, x in enumerate(roundedEiv) if x ==

roundedEiv[i]]) # => [1, 3]

relevant_spaces = []

for i in range(len(spaces)):

if len(spaces[i]) > 1:

relevant_spaces.append(spaces[i])

degenerate_spaces = sort_and_deduplicate(relevant_spaces)

return degenerate_spaces , len(degenerate_spaces)

def GetNewCombination(N, ListOfIndices , vec, h00perp, newVec):

dim = len(ListOfIndices)

MatCoeff = np.zeros([dim, dim]) + 1j * np.zeros([dim, dim])

count_i = -1

count_j = -1
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for i in ListOfIndices:

count_i += 1

for j in ListOfIndices:

if count_j < dim - 1:

count_j += 1

else:

count_j += 1 - dim

MatCoeff[count_i, count_j] = np.asscalar(

np.dot(np.transpose(np.conjugate(vec[:, i])), np.dot(

h00perp, vec[:, j])))

# the following lines are needed, if the Matrix is numerically non-

zero, it’s eigenvectors are "arbitrary" and thus

# the new combinations , builded later are non-orthogonal

if np.allclose(MatCoeff , 0, atol=10e-12) == True:

MatCoeff = np.zeros([dim, dim]) + 1j * np.zeros([dim, dim])

newEiv, coeffVec = eigensystem(MatCoeff)

for j in range(dim):

for k in range(dim):

newVec[:, ListOfIndices[j]] += coeffVec[:, j][k] * vec[:,

ListOfIndices[k]] d

return newVec

def flatten_list(ls, flattened_list=[]):

for elem in ls:

if not isinstance(elem, list):

flattened_list.append(elem)

else:

flatten_list(elem, flattened_list)

return flattened_list

def C01(theta, phi, Delta):

return (1 - np.cos(theta)) * np.exp(-1j * phi) * SP - (1 + np.cos(

theta)) * np.exp(1j * phi) * SM + Delta * np.sin(
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theta) * Z

def C01_hc(theta, phi, Delta):

return (1 - np.cos(theta)) * np.exp(1j * phi) * SM - (1 + np.cos(

theta)) * np.exp(-1j * phi) * SP + Delta * np.sin(

theta) * Z

# Here h[k0] is defined in arbitrary basis parametrized by the angle eta

def Makeh01(N, Delta, theta_L, phi_L, theta_R, phi_R, eta):

return np.cos(eta) * np.kron(C01(theta_L, phi_L, Delta), np.identity

(2 ** (N - 3))) - np.sin(eta) * np.kron(

np.identity(2 ** (N - 3)), C01(theta_R, phi_R, Delta))

def Makeh10(N, Delta, theta_L, phi_L, theta_R, phi_R, eta):

return np.transpose(np.conjugate(Makeh01(N, Delta, bound_grad , eta)))

def Makeh02(N, Delta, theta_L, phi_L, theta_R, phi_R, eta):

return np.sin(eta) * np.kron(C01(theta_L, phi_L, Delta), np.identity

(2 ** (N - 3))) + np.cos(eta) * np.kron(

np.identity(2 ** (N - 3)), C01(theta_R, phi_R, Delta))

def Makeh20(N, Delta, theta_L, phi_L, theta_R, phi_R, eta):

return np.transpose(np.conjugate(Makeh02(N, Delta, bound_grad , eta)))

def ProceedSimon(N, Delta, theta_L, phi_L, theta_R, phi_R, epsilon1 ,

epsilon2):

Ham = XXZ(N, Delta)

h00 = h00analytical(N, Delta, theta_L, phi_L, theta_R, phi_R)

hperp = h00perp(N, Delta, theta_L, phi_L, theta_R, phi_R, epsilon1,

epsilon2)

eiv, vec = eigensystem_herm(h00)

dim = eiv.shape[0]
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DegSpaces , NumSpaces = GetDegenerateSubspaces(eiv, 12)

newVec = np.zeros([2 ** (N - 2), 2 ** (N - 2)]) + 1j * np.zeros([2 **

(N - 2), 2 ** (N - 2)])

for i in range(NumSpaces):

newVec = GetNewCombination(N, DegSpaces[i], vec, hperp, newVec)

correctVec = np.copy(vec)

