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Abstract

We study the influence of a periodic superlattice modulation onto bosonic and fermionic
atoms trapped in an optical lattice. The superlattice modulation is applied along one
direction and injects momentum into the system which strongly affects the nature of
excitations. We study the spectral response within linear response theory, as well as
beyond, by employing a time-dependent density matrix renormalization group study.
We deduce possible experimental probes that are favored by the distinct type of our
perturbation. In the bosonic case, we observe a particularly narrow spectral response
which may serve as an accurate measure when calibrating the lattice depth. In the
fermionic case, we find strong temperature dependence and propose a new scheme to
measure the temperature in the optical lattice. Our proposal is particularly simple
in both, theory and experiment, and extends down to remarkably low temperatures,
notably below the Néel temperature where antiferromagnetic ordering is expected to
occur.
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Introduction

Research in the field of quantum phenomena driven by the interplay of a macroscopic
number of atoms has been on the rise since the realization of Bose-Einstein Conden-
sation [1–3] and quantum degenerate Fermi gases [4] in the late 90s. In particular,
with the realization of effectively strong and tunable interactions, strongly correlated
many-body systems have been in the focus. Strong interactions may be achieved in two
ways. One option is to employ Feshbach resonances [5] which allow to directly tune the
effective scattering length of atoms. The other option is to load ultracold atoms into pe-
riodic optical lattice potentials where the suppression of tunneling leads to an effective
enhancement of interaction [6]. Ultracold atoms in optical lattices constitute a mar-
velous laboratory to tackle effects of strong correlations in quantum systems due to the
high controllability of parameters, interactions and dimensions by laser light [5]. They
have proved to be powerful simulators for the investigation of both, static quantum
phases as well as the dynamic evolution of strongly correlated many-body systems. An
outstanding example is the first experimental study of the superfluid to Mott-insulator
transition of bosonic atoms trapped in an optical lattice [7] in 2002.
From the theory side, ultracold atoms in optical lattices provide a natural realization
of various kinds of Hubbard type models [8] that allow one to study the intriguing
interplay of quantum kinetic processes and local interaction. Hubbard models are well
known from condensed-matter physics where they are typically only rough approxima-
tions, though. In contrast, in cold atomic systems Hubbard models may be realized
in its cleanest form which enables us to simulate its physics and to test its theoreti-
cal predictions in a controlled way. For example, the Mott-insulating phase has been
observed in both, bosonic and fermionic, systems [7, 9, 10]. This has led to the con-
cept of quantum simulation which can be viewed as an implementation of Feynman’s
pioneering ideas for simulating one quantum system by another [11]. Experimentalists
have succeeded in mapping out the Bose-Hubbard phase diagram [12]. But many open
questions remain concerning for example dynamics or disorder [13].
Many-body phases are quite generally characterized by their excitations. They give
insights into the properties of the phase and the underlying physics. For example,
the superfluid to Mott-insulator transition is characterized by the opening of a gap in
the excitation spectrum when entering the Mott-insulating phase. Excitations may be
studied by externally perturbing the system and different approaches have already been
intensively investigated in the early stages of optical lattice experiments, in particu-
lar probing the superfluid to Mott-insulator transition [7, 14]. However, the physics is
much richer and other excitations may occur such as the Higg’s amplitude mode in the
superfluid phase [15,16]. We take this as a starting point, that is we aim at finding out
more about possible excitations in lattice systems by periodic lattice modulation. We
consider a superlattice modulation spectroscopy scheme serving as a probe for both,
bosonic and fermionic, atoms confined to optical lattices. As a particular character-
istic this perturbation injects momentum π in the system which strongly affects the
underlying physics. This contrasts standard lattice shaking setups where momentum
is conserved [14,17].
In Chapter 1 we introduce the physics of ultracold bosons and fermions confined to an
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Introduction

optical lattice and define how we probe the system by superlattice modulation. We
then outline the theoretical methods used throughout this work in Chapter 2.
In Chapter 3 we consider ultracold bosons in a one-dimensional optical lattice. The
ground state phase diagram is well understood [18–20]. However, dynamics are not and
remain an objective of current research. We subject the system to a periodic superlat-
tice modulation and study the nature of excitations, both numerically and analytically.
We find interesting dynamics, both deep in the Mott insulating regime as well as close
to the phase transition to the superfluid state, due to the particular properties of the
superlattice modulation. For instance, the spectral response as usual exhibits a peak
around the on-site interaction strength which corresponds to the energy needed to cre-
ate an excitation. However, the width is strongly reduced compared to standard lattice
shaking experiments [14]. The spectral response is sometimes used for lattice depth cal-
ibration [21] such that this setup potentially serves as an improved calibration scheme
making it attractive for experimentalists as the implementation remains simple.
The low-temperature phase diagram of the fermionic Hubbard model is considerably
richer than its bosonic counterpart due to the additional spin degree of freedom. Many
details remain unknown since computational studies of fermionic systems are severely
limited. The concept of quantum simulation is expected to provide answers to vari-
ous open questions such as frustrated magnetism and d-wave superfluidity [22]. There
has been progress in fermionic experiments and the strongly correlated regime of the
repulsive Fermi-Hubbard model is indeed accessible in experiment. The observation
of a Mott-insulating state [9, 10] was possible not long after the first Fermi gas in a
lattice was prepared [23]. However, experiments still encounter difficulties. One of the
challenges is a further reduction in temperature to probe regimes of interesting physics.
Additionally, the possibilities to probe these systems in order to accurately character-
ize them are still very limited. In particular, experimentalists lack reliable methods to
adequately measure the temperature of a Fermi gas confined to an optical lattice which
is a key ingredient in experimentally determining the Fermi-Hubbard phase diagram.
Consequently, the development of new thermometry schemes constitutes a tantalizing
challenge. In Chapter 4 we propose a scheme to directly measure the temperature of
fermionic atoms confined to an optical lattice by superlattice modulation and we spec-
ify the experimental implementation in great detail. It is temptingly simple, in both
theory and experiment, and works down to very low temperatures of about 10% of the
hopping strength that have not been observed in experiment so far.
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Chapter 1.

Physics of cold atomic gases in optical
lattices

Ultracold atoms in a periodic trapping potential constitute a physical system which is
closely related to systems in condensed matter physics. The basic physical mechanism
to create a periodic lattice potential for neutral atoms [6] is the optical dipole interaction
between the atoms and a light field [24, 25]. The light-induced dipole moment of the
atom interacts with the light field which causes a shift of the energy levels of the
atom. This is called the ac-Stark shift. If the light field is sufficiently far detuned
from the atomic resonance, the number of optical excitations is low such that the
dissipative radiation force due to photon scattering is negligible compared to the optical
dipole force. The energy shift can then be used to create a conservative trapping
potential for neutral atoms which is proportional to the light intensity. Thus, spatially
modulated light fields lead to space-dependent potentials, for example optical lattices.
One possibility to create such a lattice potential in three dimensions is to orthogonally
superimpose three retro-reflected laser beams with polarizations between the three
standing waves that are mutually orthogonal [25]. In this simple three-dimensional
case the optical lattice potential is of the form

V0(~x) = V0

3∑
d=1

sin2(kdxd), (1.1)

with wave vector kd = 2π/λd, where λd is the laser wave length in each direction
d = x, y, z.

1.1. Bosonic atoms in optical lattices

An ultracold gas of bosonic atoms in an optical lattice can be described by a Bose-
Hubbard model in a wide range of parameters,

HBH = −J
∑
〈j,j′〉

(a†j,σaj′,σ + h.c.) +
U

2

∑
j

nj(nj − 1), (1.2)

where aj and a†j represent the bosonic annihilation and creation operators at site j,

nj = a†jaj is the local particle number operator and 〈j, j′〉 denotes nearest-neighbors.
The hopping amplitude J , which is the tunneling matrix element, characterizes the
kinetic part and the on-site interaction strength is given by U . The system parameters
J and U are controlled by laser light. In tight-binding theory one can deduce the
Bose-Hubbard model starting from the Hamiltonian operator for bosonic atoms in an
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Chapter 1. Physics of cold atomic gases in optical lattices

external trapping potential [8]

H =

∫
d3x Ψ†(~x)

(
− ~2

2m
∇2 + V0(~x) + VT (~x)

)
Ψ(~x) (1.3)

+
1

2

4πas~2

m

∫
d3xΨ†(~x)Ψ†(~x)Ψ(~x)Ψ(~x), (1.4)

where Ψ(~x) is a bosonic field operator, V0(~x) is the optical lattice potential and VT (~x)
is an additional trapping potential. As mostly done, we assume that the compli-
cated inter-atomic potential can be replaced by an effective contact interaction U(~x) =
4π~2as/m · δ(~x), where as is the s-wave scattering length and m is the mass of the
atoms. This is valid for a wide range of situations in dilute atomic gases as long as no
longer-range interactions contribute such as for example the dipole-dipole interaction
in dipolar gases [5].
We consider a general periodic potential V0(~x) = V0(~x + ~xi) where ~xi is the position
of the ith lattice site. According to Bloch’s theorem, single-particle eigenstates are de-
scribed by Bloch waves Φn

~k
(~x) of discrete band index n and quasimomentum ~k within

the first Brillouin zone of the reciprocal lattice [26]. We can construct an alternative
single-particle basis from a combination of Bloch functions. The so-called Wannier
functions are obtained by summing over all quasimomenta ~k in the first Brillouin zone,

wn(~x− ~xi) =
1√
N
·
∑
~k

e−i
~k~xiΦn

~k
(~x), (1.5)

where N is a normalization constant. The Wannier functions are typically well localized
on individual lattice sites i.
The strength of the lattice potential V0 is conveniently measured in units of the recoil
energy Er = (~k)2/2m where k is the laser wavelength. For deep lattices V0 � Er each
well can be approximated by a harmonic trapping potential with energy levels ~ω0 =
2Er

√
V0/Er � Er. Each well supports a number of vibrational levels. One assumes

the energies involved in the system dynamics, i.e. recoil energy Er, on-site interaction
strength U and temperature T , to be small compared to excitation energies to the
second band at a distance of ~ω0 from the lowest band. Atoms are then restricted to the
lowest vibrational level at each site, remaining in the lowest Bloch band. One obtains
the Bose-Hubbard Hamiltonian by expanding the field operators in the Hamiltonian
operator in the Wannier basis

Ψ(~x) =
∑
i

aiw(~x− ~xi), (1.6)

where we drop the band index n because only the lowest vibrational level is considered
as justified above. The kinetic energy is frozen except for a small tunneling amplitude
to neighboring sites which leads to a finite width of the lowest Bloch band. The strength
of the on-site interaction is given by

U =
4π~2as
m

∫
d3x|w(~x)|4. (1.7)

The tunneling matrix element between neighboring lattice sites i and j is given by

J =

∫
d3xw∗(~x− ~xi)

[
− ~2

2m
∇2 + V0(~x)

]
w(~x− ~xj). (1.8)
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1.1. Bosonic atoms in optical lattices

The nearest-neighbor repulsion and the next-nearest-neighbor tunneling amplitude are
typically two orders of magnitude smaller and can be neglected [8]. For the cubic
lattice given by (1.1) and in the limit V0 � Er, the hopping amplitude J and the
on-site repulsion U can be explicitly calculated [5, 27],

J(V0) =
4√
π
Er

(
V0

Er

)3/4

e−2
√
V0/ER , (1.9)

U(V0) =

√
8

π
kasEr

(
V0

Er

)3/4

, (1.10)

where U is calculated for a Gaussian ground state in the local oscillator approximation.
The kinetic energy drops exponentially whereas the interaction energy increases for
increasing V0/Er.
For the general periodic potential, the tunneling matrix element in a given band n
connecting lattice sites of arbitrary distance ~xi, Jn(~xi), is also directly related to the
Bloch band energies εn(~k) [5] via

εn(~k) =
∑
~xi

Jn(~xi)e
i~k~xi . (1.11)

This formula provides a practical way to determine the hopping amplitudes as εn(~k)
can be determined from numeric band structure calculations.

The Bose-Hubbard model at commensurate filling n̄ exhibits a quantum phase transi-
tion between a superfluid phase of delocalized nature and a Mott-insulating phase of
localized nature at a critical value of U/J as first discussed in [18]. The qualitative
structure is similar in one-, two- or three-dimensional lattices and a schematic drawing
of the phase diagram at commensurate filling n̄ is shown in Figure 1.1. Quantitatively,
there is considerable differences between the different dimensions. However, we will
focus on general aspects and the one-dimensional case here.
In the superfluid phase, the ground state wave function consists of delocalized wave
functions and local number fluctuations are large. The single-particle dispersion is lin-
ear at low energies and becomes particle-like at higher energies. The ground state wave
function in the limit U = 0 is given by

|GS〉 =
1√
N !