NumFalseVec = len(flatten_list(DegSpaces , []))

for i in range(NumFalseVec):

correctVec[:, flatten_list(DegSpaces , [])[i]] = newVec[:,

flatten_list(DegSpaces , [])[i]]

dim = len(eiv)

for i in range(dim):

correctVec[:, i] = correctVec[:, i] / (np.linalg.norm(correctVec

[:, i]))

# check orthogonality

ortho = np.zeros([dim, dim]) + 1j * np.zeros([dim, dim])

for i in range(dim):

for j in range(dim):

ortho[i, j] = np.dot(np.conjugate(np.transpose(correctVec[:,

i])), correctVec[:, j])

if i != j and np.allclose(ortho[i, j], 0) == False:

print(’Warning! Eigenvectors %i and %i are not orthogonal

’ % (i, j))

print(’Delta’, Delta)

eta = np.pi / 5.0

h = [Makeh01(N, Delta, theta_L, phi_L, theta_R, phi_R, eta), Makeh02(

N, Delta, theta_L, phi_L, theta_R, phi_R, eta)]

def Q(k0):

Q = np.zeros([dim, dim]) + 1j * np.zeros([dim, dim])

for j in range(dim):

for k in range(dim):

Q[k, j] = np.abs(np.asscalar(
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np.dot(np.transpose(np.conjugate(correctVec[:, j])),

np.dot(h[k0], correctVec[:, k])))) ** 2

return Q

Q0 = Q(0) + Q(1)

F = Q0

temp = 0

for i in range(dim):

F[i, i] = 0

for j in range(dim):

temp += F[j, i]

F[i, i] = -temp

temp = 0

# Numerically solve the system of equations F nu = 0

def equations(y):

null_vec = np.zeros(dim)

for i in range(F.shape[0]):

for j in range(F.shape[1]):

null_vec[i] += np.real(F[i, j]) * y[j]

return null_vec

# y = scipy.optimize.fsolve(equations ,(np.random.rand(dim)))

y = scipy.optimize.newton_krylov(equations , (np.random.rand(dim)))

# y = scipy.optimize.broyden2(equations ,(np.random.rand(dim)))

eigvals = y / np.sum(y)

idx = eigvals.argsort()[::-1]

eigen_values = eigvals[idx]

NESS = 0

for i in range(dim):

NESS += eigvals[i] * (np.asmatrix(correctVec[:, i]).T) * np.

conjugate(np.asmatrix(correctVec[:, i]))

return NESS
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APPENDIX B

Details on Perturbative Calculation

B.1 Definitions of Subhamiltonians

Using the basis defined in Equations (4.28) to (4.31) it is straightforward to derive the following
expressions, see [25] for details:

h00
≡ h00(θL, ϕL, θR, ϕR) = H′ + C++(2, θL, ϕL) + C++(N − 1, θR, ϕR), (B.1)

H′ =

N−2∑
j=2

hXXZ
j, j+1(∆), (B.2)

C++(m, θ, ϕ) = trm−1

(
(|ψ(ϕ)〉 〈ψ(ϕ)|)m−1 hXXZ

m−1,m

)
= J(sin θ(eiϕσ−m + e−iϕσ+

m) + ∆σz
m cos θ − ∆I2,3,...,N−1), (B.3)

where hXXZ
j, j+1 are the local energy densities of the XXZ Hamiltonian and σα

m = I2,3,...,m−1 ⊗ σ
α
⊗

Im+1,...,N−1, with 1 ≤ m ≤ N and α = ±, z.