(a†k=0)N |0〉, (1.12)

where N is the number of particles and

ak =
1√
L

∑
j

e−ikajaj (1.13)

with lattice spacing a. All particles occupy the same momentum state of k = 0 and
are delocalized over the entire lattice. The ground state energy is EGS = −2NJ . The
low-energy excitation spectrum is continuous for L→∞.
In contrast, the Mott-insulating ground state consists of localized wave functions. In
this case, local density fluctuations become energetically costly and are suppressed at
commensurate filling. Low energy excitations are localized defects of energy U . In the
atomic limit J = 0, the ground state wave function for a filling n̄ = 1 is given by

|GS〉 =

L∏
j=1

a†j |0〉, (1.14)

3



Chapter 1. Physics of cold atomic gases in optical lattices

where L is the number of lattice sites. The ground state energy is EGS = 0. The first
excited state consists of one site being occupied by two particles and one site being
empty. The energy of the first excited state is E1 = U such that a finite excitation
energy is needed to create a local defect. This is the so-called Mott gap. One essential

Superfluid Mott-insulator

Figure 1.1. – Qualitative sketch of the zero temperature phase diagram of the homogeneous
Bose-Hubbard model at commensurate filling n̄. A quantum phase transition between the
delocalized superfluid phase and the localized Mott-insulating occurs at a critical value (U/J)c.

feature of the phase transition is that this gap opens in the excitation spectrum when
entering the Mott-insulating phase. The quantum phase transition in one dimension is
of Kosterlitz-Thouless type and occurs at a critical value of (U/J)c ∼ 3.4 for a filling
n̄ = 1 [20,28–30].

1.2. Fermionic atoms in optical lattices

Analogously to the preceding bosonic case, interacting fermions in a periodic potential
can be described by the Hubbard Hamiltonian in a wide range of parameters as long
as the lattice is sufficiently deep and temperatures are sufficiently low such that the
single band tight-binding approximation applies. The single band Hubbard model for
fermionic particles is given by

HFH = −J
∑
〈j,j′〉,σ

(c†j,σcj′,σ + h.c.) + U
∑
j

nj,↑nj,↓ − µ
∑
j,σ

nj,σ, (1.15)

where c†j,σ and cj,σ are the local fermionic creation and annihilation operators, nj,σ is
the local number operator, µ is the chemical potential, 〈j, j′〉 denotes nearest neigh-
bors and the spin σ corresponds to two different hyperfine states. The reduction to
tight-binding starting from the Hamiltonian operator for fermionic atoms in an optical
lattice potential is analogous to the bosonic case described in 1.1.
This model was originally introduced to describe electrons in a solid [31] that have spin
1/2 where σ =↑, ↓ denotes the two eigenstates of opposite spin. The hopping J con-
serves this internal spin degree of freedom. Local interaction U is only possible between
two opposite spins since the Pauli principle prevents two fermions of same spin to be on
the same site. In good metals the Coulomb interaction between electrons is typically
screened with a short screening length of the order of the lattice spacing which justifies
the replacement by a local interaction U [26]. However, the Hubbard model remains
an approximation in metals where the screening length may vary and discrepancies to
the pure Hubbard model inevitably occur. In contrast, ultracold fermions in optical
lattices constitute a clean realization of this model [22] in a wide range of parameters.

The underlying physics is diverse and rich. Intriguing quantum phenomena occur due
to fermionic statistics and the spin degree of freedom, reaching from liquids to Mott-
insulators and long-range antiferromagnetic order. In Figure 1.2 the phase diagram of
the homogeneous Hubbard model for a three-dimensional cubic lattice with commen-
surate filling of one particle per site is shown [32,33]. At moderate temperatures, when
increasing the repulsive coupling U/J one crosses over from a metallic phase (fermionic
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1.2. Fermionic atoms in optical lattices

liquid) at weak interactions to an incompressible Mott-insulator at larger interactions
through some intermediate state which is a ’bad metal’ or poor insulator [34]. At strong
interactions charge fluctuations are suppressed. The lowest excitations are particle-hole
like and cost an energy ∆ ∼ U . The dash-dotted line indicates the opening of the Mott
gap ∆ when entering the incompressible Mott-insulator. At lower temperatures below
the Néel temperature TN (U) antiferromagnetic long-range order occurs in which spin
and translational symmetries are broken. The transition is indicated by the solid line in
Figure 1.2. The transition is of different physical character depending on what phase
the transition line is approached from. At strong coupling and small temperatures
where the temperature is much smaller than the Mott gap, particles are localized in
a Mott-insulating state and density fluctuations are frozen out. Only spin degrees of
freedom are active that are described by an effective Heisenberg model. At U � J
the so-called superexchange process occurs which is a second order hopping process
of neighboring fermionic particles, via an intermediate doubly occupied state which is
highly energetic, with coupling strength 4J2/U . Spin ordering occurs as a low-energy
instability as soon as the temperature drops below the Néel temperature TN which is
controlled by the antiferromagnetic super-exchange coupling TN ∝ J2/U . In contrast,
at weak coupling the transition from the liquid phase where density fluctuations are
high, a distinction between charge order (blocking of translational degrees of freedom)
and long-range magnetic order is not possible. The transition to long-range magnetic
order directly corresponds to spin ordering described by a spin-density wave picture
where opening of the charge gap and antiferromagnetic order occur simultaneously.

1 2 3 4 5 6 7

1

1.5

2

2.5

3

3.5

4

U/ J

k B
T
/J

Liquid

Mott
Insulator

Antiferromagnet

Figure 1.2. – Qualitative sketch of the finite temperature phase diagram of the homogeneous
Hubbard model for a three-dimensional cubic lattice at half-filling. At moderate temperatures
a crossover from a Fermi liquid phase to a Mott-insulating phase takes place when the Mott gap
(dash-dotted line) opens. At lower temperatures a phase transition (solid line) into a long-range
ordered antiferromagnetic phase occurs.
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Chapter 1. Physics of cold atomic gases in optical lattices

The ratio U/J controls the strength of interaction effects and a wide range is already
accessible in cold atom experiments. The hopping J may be controlled by changing
the lattice depth of the optical lattice and U can be directly changed by Feshbach res-
onances [5]. By using Feshbach resonances, one can tune the scattering length as from
attractive to repulsive and thus also adjust to zero interaction U = 0. Ultimately, the
hope is to use fermionic atoms in optical lattices to measure the full Fermi-Hubbard
phase diagram.

1.3. Probing cold atomic gases in optical lattices

As motivated in the Introduction many-body phases are quite generally characterized
by their excitations which may be studied by externally perturbing the system. For
example, the system may be excited by introducing a potential gradient that tilts the
lattice. Tunneling in the Mott-insulating regime becomes possible as soon as the po-
tential difference between neighboring sites is approximately of the order of the on-site
interaction U [7]. Alternatively, one can excite the system by periodically modulating
the amplitude of the lattice [14]. Both experiments observe a broad excitation spec-
trum in the superfluid regime and the observations at stronger interactions agree with
a gapped spectrum. But the physics of these phases is even richer and other excitations
are possible in the system such as the Higg’s amplitude mode which is gapped deep
in the superfluid region which was experimentally probed by periodically modulating
the lattice amplitude [16]. However, many details of these phases remain unknown
and further studies of the Bose-Hubbard and Fermi-Hubbard phase diagrams are an
objective in current research.
The aim of this project is to find out more about possible excitations in the system by
periodic lattice modulation. The modulation we choose is incommensurate with the
underlying equilibrium lattice in contrast to the commensurate amplitude modulation
in reference [14].

The perturbation The basic setup is the following. We consider an optical lattice in
one dimension given by Equation (1.1) restricted to one direction. We superimpose
a second laser of half or twice the wavelength which creates a so-called superlattice.
We periodically modulate the superlattice amplitude with frequency ω that is much
smaller than the laser frequency and with a small amplitude of modulation. The exact
experimental setup may be adjusted in such a way that the bottom offset of the super-
lattice is constant and the periodic modulation changes between the two configurations
as shown in Figure 1.3 within half the modulation period T = 2π/ω.

Figure 1.3. – Periodic modulation of the superlattice amplitude with frequency ω and a small
amplitude of the modulation h between the two configurations that are indicated by solid and
dashed lines.

The potential created is of the form

V (x) = V0(x) + δV (x, t), (1.16)

6



1.3. Probing cold atomic gases in optical lattices

where V0(x) is the equilibrium lattice potential created by the first laser beam. The
perturbation

δV (x, t) = h sin(ωt)Ṽ (x) (1.17)

is of small amplitude h and explicitly time-dependent. If the wells are sufficiently deep,
the superlattice Wannier functions may be approximated by their V0(x)-solutions such
that U(V (x)) ≈ U(V0) = U given by equation (1.10). For the hopping amplitude we
replace V0 by V0 +δV (x, t) in equation (1.9) and expand in the small perturbation such
that the lattice modulation translates into a modulation of the hopping parameter in
the lattice description,

Jj(t) = −(J + h(−1)j sin(ωt)). (1.18)

This is a reasonable approximation for sufficiently small perturbations. Defining the
full problem the following explicitly time-dependent many-body Hamiltonian is induced

H = H0 +Hpert, (1.19)

where the equilibrium Hamiltonian H0 is given by the Bose-Hubbard Hamiltonian (1.2)
or the Fermi-Hubbard Hamiltonian (1.15) depending on the kind of particles trapped
in the lattice. Thus, the perturbation is of the following form

Hpert = h sin(ωt)OB,F, (1.20)

OB =
∑
j

(−1)j(a†jaj+1 + h.c.), (1.21)

OF =
∑
j,σ

(−1)j(c†j,σcj+1,σ + h.c.), (1.22)

with a small amplitude of the perturbation h � J and the superlattice or dimerized
hopping operator OB,F to which it couples. We denote bosons by B and fermions by
F . Throughout this work we set the energy scale by choosing J = 1 and ~ ≡ 1 except
for some cases where we insert experimental parameters and units.
An important characteristic of the superlattice operator O is that it does not con-
serve momentum. The perturbation introduces an extra momentum kick of π into
the system. This is due to the dimerization which doubles the size of the unit cell
and this strongly affects the nature of possible excitations. This may be directly seen
from the Fourier transform of the perturbing operator. We show this exemplified for
the bosonic case. We set lattice spacing a ≡ 1 and introduce the Fourier transform
aj = (1/

√
L)
∑

k exp(ikj)ak. The perturbing operator becomes

O = 2i
∑
k

sin(k)a†k+πak, (1.23)

where k = 2πq/L, m = 1, ..., L. A particle of momentum k is annihilated and a particle
of momentum k+π is created by the operator which adds momentum π to the system.
In the case of the bosonic Mott insulator with integer filling this gives rise to an intuitive
interpretation. The action of a†k+π may be interpreted as the creation of a doublon of
momentum kd = k + π and ak as the creation of a hole of momentum kh = −k such
that the center of mass momentum of the created pair is given by kd + kh = π.
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Chapter 1. Physics of cold atomic gases in optical lattices

The measurement The perturbation injects energy into the system such that the
study of the energy absorbed by the system gives information about the excitations
in the system and insights into the underlying physics. In standard lattice shaking
experiments with bosonic atoms the energy absorbed by the system is estimated from
the broadening of the central peak of the momentum distribution measured in a time-
of-flight absorption image after sudden switch off [14, 35]. However, in the case of
fermionic atoms this is not a good measure for the absorbed energy since the momentum
distribution is broad and less sensitive to heating. We will show how a measure of
the quasimomentum distribution 〈nk(t)〉 constitutes a reliable method to study the
absorbed energy in the particular case of exciting to higher Bloch bands. This is
experimentally appealing because the quasimomentum distribution may be measured
fairly easily by adiabatic band mapping [25]. The basic idea of this technique is to
ramp down the lattice adiabatically such that crystal (quasi) momentum is conserved
in contrast to a sudden switch off. Adiabatic means slow compared to the vibrational
frequencies in the lattice but fast enough such that the population of the energy bands
does not change during ramp down. Each state with crystal momentum k is finally
mapped onto a free particle state with momentum k when the lattice is completely
switched off. A particle in the nth energy band is mapped onto the nth momentum
interval of the free particle. In a time-of-flight absorption image particles from the nth

energy band appear in the nth Brillouin zone. Applying adiabatic band mapping after a
certain duration t of the perturbation gives access to the quasimomentum distribution
〈nk(t)〉 which, multiplied by the perturbing frequency, yields the absorbed energy. This
is limited as a probe if exciting within the lowest band because excitations are not clearly
separated from the initial distribution. However, if we excite at higher frequencies to
higher Bloch bands, measuring the absorbed energy wraps up to counting the particles
appearing in higher Brillouin zones in the absorption image. Higher Brillouin zones are
initially empty such that this gives an accurate measure of the absorbed energy and
constitutes a promising alternative for experimentalists. We discuss this in detail in
Section 4.4.2.
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Chapter 2.

Theoretical methods

In this chapter we introduce the methods which are used throughout this work. In
Section 2.1 we introduce linear response theory for quantum systems which is a general
method used to compute observables of a problem consisting of an equilibrium Hamilto-
nian to which a small time-dependent perturbation is added. We apply linear response
in many problems throughout this work. In Section 2.2 we discuss the local density
approximation which treats the presence of an additional external trapping potential
in cold atom experiments as a spatially varying chemical potential. We need this in
Chapter 4 where we consider a realistic experimental situation. Finally, we introduce
the time-adaptive density matrix renormalization group method in Section 2.3 which
is a variational scheme particularly suited for the physics of one-dimensional lattice
systems. We apply this in Chapter 3 in order to go beyond linear response.