The other sub-hamiltonians hk0 are given by

h10(w) = cosw
(
C+−(2, θL, ϕL) −C+−(N − 1, θR, ϕR)

)
, (B.4)

h20(w) = sinw
(
C+−(2, θL, ϕL) + C+−(N − 1, θR, ϕR)

)
, (B.5)

h30(w) = 0, for N > 2. (B.6)
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where

C+−(m, θ, ϕ) = trm−1

((
|ψ(ϕ)〉 〈ψ⊥(ϕ)|

)
m−1

hXXZ
m−1,m

)
= J

(
2 sin2 θ

2

(
eiϕσ−m

)
− 2 cos2 θ

2

(
e−iϕσ+

m

)
+ ∆σz

m sin θ
)
. (B.7)

B.2 Calculation of the Commutator and the Secular

Condition at First Order

We split [H, ρ(1)] into Hρ(1) and ρ(1)H to make it easier to handle and mulitply out all the terms
which don’t vanish on first sight

Hρ(1) =

H00 +
∑
n,0

(Hn0 + H0n) +
∑
n,0

∑
m,0

Hnm

× (B.8)− i
2

∑
j,0

(
|e j
〉 〈e0
| ⊗ h j0R(0)

− |e0
〉 〈e j
| ⊗ R(0)h0 j

)
+ |e1
〉 〈e0
| ⊗ m(1)

 (B.9)

= −
i
2

∑
m,0

∑
j,0

|e0
〉 〈em
|e j
〉︸ ︷︷ ︸

δm j

〈e0
| ⊗ h0mh j0R(0)

−
i
2

∑
n,0

∑
m,0

∑
j,0

|en
〉 〈em
|e j
〉︸ ︷︷ ︸

δm j

〈e0
| ⊗ hnmh j0R(0)

(B.10)

+
i
2

∑
j,0

|e0
〉 〈e0
|e0
〉︸ ︷︷ ︸

=1

〈e j
| ⊗ h00R(0)h0 j +

i
2

∑
n,0

∑
j,0

|en
〉 〈e0
|e0
〉︸ ︷︷ ︸

=1

〈e j
| ⊗ hn0R(0)h0 j (B.11)

+ |e0
〉 〈e0
| ⊗ h00m(1) +

∑
n,0

|en
〉 〈e0
| ⊗ hn0m(1) (B.12)
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and

−ρ(1)H = −

− i
2

∑
j,0

(
|e j
〉 〈e0
| ⊗ h j0R(0)

− |e0
〉 〈e j
| ⊗ R(0)h0 j

)
+ |e1
〉 〈e0
| ⊗ m(1)

× (B.13)H00 +
∑
n,0

(Hn0 + H0n) +
∑
n,0

∑
m,0

Hnm

 (B.14)

= +
i
2

∑
j,0

|e j
〉 〈e0
| ⊗ h j0R(0)h00 +

i
2

∑
m,0

∑
j,0

|e j
〉 〈e0
|e0
〉︸ ︷︷ ︸

=1

〈em
| ⊗ h j0R(0)h0m (B.15)

−
i
2

∑
n,0

∑
j,0

|e0
〉 〈e j
|en
〉︸︷︷︸

δ jn

〈e0
| ⊗ R(0)h0 jhn0 −

i
2

∑
n,0

∑
m,0

∑
j,0

|e0
〉 〈e j
|en
〉︸︷︷︸

δ jn

〈e j
| ⊗ R(0)h0 jhnm

(B.16)

− |e0
〉 〈e0
| ⊗ m(1)h00 −

∑
m,0

|e0
〉 〈em
| ⊗ m(1)h0m (B.17)

Now we put it together and resolve the Kronecker deltas

[H, ρ(1)] = −
i
2

∑
j,0

|e0
〉 〈e0
| ⊗ h0 jh j0R(0)

−
i
2

∑
n,0

∑
j,0

|en
〉 〈e0
| ⊗ hn jh j0R(0) (B.18)

+
i
2

∑
j,0

|e0
〉 〈e j
| ⊗ h00R(0)h0 j +

i
2

∑
n,0

∑
j,0

|en
〉 〈e j
| ⊗ hn0R(0)h0 j (B.19)

+
i
2

∑
j,0

|e j
〉 〈e0
| ⊗ h j0R(0)h00 +

i
2

∑
m,0

∑
j,0

|e j
〉 〈em
| ⊗ h j0R(0)h0m (B.20)

−
i
2

∑
j,0

|e0
〉 〈e0
| ⊗ R(0)h0 jh j0 −

i
2

∑
m,0

∑
j,0

|e0
〉 〈e j
| ⊗ R(0)h0 jh jm (B.21)