2.1. Linear response theory

General aspects Consider a system described by a time-independent equilibrium
Hamiltonian H0. In order to probe the properties of such a system, one may act
onto it with a small perturbation and study how the system responds to this perturba-
tion [36]. The perturbation is described by an additional time-dependent Hamiltonian
Hpert. Computing the full properties of the time dependent HamiltonianH = H0+Hpert

would be an ambitious task. However, one may compute the expectation values of
observables in linear response theory by assuming a small perturbation and doing a
perturbative expansion. The general time and space dependent perturbation can be
written as

Hpert =

∫
d~r h(~r, t)O(~r), (2.1)

where h(~r, t) is some external field, which is considered to be small and will be switched
on slowly, and O(~r) is the operator to which it couples. To simplify notation one chooses
〈O(~r)〉 = 0 in the absence of the perturbation. The aim is to calculate the expectation
value of some physical observable A(~r) at point ~r and time t. The operator A is chosen
such that its average in the unperturbed system vanishes. The average with respect to
the time-dependent Hamiltonian may be computed by expanding the perturbation in
powers of h. By definition the term of zero order vanishes as 〈A(~r)〉0 = 0. In first order
(linear response) one finds

〈A(~r)〉t =

∫
d~r ′

∫ t

−∞
dt′h(~r′, t′)χ(~r, ~r′, t, t′), (2.2)

with χ(~r, ~r′, t, t′) = −iθ(t− t′)〈
[
A(~r, t), O(~r′, t′)

]
〉0, (2.3)

where χ(~r, ~r′, t, t′) is the complex susceptibility and 〈·〉0 denotes averages taken with re-
spect to the unperturbed Hamiltonian H0. Operators O(t) are given in the Heisenberg
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Chapter 2. Theoretical methods

representation with respect to H0. The problem is thus reduced to calculating equilib-
rium expectation values of the system described by H0. Or, the other way around, one
obtains information about equilibrium correlation functions by studying the response.
The θ-function ensures causality as a measure at time t can only depend on the pertur-
bation at earlier times. Assuming translationally invariant systems 〈A(~r)〉t = 〈A(~r′)〉t
and using that χ is an equilibrium quantity that only depends on the time difference of
operators, thus χ(~r, ~r′, t, t′) = χ(~r − ~r′, t− t′), one can compute the Fourier transform

F (~q, ω) =

∫
d~r

∫ +∞

−∞
dte−i(~q~r−ωt)F (~r, t), (2.4)

〈A(~q, ω)〉 = χ(~q, ω)h(~q, ω). (2.5)

In the case of χ, convergence for t → −∞ is ensured by replacing ω → ω + iδ. This
corresponds to adding an infinitesimal positive imaginary part to the frequency as δ is
an infinitesimal positive number.

The fluctuation dissipation theorem As the perturbation injects energy into the sys-
tem, energy is no longer conserved in the presence of a time-dependent perturbation.
The change of energy dE(t)/dt = 〈dH(t)/dt〉 brought into the system by the pertur-
bation may be determined in linear response theory. In the case of a simple periodic
perturbation of the form

Hpert = Oheiωt +O†h∗e−iωt, (2.6)

and after averaging over one period T = 2π/ω of the perturbation, one can determine
the average rate of dissipation dE(t)/dt.

dE(t)

dt
=

1

T

∫ T

0
dt

dE(t)

dt
= −2ωhh∗ImχOO†(ω), (2.7)

χOO†(ω) =

∫
dt ei(ω+iδ)tχOO†(t), (2.8)

χOO†(t) = −iθ(t)〈
[
O(t), O†(0)

]
〉0, (2.9)

which is known as the fluctuation dissipation theorem and where one uses χ(ω)∗ =∫ +∞
0 dt〈

[
O(t), O†(0)

]
〉e−iωt = χ(−ω). The energy absorption rate dE(t)/dt is propor-

tional to the energy ω and the absolute value squared of the field amplitude |h|2. The
linear term in h is zero. It is controlled by the imaginary part of the susceptibility
which depends on an equilibrium correlation function. This result obviously is a pow-
erful tool in two directions. On the one hand, by slightly perturbing the system one
can probe the various correlations and physical properties of the unperturbed system.
On the other hand, as soon as one is able to compute the correlations of the system in
equilibrium, the fluctuation dissipation theorem provides a practical tool to compute
the response of a system. Both ways are equally important but the latter way is what
we take advantage of here to compute the response of the system to the periodic driving
by superlattice modulation. Note that our perturbation chosen is of sin(ωt)-form such
that Equation (2.7) becomes

dE(t)

dt
= −1

2
ω|h|2ImχOO†(ω). (2.10)

10



2.2. The local density approximation

The spectral representation In many cases the imaginary part of the complex sus-
ceptibility is more conveniently expressed in the so-called spectral representation. The
spectral representation is a formal decomposition which avoids having to calculate the
complex susceptibility in the time domain χOO†(t). We introduce a complete basis
|n〉 which consists of the eigenstates of the unperturbed Hamiltonian H0, Ho|n〉 =
En|n〉. One can rewrite the complex susceptibility 2.9. For finite temperature ex-
pectation values 〈O〉 = Tr [exp(−βH0)O] /Z and with the help of the closure relation
1 =

∑
m |m〉〈m| one obtains

χOO†(t) = −iθ(t) 1

Z

∑
n,m

ei(En−Em)t|〈m|O|n〉|2(e−βEn − e−βEm), (2.11)

where the definition of the Heisenberg operators O(t) = exp(iH0t)O exp(−iH0t) and
that |n〉 is an eigenstate of H0 was used. The Fourier transform (2.8) gives

χOO†(ω) =
1

Z

∑
n,m

|〈m|O|n〉|2 e−βEn − e−βEm
ω + En − Em + iδ

, (2.12)

ImχOO†(ω) = − δ
Z

∑
n,m

|〈m|O|n〉|2
(
e−βEn − e−βEm

) 1

δ2 + (ω + En − Em)2
, (2.13)

= − π
Z

(
1− e−βω

)∑
n,m

|〈m|O|n〉|2e−βEnδ (ω + En − Em) , (2.14)

where we used the definition of Dirac’s delta function by Cauchy’s distribution (1/π) ·
δ/(δ2 + (ω − ω0)2) → δ(ω − ω0), for δ → 0. A transition from an initial state |n〉
to a final state |m〉 is possible when the system absorbs the energy ~ω introduced by
the perturbation. The probability of the transition is proportional to the square of
the matrix element coupling the two states |〈m|O|n〉|2. The conservation of energy is
ensured by δ (ω + En − Em). At zero temperature one analogously obtains

ImχOO†(ω) = −π
∑
n,m

|〈m|O|n〉|2δ (ω + En − Em) , (2.15)

restricted to the positive frequency sector.

2.2. The local density approximation

In current experimental setups the presence of an additional external trapping potential
for the atomic cloud has to be taken into account. It considerably effects the physics
of the system. The full Hamiltonian (without an additional superlattice modulation)
is given by

H = HBH/FH +
∑
j,σ

V (~rj)nj,σ, (2.16)

where V (~rj) is the space dependent external trapping potential, the Bose-Hubbard
and Fermi-Hubbard Hamiltonian HBH/FH are given by Equations (1.2) and (1.15)
respectively, and the spin index σ drops out in the bosonic case. The consequences on
the observed physics may be discussed within the local density approximation [34] which
treats the external potential V (~r) as a spatially varying chemical potential. Parabolic
confinement is usually a good approximation in experiment at the position of the atomic
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cloud. However, one may consider a more general form of the trapping potential V (~r) =
Vt(|~r|/a)α of exponent α, where ~r is the position vector in d dimensions, a is the lattice
spacing and Vt is the strength of the external confinement. In the parabolic case α = 2.
The space-dependent chemical potential becomes

µ(rj) = µ0 − Vt
(
|rj |
a

)α
, (2.17)

where rj denotes the d-dimensional position vector labeling each lattice site and µ0 is
the chemical potential in the center of the trap. Within the local density approximation,
any local observable O(rj) in the trap is related to its counterpart in the homogeneous
system (without trap) Oh(µ) by

O(rj) = Oh(µ(rj)). (2.18)

This leads to the coexistence of different phases in the trap because the local density
changes when moving through the trap. The local density approximation can be used
with good accuracy in many cases [37]. However, results are poor for very deep and
narrow traps where the potential varies rapidly from site to site and close to a phase
transition due to proximity effects. There is no clear phase boundary between spatially
separated different phases since particles from one phase may leak into the neighboring
one at the boundary. The local density approximation neglects this and the density
distribution has to be calculated numerically to incorporate this.
The total number of atoms in the trap may be obtained by summing the space-
dependent local occupancy over the whole system and using the continuum limit. One
obtains

N =
∑
j

nj ≈
Ωd−1

ad

∫
dr rd−1nh(r), (2.19)

=

(
D

Vt

)d/α Ωd−1

α

∫ µ̄0

−∞
dµ̄(µ̄0 − µ̄)

d
α
−1nh(µ̄), (2.20)

where nh(r) is the density in the homogeneous system and Ωd−1 is the surface of a
sphere in d dimensions, e.g. Ω0 = 2, Ω1 = 2π and Ω2 = 4π. The dimensionless
chemical potential is given by µ̄ = µ/D where D is the half bandwidth. Note that
D = zJ in the Fermi-Hubbard model where J denotes the hopping parameter and z is
the number of nearest neighbors. One defines the characteristic density

ρ = N

(
Vt
D

)d/α
=

Ωd−1

α

∫ µ̄0

−∞
dµ̄(µ̄0 − µ̄)

d
α
−1nh(µ̄). (2.21)

This is a dimensionless combination which does not depend on the strength of the
confining potential. It can be used to describe properties of experimental systems
regardless of the particular realization of the trap. It can be experimentally controlled
by either changing the total number of particles N or by reducing D through increasing
the lattice depth.
Mean values of local observables are given by

Ō =
1

N

∑
j

Oj =
Ωd−1

ρα

∫ µ̄0

−∞
dµ̄(µ̄0 − µ̄)

d
α
−1Oh(µ̄). (2.22)
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2.3. The time-dependent density matrix renormalization group method in terms of matrix product states

From this expression it becomes evident that observables only depend on the charac-
teristic density ρ and on the chemical potential µ0 in the center of the trap. Note that
µ0 itself only depends on ρ. Thus, all local quantities on the central site and all global
quantities depend on ρ. As a consequence, the state diagram of the inhomogeneous
system only depends on the effective density ρ and not on the particle number N and
the trapping Vt separately. The effective density changes for a fixed particle number N
when varying either the trapping potential Vt or the lattice depth which corresponds
to a variation of D. In contrast, the density of the homogeneous system is determined
by the number of particles N present in the system and stays unchanged if the lattice
depth is varied for a given particle number N .

2.3. The time-dependent density matrix renormalization
group method in terms of matrix product states

The time-dependent density matrix renormalization group method (t-DMRG) is cur-
rently the most powerful method in the study of statics and dynamics of one dimensional
strongly correlated lattice systems. It was invented by S. R. White in 1992 [38]. The
basic problem in quantum many-body systems is that the Hilbert space of a system of
size L grows exponentially with size dL where d is the local dimension. DMRG is an
iterative variational method that reduces the degrees of freedom at each iteration to
the most important ones. In the following we introduce the basic concepts choosing a
formulation in terms of matrix product states [39].

Singular value decomposition The basic tool which is extensively used throughout
DMRG-algorithms is the so-called singular value decomposition. It is a theorem from
linear algebra which states that an arbitrary rectangular matrix M of dimensions (m×
n) can be decomposed as

M = USV †, (2.23)

where

• U is a unitary matrix, U †U = I, of dimension (m×min(m,n)).

• S is a diagonal matrix of dimension (min(m,n)×min(m,n)) with non-negative
entries Saa :=

√
λa ≥ 0 that are called singular values. The number of non-zero

values
√
λa > 0 of M is the rank r of M .

• V † is of dimension (min(m,n)× n) with V unitary, V †V = I.

Schmidt decomposition The Schmidt decomposition is a concept from quantum in-
formation theory. The Schmidt decomposition can be derived by using the singular
value decomposition. Consider a one-dimensional system divided into two connected
subsystems A and B. We derive the Schmidt decomposition of any state |Ψ〉 on the
entire system AB. A general quantum state on AB can be written as

|Ψ〉 =
∑
i,j

Ψi,j |i〉A|j〉B, (2.24)
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Chapter 2. Theoretical methods

where {|i〉A} is an orthonormal basis of A with dimension m and {|j〉B} is an orthonor-
mal basis of B with dimension n and the coefficients Ψi,j may be interpreted as entries
of a matrix Ψ. Carrying out a singular value decomposition on the matrix Ψ gives

|Ψ〉 =
∑
i,j

min(m,n)∑
a=1

Ui,aSa,aV
∗
j,a|i〉A|j〉B (2.25)

=

min(m,n)∑
a=1

Sa,a

(∑
i

Ui,a|i〉A

)∑
j

V ∗j,a|j〉B

 (2.26)

=

r∑
a=1

√
λa|a〉A|a〉B, (2.27)

where we restrict the sum to run only over the non-zero singular values
√
λa > 0 such

that the upper bound is given by the rank r ≤ min(m,n) of S. The sets {|a〉A} and
{|a〉B} are orthonormal on A and B respectively due to the properties of U and V .
The basic idea is to now employ the state |Ψ̃〉 =

∑D
a=1

√
λa|a〉A|a〉B of fixed Schmidt

rank D < r which best approximates |Ψ〉 by minimizing the norm

‖|Ψ〉 − |Ψ̃〉‖2 = 〈Ψ|Ψ〉+ 〈Ψ̃|Ψ̃〉 − 〈Ψ|Ψ̃〉 − 〈Ψ̃|Ψ〉 = 1−
D∑
a=1

λa. (2.28)

We order λ1 ≥ λ2 ≥ ... such that this is a good approximation if λa decay quickly for
increasing a. Note that the above is exact for D ≥ r.

Construction and compression of matrix product states Any quantum state on a
lattice with L sites and local dimension d on each site j can be written as

|Ψ〉 =
∑

σ1,...,σL

cσ1,...,σL |σ1, ..., σL〉, (2.29)

where {|σj〉} is the local basis and |~σ〉 = |σ1, ..., σL〉 = |σ1〉 ⊗ ... ⊗ |σL〉 is the tensor
product. The coefficients cσ1,...,σL may be interpreted as entries of a vector ~c that has
dL components.
The singular value decomposition enables us to find a more convenient notation of |Ψ〉,
the so-called matrix product state. Quite generally, the matrix product state notation
of |Ψ〉 is given by

|Ψ〉 =
∑

σ1,...,σL

Mσ1Mσ2 ...MσL |σ1, ..., σL〉, (2.30)

where Mσ1 is a collection of row vectors, MσL is a collection of column vectors and
all other Mσj are collection of matrices. The matrix product results in a scalar due to
the vectorial nature of the first and the last matrices. So far, no assumption about the
normalization has been made.
Assuming hat |Ψ〉 is normalized, we can construct a matrix product state by repeatedly
applying the singular value decomposition from the left or from the right resulting in
a so-called left-canonical or right-canonical matrix product state. We exemplify this
for a left-canonical matrix product state. We reshape the dL components cσ1,...,σL of
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2.3. The time-dependent density matrix renormalization group method in terms of matrix product states

the state vector ~c into a matrix Ψσ1,(σ2...σL) of dimension (d× dL−1) and carry out the
singular value decomposition of this matrix,

Ψσ1,(σ2...σL) =

r1∑
a1=1

Uσ1,a1Sa1,a1(V †)a1,(σ2...σL), (2.31)

where r1 = min(d, dL−1). We reshape the product Sa1,a1(V †)a1,(σ2...σL) back into a
vector ca1,σ2,...,σL and then again into a matrix ca1,σ2,...,σL = Ψ(a1σ2),(σ3...σL) of dimension

(r1d × dL−1). We also reshape the matrix U into a collection of row vectors Aσ1 with
entries Aσ1a1 = Uσ1,a1 . This gives

cσ1,...,σL =

r1∑
a1=1

Aσ1a1Ψ(a1σ2),(σ3...σL). (2.32)

We successively apply the singular value decomposition and reshape,

... =

r1∑
a1=1

r2∑
a2=1

Aσ1a1U(a1σ2),a2Sa2,a2(V †)a2,(σ3...σL) (2.33)

=

r1∑
a1=1

r2∑
a2=1

Aσ1a1A
σ2
a1,a2Ψ(a2σ3),(σ4...σL) (2.34)

= ... (2.35)

=
∑

a1...aL−1

Aσ1a1A
σ2
a1,a2A

σ3
a2,a3 ...A

σL−1
aL−2,aL−1A

σL
aL−1

(2.36)

= Aσ1Aσ2 ...AσL , (2.37)

where Aσ1 is a collection of row vectors, AσL is a collection of column vectors and all
other Aσj are collection of matrices with entries A

σj
aj−1,aj = U(aj−1σj),aj and of dimension

(rj−1, rj). The maximum dimensions of the A-matrices going from the first to the last
site are (1× d), (d× d2), ..., (dL/2−1 × dL/2), (dL/2 × dL/2−1), ..., (d× 1). The maximum
dimension is reached if in each singular value decomposition, the number of non-zero
singular values is equal to the upper bound given by the smaller of the dimensions of
the matrix to be decomposed.
Finally, the quantum state reads

|Ψ〉 =
∑
~σ

Aσ1Aσ2 ...AσL |~σ〉, (2.38)

with ∑
σj

Aσj†Aσj = I, (2.39)

which defines the left-canonical matrix product state. Analogously we can start re-
shaping from the right

cσ1,...,σL = Ψ(σ1...σL−1),σL =
∑
aL−1

U(σ1...σL−1),aL−1
SaL−1,aL−1(V †)aL−1,σL (2.40)

=
∑
aL−1

Ψ(σ1...σL−2),(σL−1aL−1)B
σL
aL−1

= ... = (2.41)

=
∑

a1,...,aL−1

Bσ1
a1B

σ2
a1,a2 ...B

σL−1
aL−2,aL−1B

σL
aL−1

, (2.42)
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where BσL
aL−1

is a collection of column vectors obtained from reshaping (V †)aL−1,σL ,

Bσ1
a1 is a collection of row vectors and all other B

σj
aj−1,aj are collections of d matrices. It

follows

|Ψ〉 =
∑
~σ

Bσ1Bσ2 ...BσL |~σ〉, (2.43)

with ∑
σj

BσjBσj† = I, (2.44)

which defines the right-canonical matrix product state. We can also mix the decompo-
sition from the left and from the right resulting in a mixed canonical matrix product
state

cσ1,...,σL = Aσ1 ...AσlSBσl+1 ...BσL , (2.45)

where all A matrices up to site l are left-normalized and all B-matrices starting from
site l + 1 are right-normalized. The matrix S has the components Sal,al =

√
λal and

contains the singular values on the link (l, l + 1). This is equivalent to the Schmidt-
decomposition of a system of length L decomposed into subsystem A running from site
1 to l and subsystem B running from site l+1 to L. The mixed canonical state becomes

|Ψ〉 =
∑
al

√
λal |al〉A ⊗ |al〉B, (2.46)

where

|al〉A =
∑
σ1..σl

(Aσ1 ...Aσl)(1,al)
|σ1, ..., σl〉, (2.47)

|al〉B =
∑

σl+1...σL

(Bσl+1 ...BσL)(al,1) |σl+1, ..., σL〉. (2.48)

The states |al〉A are orthonormal on A and the states |al〉B are orthonormal on B.
The matrices can in principle be exponentially large and their size has to be truncated
to some D to make it numerically feasible. For exponentially decaying singular values√
λa, λ1 ≥ λ2 ≥ ... it is possible to cut the sum (2.46) at fixed rank D which best

approximates |Ψ〉 as explained above when minimizing the norm (2.28). The truncation
simply keeps the first D columns of Aσl , the first D rows of Bσl+1 and the first D
rows and columns of S. The error accumulated at each truncation is given by (2.28).
However, this does not take into account the error due to minimization.
The matrix product state representation together with the approximation by truncation
can be used to iteratively and variationally determine the ground state of a Hamiltonian
or to determine the time evolution of the system. No details of the ground state search
are discussed here. We will in the following focus on how to determine the time evolution
of a system.

Matrix product operators Analogously to matrix product states we can construct
matrix product operators that act onto matrix product states,

Ô =
∑

σ1...σLσ
′
1...σ

′
L

c(σ1...σL),(σ′1...σ
′
L)|~σ〉〈~σ′| (2.49)

=
∑
~σ,~σ′

W σ1,σ′1 ...W σL,σ
′
L |~σ〉〈~σ′|, (2.50)
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where W σ,σ′ are matrices just like the Mσ but have two physical indices for outgoing

and ingoing states. They are indexed W
σ1,σ′1
b1

, W
σL,σ

′
L

bL
and W

σj ,σ
′
j

bj−1,bj
for j 6= 1, L. A

matrix product operator acts onto a matrix product state as follows

Ô|Ψ〉 =
∑
~σ,~σ′

W σ1,σ′1 ...W σL,σ
′
L |~σ〉〈~σ′|

(∑
~σ′′

Mσ′′1 ...Mσ′′L |~σ′′〉

)
(2.51)

=
∑
~σ,~σ′

W σ1,σ′1 ...W σL,σ
′
LMσ′1 ...Mσ′L |~σ〉 (2.52)

=
∑
~σ

∑
~σ′1

W σ1,σ′1Aσ
′
1

∑
~σ′2

W σ2,σ′2Mσ′2

 ...|~σ〉 (2.53)

=
∑
~σ

Nσ1Nσ2 ...NσL |~σ〉, (2.54)

where N
σj
(bj−1,a′j−1),(bj ,a′j)

=
∑

σ′j
W

σj ,σ
′
j

bj−1,bj
M

σ′j
a′j−1,a

′
j

is a matrix such that the resulting

state is also a matrix product state but of grown dimension.

Time evolution We apply the time-evolution operator exp(−iĤt) in order to deter-
mine the time evolution of a state |Ψ(t)〉. If Ĥ is a Hamiltonian consisting of L sites
and only nearest-neighbor interactions it can be written as

Ĥ =
∑
j

ĥj = Ĥodd + Ĥeven, (2.55)

where ĥj contains the interaction between sites j and j + 1. Bond Hamiltonians ĥj do

not commute in general [ĥj , ĥj+1] 6= 0. We group odd bonds Ĥodd =
∑

jodd ĥj and even

bonds Ĥeven =
∑

jeven ĥj where odd bond Hamiltonians ĥj,odd commute amongst each

other and even bond Hamiltonians ĥj,even likewise. We discretize time t = Nτ with
N →∞ and τ → 0 and apply the second order Trotter decomposition given by

e−iĤt = e−iĤodd
τ
2 e−iĤevenτe−iĤodd

τ
2 + (τ3). (2.56)

The exponentials factorize into exp(−iĤoddτ/2) =
∏
j,odd exp(−iĥjτ/2) and exp(−iĤevenτ) =∏

j,even exp(−iĥjτ) (first order Trotter decomposition) such that each factor exp(−iĥj,oddτ/2)

acts onto a single odd bond and each factor exp(−iĥj,evenτ) acts onto a single even bond.
As matrix product operators they can successively be applied to the matrix product
state |Ψ〉. Each application gives a matrix product state of grown dimension which is
truncated before the next time-evolution operator is applied. The error of the Trotter
decomposition of nth order is given by τn+1 such that the error of the above second-
order decomposition after N = t/τ timesteps is given by τ2t. It scales linearly with
time.
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Chapter 3.

Modulation spectroscopy of ultracold
bosons in optical lattices

In this chapter we want to find out more about possible excitations in the bosonic
Mott-insulator. We study possible excitations by periodically driving the system by
a superlattice modulation which injects momentum π into the system as explained in
Section 1.3. We consider the one-dimensional single-band Bose-Hubbard Hamiltonian
that is now explicitly time-dependent, given by (1.2) and (1.20),

H =
∑
j

{
−Jj(t)(a†jaj+1 + h.c.) +

U

2
(nj − n̄)2

}
, (3.1)

where aj and a†j represent the bosonic annihilation and creation operators at site j

and nj = a†jaj is the local particle number operator and the time-dependent hopping

Jj(t) = −
(
J + h sin(ωt)(−1)j

)
is a modulation around the equilibrium value at time

zero, J(t = 0) = J , with small amplitude h. The on-site interaction strength is given
by U . Note the change in notation nj(nj − 1)→ (nj − n̄)2 in comparison to (1.2). This
just corresponds to a shift in energy. We work at fixed integer filling n̄ deep in the
Mott insulating regime.
The observable we choose is the energy absorbed by the system which gives insight into
possible excitations. We start by employing a perturbative approach in small J/U which
corresponds to the strong coupling limit of the equilibrium Bose-Hubbard model. We
study the influence of the perturbation onto the corresponding low-lying excitations,
i.e. particle-hole excitations of energy U . We compute the energy absorption rate
averaged over one period of the perturbation and normalized by the number of lattice
site in linear response theory (1/L) · dE(t)/dt. We complement this by a numerical
study of the time evolution. We compute the energy absorbed by a single lattice site
j as a function of the duration t of the perturbation, Ej(t), employing the adaptive
time-dependent density matrix renormalization group method in Section 3.2 and relate
this to the energy absorption rate.

3.1. An analytical approach: perturbative treatment in small
J/U

We aim at developing an analytical expression of the energy absorption rate, expecting
to find an intuitive notion of the nature of excitations in the system. We compute the
energy absorption rate in linear response theory. We use the spectral representation
given by Equations (2.10) and (2.15),

dE(t)

dt
=
π

2
ω|h|2

∑
n,m

|〈m|O|n〉|2δ (ω + En − Em) . (3.2)
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•
• • • ◦ • ... •

j 1 ... L

m 1 2 3 ... L

d L-1 – 1 2 3 ... L-2

Table 3.1. – Schematic drawing of a ’doublon-hole’ excitation on a lattice of length L with
commensurate filling n̄ = 1. The doublon consisting of an excess particle • is created at site
m = 2 and the hole ◦ is created at a distance d = 2 to the right at site j = m + d = 4. This
corresponds to the state |m = 2, d = 2〉 defined by Equation (3.4)

In a many-body problem the difficulty lies in determining the eigenstates |n〉 and their
eigenenergies En. In order to do so, we employ a perturbative approach in the strong
coupling limit to first non-vanishing order in J/U . We decompose the Bose-Hubbard
Hamiltonian (3.1) with periodic boundary conditions into H = H0 + V where the un-
perturbed Hamiltonian H0 is the on-site interaction term and V is the kinetic energy
term which we consider as a small perturbation. We determine the ground state and the
lowest excited states employing degenerate perturbation theory [40] and investigate the
effect of the perturbation Hpert = h sin(ωt)O, defined by Equation (1.21), onto these
low-lying excitations.