+ |e0
〉 〈e0
| ⊗ [h00,m

(1)] +
∑
n,0

|en
〉 〈e0
| ⊗ hn0m(1)

−
∑
m,0

|e0
〉 〈em
| ⊗ m(1)h0m. (B.22)

and finally take the trace

Tr1,N([H, ρ(0)]) = [h00,m
(1)] −

i
2

∑
j,0

(
−2h j0R(0)h0 j + R(0)h0 jh j0 + h0 jh j0R(0)

)
(B.23)

= [h00,m
(1)] −

i
2

∑
j,0

(
−2h j0R(0)h†j0 + R(0)h†j0h j0 + h†j0h j0R(0)

)
(B.24)

= [h00,m
(1)] + 4i

∑
j,0

Dh j0

[
R(0)

] !
= 0. (B.25)
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where
Dh j0

[
R(0)

]
= h j0R(0)h†j0 −

1
2

{
h†j0h j0,R

(0)
}

(B.26)

B.3 Diagonal Elements of Tr1,N([H, ρ(1)]) = 0

〈γ|Tr1,N([H, ρ(0)]) |γ〉 = 〈γ| [h00,m
(1)] |γ〉 + 4i

∑
j,0

〈γ|Dh j0

[
R(0)

]
|γ〉 (B.27)

where we can use (4.46) namely h00 |γ〉 = λγ |γ〉 and hermiticity of h00 to show that the first term
is equal to zero

〈γ| [h00,m
(1)] |γ〉 = 〈γ| h00m(1)

|γ〉 . 〈γ|m(1)h00 |γ〉 (B.28)

= (λγ − λγ) 〈γ|m
(1)
|γ〉 (B.29)

= 0 (B.30)

We can further calculate the remaining term by inserting R(0) =
∑
α να |α〉 〈α| which leads to

4i
∑
j,0

〈γ|Dh j0

[
R(0)

]
|γ〉 = 4i

∑
j,0

d1−1∑
α=0

να 〈γ|Dh j0
[|α〉 〈α|] |γ〉 (B.31)

= 4i
∑
j,0

d1−1∑
α=0

να

〈γ| h j0 |α〉 〈α| h
†

j0 |γ〉 −
1
2
〈γ| h†j0h j0 |α〉 〈α|γ〉︸︷︷︸

δαγ

−
1
2
〈γ|α〉︸︷︷︸
δγα

〈α| h†j0h j0 |γ〉


(B.32)

= 4i
∑
j,0

d1−1∑
α=0

να

(∣∣∣〈γ| h j0 |α〉
∣∣∣2) − νγ 〈γ| h†j0h j0 |γ〉

 (B.33)
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and we can insert a resolution of unity inside the second term 1 =
∑d1−1
β=0 |β〉 〈β|

4i
∑
j,0

〈γ|Dh j0

[
R(0)

]
|γ〉 = 4i

∑
j,0

d1−1∑
α=0

να

(∣∣∣〈γ| h j0 |α〉
∣∣∣2) − νγ d1−1∑

β=0

〈γ| h†j0 |β〉 〈β| h j0 |γ〉

 (B.34)

= 4i
∑
j,0

d1−1∑
α=0

να

(∣∣∣〈γ| h j0 |α〉
∣∣∣2) − νγ d1−1∑

β=0

(∣∣∣〈β| h j0 |γ〉
∣∣∣2) (B.35)

= 4i
∑
j,0

d1−1∑
α,γ

να

(∣∣∣〈γ| h j0 |α〉
∣∣∣2) − νγ d1−1∑

β,γ

(∣∣∣〈β| h j0 |γ〉
∣∣∣2) (B.36)

where we noticed in the last step, that the term α, β = γ cancel each other.
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C.1 Steady State Density Matrix for N = 5 and Unnormalized Eigenvectors of h00

The precise situation we look at is defined by the parameters: N = 5, γ = π/3, θ = θL = θR = π/2, φL = 0, φR = 4π/3.
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C.2 Auxiliary Matrices N = 5 and Parallel Boundaries
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