The low-lying excitations in non-degenerate perturbation theory The eigenstates
of the unperturbed Hamiltonian are Fock states with eigenenergies that are multiples
of the on-site interaction strength U . The groundstate of H0 is given by the Fock state

|0〉 = |n̄, n̄, ..., n̄〉, (3.3)

since we work at commensurate filling and fixed particle number. The groundstate
energy is given by 〈0|H0|0〉 = 0. The excited states must also have the same particle
number and may be constructed by removing bosons from one site and putting it onto
a different site. The excited state of lowest energy U corresponds to the creation of
one ’doublon-hole’ excitation. We call the site with occupation n̄ + 1 a ’doublon’ at
position m and the site with occupation n̄ − 1 a ’hole’ at position m + d where d is
the distance to the right from the doublon to the hole. A ’doublon-hole’ excitation is
schematically illustrated in Table 3.1. We choose the following notation

|m, d〉 =
1√

n̄(n̄+ 1)
am+da

†
m|0〉, (3.4)

with m = 1, ..., L and d = 1, ..., L − 1. The states |m, d〉 are degenerate eigenstates of
H0 with eigenenergy εm,d = U as 〈m, d|H0|m′, d′〉 = Uδm,m′δd,d′ . The degeneracy is
L(L− 1).
The second excited state of energy 2U consists of two doublon-hole excitations. The
third excited states consist of either three doublon-hole excitations or a site of occu-
pation n̄+ 2. We employ degenerate perturbation theory to determine the corrections
to eigenenergies and eigenstates at first order in J/U . The basic concept of degenerate
perturbation theory is to identify the degenerate unperturbed eigenstates and to diag-
onalize the perturbation in this basis which corresponds to computing the first-order
energy shifts, that are given by ∆n = 〈n|V |n〉 for a state |n〉. Consequently, the lowest
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3.1. An analytical approach: perturbative treatment in small J/U

order is given by the zero order states but first order in energy. For higher orders one
can use the formulas of non-degenerate perturbation theory except that all contribu-
tions from the unperturbed states of the degenerate subspace have to be excluded [41].
Here, the ground state energy does not change as 〈0|V |0〉 = 0. But the ground state is
modified in first order,

|Ψ1
0〉 = |0〉+

∑
m,d

〈m, d|V |0〉
εm,d − ε0

|m, d〉 (3.5)

= |0〉 − J

U

√
n̄(n̄+ 1)

∑
m

(|m, 1〉+ |m,L− 1〉) , (3.6)

as 〈m, d|V |0〉 = −J
√
n̄(n̄+ 1) (δd,1 + δd,L−1). All other excited states do not contribute

because their overlap with V |0〉 is zero.
The zero-order states |K, k〉 that diagonalize the kinetic part V of the Hamiltonian in
the degenerate subspace |m, d〉 are given by

|K, k〉 =

√
2

L

L−1∑
d=1

L∑
m=1

eidθ(K) sin(kd)eiKm|m, d〉, (3.7)

where K = 2πq/L, q = 1, ..., L, k = πp/L, p = 1, ..., L − 1, lattice spacing a ≡ 1 and
with θ(K) = (n̄ + 1) sin(K)/ (n̄+ (n̄+ 1) cos(K)). As may be seen from the Fourier
transform, K is the center of mass momentum of a doublon-hole pair and k is related
to the relative momentum krel = 2k −K.
The first order energy correction is given by 〈K, k|V |K ′, k′〉 such that the first-order
eigenenergies become

E(K, k) = U − 2Jr(K) cos(k)δK,K′δk,k′ , (3.8)

with r(K) =
√

(n̄+ 1)2 + n̄2 + 2n̄(n̄+ 1) cos(K). The degeneracy of the states |m, d〉 is

0U−6J

U−2J

U

U+2J

U+6J

E
(K

,k
)

k

Figure 3.1. – The lowest-energy band E(K, k) is centered around the on-site interaction
strength U (dotted line). The dispersion is of cosine shape. We find a band width of 12J for
K = 0 (dashed line) and of 4J for K = π (solid line) corresponding to the possible energy range
of excitations. See main text for a detailed discussion.

lifted except for a translational invariance by 2π in K-space. The energy band E(K, k)
for integer filling n̄ = 1 as a function of k for different center of mass momenta K
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is displayed in Figure 3.1. It is centered around the on-site interaction strength U .
The width depends on the value of K. The maximum width 12J is found for K = 0
corresponding to a lowest band of excitations of center of mass momentum 0. For K = π
the width is considerably reduced to 4J describing a lowest band of excitations with
center of mass momentum π. The possible energy range of excitations thus strongly
depends on the center of mass momentum K which is imposed by the perturbation as
we will see in the following.
The first excited doublon-hole states are also modified resulting in a band of excited
states,

|Ψ1
1〉 = |K, k〉 − 〈0|V |K, k〉

U
|0〉+

∑
α

|α〉, (3.9)

= |K, k〉+
J

U

√
2n̄(n̄+ 1)ηp sin(k)|0〉+

∑
α

|α〉, (3.10)

where ηp = (1− (−1)p). We summarize all other eigenstates but |0〉 that |K, k〉 couples
to via the kinetic energy V by |α〉 as we do not need their explicit form in any of the
following calculations.

3.1.1. Energy absorption

We now compute the energy absorption rate around ω ∼ U keeping only the first
perturbative term such that the following states and energies enter in equation (3.2),

E0 = 0 (3.11)

En = U − E(K, k) = U − 2Jr(K) cos(k) (3.12)

|0〉 = |0〉 (3.13)

|n〉 = |K, k〉 (3.14)

We compute the relevant matrix element,

〈K, k|O|0〉 =

√
2

L

L−1∑
d=1

L∑
m=1

e−idθ(K)e−iKm sin(kd)
L∑
j=1

(−1)j
(
〈m, d|a†jaj+1|0〉+ h.c.

)
(3.15)

=

√
2n̄(n̄+ 1)

L

∑
d,m,j

e−idθ(K)e−iKm sin(kd)(−1)j (δj,mδm+d,j+1 + δj+1,mδm+d,j)

(3.16)

=

√
2n̄(n̄+ 1)

L

∑
d,m,j

e−idθ(K)e−iKm sin(kd)(−1)j (δj,mδd,+1 + δj,m−1δd,L−1)

(3.17)

=

√
2n̄(n̄+ 1)

L

∑
d

e−idθ(K) sin(kd)

(
L∑

m=1

(−1)me−iKm

)
(δd,+1 − δd,L−1)

(3.18)

=

√
2n̄(n̄+ 1)

L
LδK,π

(
e−iθ(K) sin(k) + e−i(L−1)θ(K) sin(k(L− 1))

)
(3.19)

=
√

2n̄(n̄+ 1)δK,π

(
sin(k) + sin(k(L− 1))

)
(3.20)

=
√

2n̄(n̄+ 1) sin(k)ηpδK,π, (3.21)
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3.1. An analytical approach: perturbative treatment in small J/U

where we used
(∑L

m=1(−1)m exp(−iKm)
)

= LδK,π, θ(π) = 0 and sin(k) + sin(k(L −
1)) = sin(k)ηp. The full expression of the energy absorption rate normalized by the
number of lattice sites becomes

1

L

dE(t)

dt
=
π

L
ω|h|2n̄(n̄+ 1)

∑
k,K

sin2(k)η2
pδK,πδ (ω − U + 2Jr(K) cos(k)) , (3.22)

=
π

L
ω|h|2n̄(n̄+ 1)

L−1∑
p=1

η2
p sin2

(pπ
L

)
δ
(
ω − U + 2J cos

(pπ
L

))
, (3.23)

where we used r(π) = 1. Note that we can replace the sum
∑L−1

p=1 by
∑L−1

p=0 as the
p = 0-term is zero. From the formula we see that an excitation from the ground state
|0〉 to the lowest-band of excited states |K, k〉 via the superlattice perturbation O is
only possible for K = π. In lowest order the perturbation creates a doublon-hole pair
with center of mass momentum K = π. In contrast, the relative momentum can take
arbitrary values within the first Brillouin zone (0, 2π], where 0 is excluded and 2π
included. Momentum conservation of the atoms does not hold any longer due to the
superlattice amplitude modulation which introduces a lattice momentum kick of π as
may be seen from the Fourier transform of the perturbing operator (1.23). We have
discussed the operator in Section (1.3) and find that we expect it to create particle-hole
pairs with a center of mass momentum of π in accordance with the above result. To
obtain the continuum limit we use

1

L

L∑
p=1

(1− (−1)p)2 f
(pπ
L

)
→ 2

π

∫ π

0
dkf(k), (3.24)

δ (g(k)) =
∑
k0

δ(k − k0)

|g′(k0)|
, (3.25)

g(k) = ω − U + 2J cos(k), (3.26)

where k0 are the zeros of g(k) within the range of integration. There is only one
k0 = arccos((U − ω)/2J). We obtain

1

L

dE(t)

dt
=
ω|h|2n̄(n̄+ 1)

J

√
1−

(
U − ω

2J

)2

. (3.27)

The energy absorption rate normalized by the number of lattice sites has a
√

1− ((U − ω)/2J)2-
dependence within U − 2J ≤ ω ≤ U + 2J and a maximum of the absorption peak that
lies slightly to the right of U,

ω0 = U

(
1 +

(
2J

U

)2
)
. (3.28)

The range of absorption ω ∈ [U −2J, U +2J ] corresponds to the width 4J of the lowest
energy band E(K = π, k) (see Figure 3.1) and is a characteristic of the non-momentum
conserving perturbation O. This can be seen in Figures 3.2a, 3.2c and 3.2e where we
show the energy absorption rate (3.27) for interaction strengths U/J = 20, U/J =
40 and U/J = 60, respectively, in comparison to numerical results obtained in the
following Section 3.2. In contrast, the bandwidth is maximal for K = 0, E(K = 0, k) =
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(e) U = 60
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(f) U/J = 8

Figure 3.2. – The energy absorption rate (1/L) · dE(t)/dt as a function of the perturbing
frequency ω/J for J = 1 and different interactions U/J . In the strong coupling regime U/J =
20, 40, 60, displayed in (a), (c) and (e), respectively, we compare lowest-order perturbative
results (dashed lines) to the numerical results (solid lines) obtained from a density-matrix
renormalization group study in Section 3.2 for system length L = 30, Hilbert-space cut-off
D = 128, time step of the Trotter decomposition ∆t = 0.01, number of available states per site
σ = 3 at the central site j = 15. The range of absorption is given by ω ∈ [U − 2J, U + 2J ]
with a maximum slightly to the right of U . See main text for a more detailed discussion. We
also employ the density matrix renormalization group method to study the energy absorption
rate at weak couplings U/J = 8, 6, 4, displayed in (f), (d) and (b), respectively. We choose
parameters L = 40, D = 128, ∆t = 0.05, σ = 7 and the central site j = 20. The dashed
bottom lines indicate the range of absorption predicted by the perturbative approach at strong
coupling. See Section 3.2.1 for a detailed discussion.
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3.2. A numerical approach: density matrix renormalization group study

4J(2n̄ + 1). This corresponds to the range of absorption expected in lattice shaking
experiments where the amplitude modulation is commensurate with the equilibrium
lattice and thus momentum-conserving such that doublon-hole pairs with center of
mass momentum zero are created [17].

3.2. A numerical approach: density matrix renormalization
group study

We employ the adaptive time-dependent density matrix renormalization group method
as introduced in Section 2.3 to determine the time evolution of the system for a finite
system of length L with open boundary conditions. We use the code from [42]
The system is subjected to a periodic modulation of the lattice potential such that on
average energy will be absorbed if the modulation frequency corresponds to the energy
needed to create an excitation. We compute the energy on a single site j as a function
of the duration t of the perturbation given by

Ej(t) = J(t)〈a†jaj+1 + h.c.〉+
U

2
〈n2
j 〉 −

U

2
, (3.29)

where we used 〈nj〉 = n̄ = 1. We choose hopping J = 1 and ~ ≡ 1 such that all energies
are measured in units of J and time in units of 1/J . We consider a small modulation
h = 0.1.
We study different interaction regimes. We consider strong interactions U/J = 60, 40, 20
and smaller interactions U/J = 8, 6, 4 approaching the phase transition to the super-
fluid state at (U/J)c ∼ 3.4.
At strong interactions particle-hole excitations are formed which require an energy of
the order of the on-site interaction energy U . Absorption at higher orders, at multiples
of the on-site interaction U , is also expected. This would correspond to several particle-
hole excitations or multiply occupied sites. However, we do not study these here. We
thus expect an energy absorption at a modulation frequency ω ≈ U . One example of
typical numerical results for the absorbed energy at strong interactions U/J = 40 and
a perturbing resonant frequency ω/J = 40 is shown in Figure 3.3 and compared to
the off-resonant case ω/J = 38.2. On resonance, a clear absorption of energy by the
system is indeed visible which saturates at longer times. Energy absorption decreases
when shifting away from resonance and overall absorption is very small for ω/J = 38.2.
Additionally, oscillations with a frequency corresponding to the perturbing frequency
occur in both cases. However, this is not ideally displayed in Figure 3.3 because the
time step chosen for saving the data is about two thirds of the oscillation period on
resonance such that the oscillations corresponding to the perturbing frequency are not
properly resolved.
We want to determine the energy absorption rate as a function of the modulation fre-
quency and compare to analytical results from the preceding Section 3.1. We take the
slope m in the linear regime of Ej(t) as a measure for the energy absorption rate by a
single site. The fit function is thus given by

Ej(t) = m · t+ c · sin(ωt+ φ) + offset, (3.30)

with fit parameters m, c, φ and offset. We identify the slope m = (1/L) ·dE(t)/dt. The
linear dependence is modulated by c ∗ sin(ωt+ φ) where ω is the perturbing frequency.
The fitting range t ∈ [tmin, tmax] (see Figure 3.3) is chosen within the linear regime of

25



Chapter 3. Modulation spectroscopy of ultracold bosons in optical lattices

0 3 6 9 12 15
−1

1

3

5

7

9

t [1/J ]

E
j
(t
)
[J
]

 

 

Figure 3.3. – The energy Ej(t) at site j = L/2 as a function of the duration of the perturbation
t for the following parameters: hopping J = 1, on-site interaction U/J = 40, time step of the
Trotter decomposition ∆t = 0.01, number of available states per site σ = 3, system length
L = 40 and Hilbert-space cut-off D = 128. We probe the system at different frequencies around
resonance ω ≈ U . We display two frequencies. The rising curve (solid gray line) shows the result
for a perturbing frequency ω/J = 40 on resonance where the range considered for the fitting
procedure t ∈ [1, 4] is indicated by vertical dashed lines. The fitted curve (black solid line)
is a linear fit with an additional oscillation on top that has the frequency of the perturbation
(Equation (3.30)). A clear absorption of energy by the system is visible. In contrast, the
bottom curve shows the result for ω/J = 38.2 which is away from resonance and little energy
is absorbed. In both cases, an oscillatory behavior with the frequency corresponding to the
modulation frequency occurs. However, this is not distinctively visible in this plot due to the
relatively large time step chosen for saving the data.
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Ej(t) and such that Ej(t) has numerically converged (see below) and boundary effects
do not effect the bulk behavior within this time. See below for a detailed discussion of
the convergence and boundary effects.

Numerical convergence We have shown results for central sites as we find that bound-
ary effects are strong. We attribute this to the fact that excitations carry an extra
momentum kick of π introduced by the dimerized modulation as explained in Section
1.3 such that scattering from the boundaries significantly contributes already at short
times. We consider different system lengths in order to determine what minimum
system length is needed to be able to clearly separate bulk behavior from boundary
effects. For L = 20 boundary effects are strong such that no bulk region can be iden-
tified. However, for system lengths L = 30 or L = 40 we find good agreement of Ej(t)
on the central sites up to sufficiently large times such that we can study Ej(t) for a
single central site to understand the physics in the bulk.
For each interaction strength U/J and system length L we ensure that the observable
Ej(t) numerically converges within a certain total time. Note that the time range con-
sidered for fitting must be equal or smaller. By convergence we mean that the relative
error on Ej(t) is sufficiently small on variation of one of the parameters Hilbert-space
cut-off D, time step ∆t of the Trotter decomposition and number of available states
per site σ, for different modulation frequencies across the range of absorption while all
other parameters are kept fixed. We define the relative error on variation of one of
the preceding parameters param, eparamrel (t) (Equation (A.1) in Appendix A), and carry
out a detailed error analysis for the cases U/J = 20 and U/J = 4 in Appendix A. We
deduce suitable parameter values for our analysis. We also compute the relative error
when varying the system length L and the site j to a neighboring one that is likewise
odd or even in order to verify that we can separate bulk properties from boundary
effects. As an example we give the relative errors for one particular case at strong
coupling U/J = 20, L = 30 at site j = 15 at a frequency ω = 19 at the upper bound of
the fitting range tmax . We choose a fitting range of t = [1, tmax = 4] and find that Ej(t)
converges satisfactorily for parameters ∆t = 0.01, D = 128 and σ = 3. We vary one
parameter while keeping all others fixed at the preceding values. When varying ∆t be-
tween ∆ta = 0.01 and ∆tb = 0.005 we find e∆t

rel(tmax) = 0.01. When varying D between
Da = 128 and Db = 196 we find eDrel(tmax) = 3.0 ·10−5. When varying σ between σa = 3
and σb = 5 we find eσrel(tmax) = 0.04. When varying L between La = 30 and Lb = 50
(j = 25) we find eLrel(tmax) = 7.5 · 10−3. Finally, when varying j between ja = 15 and

jb = 13 we find ejrel(tmax) = 0.02. We conclude that for parameters ∆t = 0.01, D = 128
and σ = 3, Ej(t) converges satisfactorily up to times tmax = 4. Additionally, we can
separate bulk properties from boundary effects for L = 30 at the central site j = 15.

3.2.1. Energy absorption

The energy absorption rate as a function of modulation frequency is determined by
fitting (3.30) for each interaction strength U/J at different frequencies ω around res-
onance. We choose a suitable time range considered for fitting in accordance with an
observation of linear behavior, bulk behavior and numerical convergence of Ej(t) (see
above) within this time range. For instance, we choose fitting ranges t ∈ [1, 4] for
U/J = 20 and t ∈ [1, 6] for U/J = 4.
The energy absorption rate is shown in Figure 3.2 for strong interactions U/J =
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20, 40, 60 and for weak interactions U/J = 8, 6, 4 approaching the phase transition.
Let us discuss the results at strong coupling first which are shown in Figures 3.2a,
3.2c and 3.2e for U/J = 20, U/J = 40 and U/J = 60, respectively, in comparison
to the analytical results from the preceding Section 3.1. We observe a peak roughly
centered around the resonance frequency ω ≈ U . The maximum of the peak is slightly
shifted above ω ≈ U and this shift increases for decreasing interactions which is in
agreement with the perturbative result for the maximum at ω0 = U

(
1 + (2J/U)2

)
(Equation (3.28)). We do not observe a sharp peak at ω = U because the lowest band
of excitations has a certain width due to corrections in J which is given by 4J in the
perturbative approach. At U/J = 60 we find good qualitative accordance with the
perturbative result in both, shape and width of the peak, as shown in Figure 3.2e. We
find deviations in the overall amplitude and the shape of the wings. The numerical
results display a rather linear-like decay in the wings in contrast to a square root-like
decay in the analytical results. For decreasing interaction (U/J = 40, 20), the numer-
ical absorption peak shifts farther to the right as may be seen in Figure 3.2c and 3.2a.
We attribute this to the fact that higher-order corrections will shift the center of the
lowest energy band of excitations away from U . We also compute further corrections
in first-order by considering first-order states as well as first-order energies. However,
the additional first-order contributions vanish such that the deviations must stem from
higher order corrections in J/U whose study remains of interest for future works in
order to understand further corrections. Nevertheless, the qualitative agreement is
sufficiently good and we conclude, that the interpretation in terms of the creation of
doublon-hole pairs of center of mass momentum π from the perturbative approach in
Section 3.1 constitutes a reasonable interpretation of the nature of excitations at strong
interactions. In optical lattice experiments, the position of the spectral response due to
lattice shaking is sometimes used to calibrate the lattice depth [21], i.e. to determine
the on-site interaction strength U . As the width here, 4J , is much smaller than the
width of 12J in standard lattice shaking experiments [17] as discussed in Section 3.1.1,
our setup can be used for a better calibration and is attractive for experimentalists as
the implementation remains simple.
Let’s now turn the discussion to the results at weak coupling shown in Figures 3.2f,
3.2d and 3.2b for interaction strengths U/J = 8, U/J = 6 and U/J = 4, respectively.
We observe a broadening in the frequency range compared to the response at strong
interactions. The maximum is shifted farther away from resonance and the left flank
is flattened. This may be seen in Figures 3.2f, 3.2d and 3.2b for interaction strengths
U/J = 8, U/J = 6 and U/J = 4 respectively. Note, that the frequency range probed
is limited by our fitting procedure. At small perturbing frequencies we have to cut at
frequencies ω/J = 6.9, ω/J = 5.2 and ω/J = 4.1 for U/J = 8, 6, 4 respectively because
the amplitude of the oscillations with the perturbing frequency ω become of the order of
the overall rise in energy such that no linear slope can be reliably fit as may be seen in
Figure 3.3. At large perturbing frequencies we have to cut at frequencies ω/J = 10.95,
ω/J = 9.4 and ω/J = 8.75 respectively. Compared to the analytical strong coupling re-
sult which predicts absorption within ω ∈ [U−2J, U+2J ], the range is not only slightly
broadened at weak coupling but also shifted to higher frequencies. In Figures 3.2f, 3.2d
and 3.2b we indicate the absorption range up to the maximal frequency predicted by
the perturbative approach ωmax = U + 2J by horizontal dashed lines at the bottom.
For U/J = 8 the range is shifted to the right by about ∆(ω/J) ≈ 1. For decreasing
interactions this shift increases such that at U/J = 4 we do not observe absorption
below ω = U but the entire range of absorption lies shifted to the right of ω = U
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up to ω ≈ U + 5J . This somewhat corresponds to the expectation for the superfluid
case. In the non-interacting limit U = 0, all particles occupy the zero momentum state
and we expect excitations with energy 4J , corresponding to the band width, given the
constraint ∆k = π. For increasing interactions more momenta get occupied such that
the range of absorption smears out between zero and 4J which somewhat corresponds
to the response we observe here, however the peak is shifted by the finite on-site in-
teraction strength U/J = 4. Nevertheless, this interpretation has to be regarded with
caution as we are above the superfluid to Mott-insulator transition where this picture
is not valid. For interactions U/J = 8 and U/J = 6, the left flank is not only flat-
tened but we observe a dip appearing slightly above ω = U/J . We suspect these to
be numerical artifacts because errors are large in this region and the dip disappears at
U/J = 4 where errors are smaller. This may be investigated by repeating the analysis
for different input parameters such that we obtain an energy Ej(t) that is numerically
stable up to longer times such that we can increase the range of fitting and thus reduce
errors (see error analysis below). However, as the discussed results are quite recent
this goes beyond the time frame of this work. Nevertheless, further studies in order
to understand the nature of excitations at weak interactions remain of interest for our
future works.

Error analysis An error analysis of the energy absorption rate determined numerically
by fitting the slope m = (1/L) · dE(t)/dt of (3.30) is not straightforward as different
sources are contributing. First of all, there is a fitting error returned by Matlab which
we use for our analysis. Secondly, we have a freedom of choice in the fitting range
t ∈ [tmin, tmax]. Finally, the errors on the choice of numerical parameters (discussed
above and in Appendix A) will lead to an error on m. We define the following three
errors

• Matlab returns the 95% confidence bounds on m, the lower bound mlow and
the upper bound mup, that allow a deviation of 5% on m. The confidence
bounds are calculated using the mean squared error and the Jacobian of the
fitted values with respect to the coefficients [43]. We define the fit error ∆fit =
(abs(m−mlow) + abs(m−mup)) /2.

• We vary the upper bound tmax of the fitting range by ±1 and determine the corre-
sponding slopem±. We define the fitting range error ∆range = (abs(m−m+) + abs(m−m−)) /2.

• We consider the largest relative error eparamrel (tmax) from the variation of parame-
ters and determine the corresponding slope m̃ when varying this parameters. We
define the resulting error on m as ∆num = abs(m− m̃).

This error analysis has to be carried out for each interaction strength U/J and each
value of ω separately. We present error bars in Figure 3.2. Each error bar displays the
largest of the three above errors. We exemplify this for the case U/J = 20. We find
that the leading relative errors stem from the variation of σ or the variation of j (see
Appendix A) depending on the value of ω. The resulting error ∆num on m is of same
order of magnitude as the errors ∆fit and as ∆range and we cannot determine one leading
error. See Appendix A for a more detailed discussion. For increasing interactions ∆range

increases such that it is the dominating error for U/J = 60. At weak interactions, ∆fit

is the dominating error but ∆num is of the same order of magnitude whereas ∆range is
one order of magnitude smaller. For U/J = 6 and U/J = 8 the error bars are larger
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compared to U/J = 4 because we had to choose a shorter fitting range that only covers
few oscillation periods and thus leads to a larger fitting error.
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Chapter 4.

Thermometry of fermions in optical lattices
by modulation spectroscopy

As motivated in the Introduction one of the key obstacles in fermionic lattice experi-
ments is the lack of reliable methods to adequately measure the temperature of a Fermi
gas confined to an optical lattice.
The situation is much better in the weakly interacting regime for harmonically trapped
gases in the absence of an additional lattice potential. The temperature can directly
be determined by a time-of-flight measurement. The integrated density profile of the
cloud is imaged after suddenly turning off the potential and letting the gas expand.
For sufficiently long expansion times, the measured density profile is equivalent to the
momentum distribution in the trap and can be fit to certain functions to determine
the temperature [44]. This gets more complicated for increasing interactions since ex-
pansion is no longer ballistic. Luckily, temperature can often still be determined from
the ’tail’ of the distribution. However, this fails at very low temperatures. In partic-
ular, in the presence of a lattice there is no controlled theory to connect observables
to temperature. Different schemes have been suggested and experimentally tested.
In the case of bosonic atoms, direct thermometry is possible by matching experimen-
tal time-of-flight images to theoretical quantum Monte Carlo simulations taking into
account finite expansion time and finite imaging resolution [12]. However, this is com-
putationally expensive and not possible in the fermionic case. For fermionic atoms,
one usually determines the temperature in the lattice from measuring the temperature
before switching the lattice on and after switching it off [9]. Adiabadicity during the
loading process is assumed which means that the temperature changes when ramping
the lattice but the entropy stays constant. The temperature after loading is then deter-
mined from the initial entropy. However, this is limited due to non-adiabatic heating
processes such as light scattering and fails for in-lattice cooling. One possible approach
to directly measure the temperature in fermionic experiments is by measuring the dou-
ble occupancy in the lattice which is very sensitive to thermal fluctuations and may
be connected to theoretical calculations [45]. But this is limited to temperatures that
are large enough to significantly affect the double occupancy. For an overview over
different possible schemes see Reference [46]. All these proposals have their limitations
and most methods cannot be extended into the low temperature regime of interest.
Here, we present a scheme to directly measure the temperature of a Fermi gas trapped
in an optical lattice by periodically driving the lattice as introduced in Section 1.3.
Our scheme constitutes a promising alternative to other proposals. The experimental
setup is particularly simple and it does not require the input of theoretical modeling.
Furthermore, this scheme extends to very low temperatures below the Néel tempera-
ture where antiferromagnetic ordering sets in and which are still far from being met in
experiment.
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4.1. Non-interacting tight-binding fermions subjected to a
periodic perturbation

The homogeneous system in one dimension The single-band tight-binding Hamil-
tonian for non-interacting fermions in an optical lattice in one dimension is given by
Equation (1.15),

H0 = −J
∑
j,σ

(c†j,σcj+1,σ + h.c.)− µ
∑
j,σ

nj,σ. (4.1)

The Hamiltonian is diagonalized by the Fourier transform

cjσ =
1√
L

∑
k

eikajck,σ, (4.2)

where a is the lattice spacing and L is the number of lattice sites. We obtain

H0 =
∑
k,σ

(εk − µ)c†k,σck,σ, (4.3)

with the dispersion given by

εk = −2J cos(ka). (4.4)

The lattice momentum k is discretized k = 2πm/(La) with m = −L/2+ 1, ..., L/2 such
that there is L k-values within the first Brillouin zone (−π/a, π/a]. The notation used
is such that −π/a /∈ (−π/a, π/a] and π/a ∈ (−π/a, π/a]. There is 2L available single-
particle states since each lattice sites can be occupied with two particles of different
spin σ =↑, ↓.
We subject the above equilibrium system to a periodic superlattice modulation as
introduced in Section 1.3 given by Equation (2.1), Hpert = h sin(ωt)O, which injects
momentum π into the system . The Fourier transform of the perturbing operator given
by Equation (1.22) gives

O =
∑
k,σ

(
ei(k+π)c†k,σck+π,σ + h.c.

)
, (4.5)

where we set a ≡ 1. It is apparent that particles of same spin are transferred from a
state of momentum k to a state of momentum k + π as discussed in Section 1.3. This
transfer is only possible if the state (k, σ) is initially occupied and the state (k + π, σ)
is initially unoccupied. Hence, the response of the system to the perturbation will
strongly depend on the filling of the system.

4.1.1. Exact time dependence of the quasimomentum distribution

We want to compute the exact time-dependence of the occupation of a state of quasi-
momentum k,

〈nk(t)〉 = 〈c†k(t)ck(t)〉. (4.6)

The time evolution of the fermionic operators is given by Heisenberg’s equation of
motion,

−i~ d
dt
ck(t) = [H, ck(t)], (4.7)
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where H = H0 + h sin(ωt)O is given by Equations (4.3) and (4.5) with µ = 0 as the
particle number is fixed during time evolution. We neglect the spin σ for now. As H
only couples states of momentum k and k + π we obtain two coupled equations that
can be written in the following form

i~
d

dt
~c(t) = M~c(t), (4.8)

with ~c(t) = (ck(t), ck+π(t))T and

M =

(
εk 2ih sin(ωt) sin(k)

−2ih sin(ωt) sin(k) εk+π

)
. (4.9)

Effectively, we are dealing with a driven two-state system. The standard procedure to
solve such a two-level system is a transformation of operators ~̃c(t) = U~c(t) [35],

U =

(
exp(iω/2t) 0

0 exp(−iω/2t)

)
, (4.10)

where U is a unitary matrix, U †U = I. This transformation corresponds to a change
of reference frame from the laboratory frame to a rotating frame with angular velocity
ω. We transform the system of coupled Equations (4.8),

i~U~̇c(t) = UMU †U~c(t), (4.11)

and obtain

U~̇c(t) = ~̇̃c(t)− iω

2
σz~̃c(t), (4.12)

where σz =
(

1 0
0 −1

)
is the Pauli-matrix, and

UMU † =

(
εk hi sin(k)(exp(2iωt) + 1)

−hi sin(k)(exp(−2iωt) + 1) −εk

)
. (4.13)

Near resonance, ω = ±2εk, we can neglect rapidly oscillating terms exp(±2iωt) because
they average out. This is known as the rotating-wave approximation [47]. We obtain

UMU † ≈
(

εk hi sin(k)
−hi sin(k) −εk

)
, (4.14)

which is now time-independent. Combining (4.12) and (4.14) gives

i~~̇̃c(t) =

(
εk − ~ω

2 hi sin(k)

−hi sin(k) −εk + ~ω
2

)
~̃c(t), (4.15)

where the time-dependence is entirely comprised in the coefficients ~̃c(t). This system
of equations can be solved by the simple ansatz

~̃ck(t) = A sin

(
Ω

2
t

)
+B cos

(
Ω

2
t

)
, (4.16)

~̃ck+π(t) = C sin

(
Ω

2
t

)
+D cos

(
Ω

2
t

)
. (4.17)
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From the second derivative we obtain

(~Ω)2 = 4

((
εk −

~ω
2

)2

+ (h sin(k))2

)
. (4.18)

By matching the first and second derivatives of the ansatz with the system of Equations
(4.15) at time t = 0 we obtain

A = −2
i

~Ω

((
εk −

~ω
2

)
c̃k(0)− h sin(k)c̃k+π(0)

)
, (4.19)

B = c̃k(0), (4.20)

C = −2
i

~Ω

(
−h sin(k)c̃k(0)−

(
εk −

~ω
2

)
c̃k+π(0)

)
, (4.21)

D = c̃k+π(0). (4.22)

Note that 〈nk(t)〉 = 〈c†k(t)ck(t)〉 = 〈c̃†k(t)c̃k(t)〉 such that we can now compute 〈nk(t)〉.
We obtain

〈nk(t)〉 =

(
4

(εk − ~ω
2 )2

(~Ω)2
sin2

(
Ω

2
t

)
+ cos2

(
Ω

2
t

))
〈c†k(0)ck(0)〉 (4.23)

+ 4
(ht̃ sin(k))2

(~Ω)2
sin2

(
Ω

2
t

)
〈c†k+π(0)ck+π(0)〉, (4.24)

〈nk+π(t)〉 = 4
(ht̃ sin(k))2

(~Ω)2
sin2

(
Ω

2
t

)
〈c†k(0)ck(0)〉 (4.25)

+

(
4

(εk − ~ω
2 )2

(~Ω)2
sin2

(
Ω

2
t

)
+ cos2

(
Ω

2
t

))
〈c†k+π(0)ck+π(0)〉. (4.26)

At zero temperature all single-particle levels up the Fermi level εF = µ = −2t cos(kFa)
are occupied, where kF is the Fermi momentum. The ground state wave function is
the Fermi sea

|GS〉 =
∏
|k|≤kF

c†k|0〉, (4.27)

where |0〉 is the vacuum. We denote zero temperature expectation values by 〈·〉0. They
are taken with respect to the ground state such that Equation (4.23) yields

〈nk(t)〉0 =

(
4

(εk − ~ω
2 )2

(~Ω)2
sin2

(
Ω

2
t

)
+ cos2

(
Ω

2
t

))
Θ(kF − |k|) (4.28)

+ 4
(ht̃ sin(k))2

(~Ω)2
sin2

(
Ω

2
t

)
Θ(kF − |k + π|), (4.29)

〈nk+π(t)〉0 = 4
(ht̃ sin(k))2

(~Ω)2
sin2

(
Ω

2
t

)
Θ(kF − |k|) (4.30)

+

(
4

(εk − ~ω
2 )2

(~Ω)2
sin2

(
Ω

2
t

)
+ cos2

(
Ω

2
t

))
Θ(kF − |k + π|), (4.31)

with the unit step function Θ(x) =

{
0, x < 0

1, x ≥ 0
. Depending on the initial filling of

the Fermi sea we may observe Rabi oscillations with frequency Ω between state k and
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4.1. Non-interacting tight-binding fermions subjected to a periodic perturbation

state k+π. If neither state k nor state k+π is initially occupied, both occupations are
constant 0 and no oscillations occur since no excitations are possible. In the case of both
states being initially occupied, also no excitations are possible and both occupations
are constant 1. If state k is initially occupied and state k+π unoccupied the occupation
of state k oscillates between 1 and 0 with Rabi frequency Ω and the occupation of state
k+π oscillates between 0 and 1 with the same frequency Ω. This is shown in Figure 4.1.
At finite temperatures particles are thermally excited around the Fermi surface such
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Figure 4.1. – The exact time-dependence of the occupation as a function of time in units of the
oscillation period T = 2π/Ω at zero temperature. We investigate the occupation of momentum
state k = π/4. We choose half-filling and hopping parameters t = 1 and h = 0.1t. We excite on
resonance where the rotating wave approximation is valid ω = 2εk = −4t cos(k). Momentum
k = π/4 is initially occupied and its occupation 〈nk(t)〉 (solid line) oscillates between 1 and 0 at
zero temperature. The momentum state k+π is initially unoccupied. Its occupation 〈nk+π(t)〉
(dashed line) oscillates between 0 and 1.

that the filling softens around kF . This softening is governed by the Fermi function

f(εk − µ) =
1

1 + eβ(εk−µ)
, (4.32)

where β = (kBT )−1 is the inverse temperature. At zero temperature the Fermi function
equals 1 for ε < µ and sharply drops to zero at ε = µ. At finite temperatures this
feature softens such that the so-called Fermi tails appears which widens with increasing
temperatures. To obtain the finite temperature occupation we have to replace the
zero temperature occupation 〈c†k(0)ck(0)〉0 in Equation (4.23) by the finite temperature
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occupation 〈c†k(0)ck(0)〉T = f(εk − µ) which is given by the Fermi function. We obtain

〈nk(t)〉T =

(
4

(εk − ~ω
2 )2

(~Ω)2
sin2

(
Ω

2
t

)
+ cos2

(
Ω

2
t

))
f(εk − µ) (4.33)

+ 4
(ht̃ sin(k))2

(~Ω)2
sin2

(
Ω

2
t

)
f(−εk − µ), (4.34)

〈nk+π(t)〉T = 4
(ht̃ sin(k))2

(~Ω)2
sin2

(
Ω

2
t

)
f(εk − µ) (4.35)

+

(
4

(εk − ~ω
2 )2

(~Ω)2
sin2

(
Ω

2
t

)
+ cos2

(
Ω

2
t

))
f(−εk − µ). (4.36)

The maximum occupation is no longer given by 1 but by the Fermi function f(εk−µ) ≤
1. This serves as a direct temperature measurement of the atoms trapped in the lattice
for intermediate fillings εmin = εk=0 < µ < εk=π = εmax where the Fermi function
yields a clear Fermi tail around the chemical potential µ. Measuring the occupation
of the resonant k-value for different perturbing frequencies ranging from ~ω = 2εk=0

to ~ω = 2εk=π will give direct access to the temperature-dependent part in the Fermi
function. The amplitude of the 〈nk(t)〉T -oscillation as a function of the corresponding
resonance frequency εk = ~ω/2 yields a temperature-dependent curve which may be
fit to the Fermi function with a minimum of fitting parameters, temperature T and
chemical potential µ. The temperature may be extracted from the fit. The simplicity
of this proposal is thanks to the high k-selectivity of our perturbation. As clear Rabi-
oscillations are little likely to be observed in experiment due to the influence of the
external trapping potential which couples several momenta we do not go into more
detail here. Details concerning the fitting procedure will be discussed in Section 4.1.2
in the linear response treatment since experimental data usually directly relates to this.
At zero temperature we compare to numerical results from exact diagonalization [48] of
free spinless fermions with an additional external potential corresponding to an optical
lattice with time-dependent periodic superlattice driving. The Hamiltonian is given by

H =
~2

2m

d2

dx2
+ V (x, t), (4.37)

V (x, t) = V0 cos2(kLx) + h̃V0 sin(ωt) cos(kLx), (4.38)

where ~ = 1.054571726 · 10−34Js is the reduced Planck constant, m = 40u, u =
1.660538 · 10−27kg, is the mass of potassium 40 atoms, kL = 2π/λ is the laser wave
number with wavelength λ = 532nm, V0 = 11.7Er is the strength of the optical lat-
tice potential with recoil energy Er = (~kL)2/2m and h̃ is the small amplitude of the
perturbation. We choose h̃ = 0.001 and verify that the perturbation is sufficiently
small by mapping (4.38) to tight-binding. We determine the energy bands of (4.38)
by numeric band structure calculations [48]. At t = 0 this corresponds to the equi-
librium lattice described by H0 (4.3) and we fit the dispersion (4.4) to extract the
hopping J . At t = π/ω the above potential corresponds to the dimerized tight-binding
Hamiltonian H0 +hO given by Equations (4.3) and (4.5) at t = π/ω with eigenenergies
Ek = ±

√
2J2 + 2h2 + 2(J2 − h2) cos(2k). We fit Ek to the band structure of (4.38)

at t = π/ω in order to extract h and find the ratio h/J ≈ 0.035 which is sufficiently
small. We verify the k-selectivity of our perturbation. In Figure 4.2 the occupation as
a function of time 〈nk(t)〉 for all k in the first Brillouin zone at half-filling is shown.
We have 80 lattice site and 80 k-values in the first Brillouin zone accordingly. The
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4.1. Non-interacting tight-binding fermions subjected to a periodic perturbation

frequency of the perturbation is chosen in such a way that we excite k-value number
25 which is initially occupied. We observe Rabi oscillations for this k-value to k-value
number 55 which is initially unoccupied. This corresponds to ∆k ≈ π since there are
80 k-values in the first Brillouin zone that are folded into half the Brillouin zone [0, π].
However, we also observe the excitation of the neighboring momenta but with a weaker
amplitude. We attribute this to an error due to the discretization of the continuous
model, to finite size effects as well as to the finite duration of the perturbation which
leads to a finite width in energy [49]. However, a direct comparison of the analytical
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Figure 4.2. – The occupation 〈nk(t)〉 (colourmap) from exact diagonalization for all 80 k-values
in the first Brillouin zone (y-axes) as a function of time (x-axis) in units of ∆t = ~δt/J where
δt = 0.0453 and J is the hopping parameter. Rabi oscillations between states of momentum k
and k + π are clearly visible on resonance (see main text).

formula 〈nk(t)〉 to the numerical results remains difficult due to the bad accuracy of k
in the exact diagonalization but high k-sensitivity of the dynamics of 〈nk(t)〉.

4.1.2. Energy absorption in linear response theory

For weak perturbations, corresponding to h << J the energy absorption rate dE(t)/dt
can be computed within linear response theory as introduced in Section 2.1. The energy
absorption rate by Equation (2.10). It depends on the intensity |h|2 of the driving field
and is proportional to the imaginary part complex susceptibility ImχOO† . It is constant
in time such that the energy of the system E(t) is increasing linearly in time. Linear
response is a common method used in lattice shaking experiments as a linear rise in
energy E(t) is usually observed for sufficiently small perturbations. The measurement
of E(t) yields a linear slope after a short transient phase and saturates at long times.
Measuring the slope m in the linear regime of E(t) directly yields the imaginary part
of the complex susceptibility through

ImχOO†(ω) =
−2m

|h|2ω
. (4.39)

Note that the observation of a linear rise in energy is not obvious at first sight. A
sinusoidal perturbation resonantly coupling two discrete levels should yield oscillations
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between these two levels. However, integration over a group of states yields a linear
rise in energy for sufficiently large times [49] which explains the linear slope usually
observed in experiment. A system subjected to a periodic modulation of the lattice
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Figure 4.3. – A density matrix renormalization group study of the energy in the system as a
function of time for spinless tight-binding fermions in the case of an additional nearest-neighbor
interaction in (a) and in the case of an additional external parabolic trapping potential in (b).
The Hilbert-space cut-off M and the time step of the Trotter decomposition ∆t are chosen
according to numerical convergence within the total time considered. All energies are given in
units of the hopping J = 1 (~ = 1) such that the time is measured in 1/J and we choose the
following parameters: in (a) M = 256, ∆t = 0.1, nearest-neighbor interaction strength V = 1,
ω = 3, filling n = 2/3 and in (b) M = 196, ∆t = 0.01, Vt = 0.025, ω = 4, filling n = 1/2.
In both cases we observe a linear rise (as indicated by the linear solid line) in energy E(t) as
expected in experiment (see main text).

potential will on average absorb energy if the modulation frequency approximately
corresponds to the energy needed to create an excitation. However, a comparison
with density matrix renormalization group calculations [42] of E(t) for one-dimensional
spinless non-interacting tight-binding fermions suggests that we would not observe a
linear rise in energy. In the case of our particular perturbation no linear slope but
distinct oscillations occur due to the high k-selectivity of our perturbation which only
couples few momenta. We cover the exact time-dependence for this case in Section
4.1.1 above. However, density matrix renormalization group calculations for spinless
fermions show that a linear rise of E(t) is recovered in the case of either an additional
nearest-neighbor interaction or an additional external trapping potential which we have
in most experiments. This is expected since the nearest-neighbor interaction-term or
an additional trapping potential in the Hamiltonian couple different momenta. The
nearest-neighbor interaction term in the Hamiltonian is given by

Hnn = V

L−1∑
j

njnj+1. (4.40)

An additional parabolic trapping potential is given by

Htrap = Vt
∑
j

j2nj , (4.41)

where Vt = (m/2)ω2
t a

2 with the atom mass m, the trapping frequency ωt and the
lattice spacing a. In Figure 4.3 the energy (in units of the hopping J = 1, ~ = 1)
as a function of time (in units of 1/J) for both cases is shown. In both cases the
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4.1. Non-interacting tight-binding fermions subjected to a periodic perturbation

absorbed energy shows an oscillatory behavior corresponding to the frequency of the
perturbing frequency and an energy absorption on average indicated by the linear rise.
In 4.3a nearest-neighbor interaction was added and the linear rise in energy is clearly
visible up to times t = 30/J . The energy then saturates to a constant value around
which oscillations persist. In 4.3b an external trapping potential was added. The
linear rise is not as strong as for the nearest-neighbor interaction but still distinct for
times t ∈ (20/J, 60/J). As a trapping potential is always present in experiment a linear
dependence of E(t) is to be expected and we continue with a linear response treatment.

The zero temperature response At zero temperature all single-particle levels up the
Fermi level εF = µ = −2J cos(kFa) are occupied, where kF is the Fermi momentum.
We now consider two spin states ↑ and ↓ such that the ground state wave function is

(a) the half-filled band (b) the zero temperature response of the
half-filled band

Figure 4.4. – Possible excitations in the half-filled band kF = π/2. In Figure (a) the half-filled
band in the reduced zone scheme is shown. Excitation energies of ω ∈ (0, 4J ] are possible. The
minimal absorbed energy of ω slightly above 0 corresponds to exciting a particle of momentum
slightly below k = π/2 into an unoccupied state of momentum slightly below k = 3π/2 in the
extended or slightly below k = −π/2 in the reduced zone scheme as indicated by the shorter
arrow. The maximal absorbed energy ω = 4J corresponds to exciting a particle of momentum
k = 0 with energy εk=0 = −2J into an unoccupied state of momentum k = π with energy
εk=π = 2J as indicated by the longer arrow. In Figure (b) the corresponding response function
for J = 1 is shown. Note that the response drops to zero at ω = 4J because the pref actor
becomes zero.

the Fermi sea

|GS〉 =
∏

|k|≤kF ,σ

c†k,σ|0〉, (4.42)

where |0〉 is the vacuum. We calculate the zero temperature response given by the
imaginary part of the complex susceptibility which governs the energy absorption rate
(2.10). The complex susceptibility is given by Equation (2.9). We thus need to calcu-
late the equilibrium correlation function 〈[O(t), O]〉0, where 〈·〉0 denotes the expectation
value with respect to the ground state (4.42). The operator O(t) is given in the Heisen-
berg picture O(t) = exp(iH0t)O exp(−iH0t) where O is given by Equation (4.5) and
H0 is given by Equation (4.3) such that [O(t), O] = O(t)O − h.c.. We set a ≡ 1 and
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~ ≡ 1 and obtain

O(t)O =
∑

k,k′,σ,σ′

{
ei(k+k′)c†k,σ(t)ck+π,σ(t)c†k′,σ′ck′+π,σ′ (4.43)

+ ei(k−k
′)c†k,σ(t)ck+π,σ(t)c†k′+π,σ′ck′,σ′ (4.44)

+ e−i(k+k′)c†k+π,σ(t)ck,σ(t)c†k′+π,σ′ck′,σ′ (4.45)

+ e−i(k−k
′)c†k+π,σ(t)ck,σ(t)c†k′,σ′ck′+π,σ′

}
. (4.46)

We need σ = σ′ to obtain non-zero expectation values in the correlation function.
However, k′ may be equal to k or k + π. Considering both these cases leads to

O(t)O =
∑
k,σ

(
1− e2ik

)
ei(εk−εk+π)tc†k,σck,σ (4.47)

+
(

1− e−2ik
)
e−i(εk−εk+π)tc†k+π,σck+π,σ (4.48)

−
{(

1− e2ik
)
ei(εk−εk+π)t +

(
1− e−2ik

)
e−i(εk−εk+π)t

}
c†k+π,σc

†
k,σck,σck+π,σ,

(4.49)

where we used the Heisenberg equation of motion ck,σ(t) = exp(−i(εk − µ)t)ck,σ.
It follows

[O(t), O] = O(t)O − h.c (4.50)

= 4
∑
k,σ

sin2(k)
(
ei(εk−εk+π)t − e−i(εk−εk+π)t

)
c†k,σck,σ (4.51)

= 4
∑
k,σ

sin2(k)
(
e−i∆εkt − ei∆εkt

)
c†k,σck,σ, (4.52)

where ∆εk := εk+π − εk = −2εk. The energy difference ∆εk is the energy injected
into the system when exciting a particle from an occupied state of momentum k to an
unoccupied state of momentum k + π. Thus

〈[O(t), O]〉0 = 〈GS| [O(t), O] |GS〉 (4.53)

= 4
∑
k,σ

sin2(k)
(
e−i∆εkt − ei∆εkt

)
〈GS|c†k,σck,σ|GS〉 (4.54)

= 4
∑
σ

kF∑
k=−kF

sin2(k)
(
e−i∆εkt − ei∆εkt

)
(4.55)

= 8

kF∑
k=−kF

sin2(k)
(
e−i∆εkt − ei∆εkt

)
. (4.56)

The sum in the final result runs over all |k| ≤ kF since the ground state |GS〉 is the
Fermi sea given by Equation (4.42). The response is given by

ImχO,O = −8δ

kF∑
k=−kF

sin2(k)

(
1

δ2 + (ω −∆εk)2
− 1

δ2 + (ω + ∆εk)2

)
(4.57)

= −8π

kF∑
k=−kF

sin2(k)
(
δ(ω −∆εk)− δ(ω + ∆εk)

)
. (4.58)

40



4.1. Non-interacting tight-binding fermions subjected to a periodic perturbation

(a) the quarter-filled band (b) the three-quarter-filled band

(c) the zero temperature response of the
quarter- and three-quarter-filled band

Figure 4.5. – Possible excitations in the quarter-filled band kF = π/4, Figure (a), and
the three-quarter-filled band kF = 3π/4, Figure (b), and the corresponding zero temperature
response for J = 1, Figure (c), which is the same in both cases (see main text). In Figures (a)
and (b) the quarter filled band and the three quarter filled band in the reduced zone scheme are
shown. The filling is indicated by the chemical potential µ (dotted line). The minimal possible
absorption energy corresponds to exciting a particle of momentum k = π/4 into an unoccupied
state of momentum k = 5π/4 in the extended or k = −3π/4 in the reduced zone scheme as
indicated by the shorter arrows. This corresponds the energy cut-off at ω = 4t| cos(kF )| = 4t/

√
2

in Figure (c). The maximal possible absorption energy corresponds to exciting a particle of
momentum k = 0 into an unoccupied state of momentum k = π as indicated by the longer
arrows.
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To obtain the continuum limit for ω > 0 we use∑
k

→ 1

∆k

∫
dk =

L

2π

∫ kF

−kF
dk, (4.59)

∫ kF

−kF
dkf(k)δ (g(k)) =

n∑
i=1

f(ki)

|g′(ki)|
, (4.60)

g(ki) = 0, ki ∈ (−kF , kF ], (4.61)

such that the response normalized to the number of lattice sites L becomes

ImχO,O
L

= − 2

J

√
1−

( ω
4J

)2
·Θ (ω − 4J | cos(kF )|) , (4.62)

where ωmin = 4J | cos(kF )| > 0 is the minimal energy transfer possible according to the
filling. The maximum possible energy transfer is ωmax = 4J which is the band width
and corresponds to exciting a particle from the momentum state k = 0 with energy
εk=0 = −2J into the momentum state k = π with energy εk=π = 2J . This transfer is
possible for all fillings except if the band is completely empty or completely occupied.
The energy range of absorption increases for increasing Fermi momenta kF and kF <
π/2 since ωmin = 4J | cos(kF )| decreases from 4J to 0 when kF is increased from zero
filling kF = 0 to half-filling kF = π/2. Note that ωmin = 0 is not possible though
since at kF = π/2 both states kF = ±π/2 are occupied which prevents the transfer.
In addition, no transfer may be caused by a static perturbation ω = 0. Increasing kF
even further above π/2 the energy range of absorption decreases again for increasing
Fermi momenta since ωmin increases from slightly above 0 to 4J when kF is increased
from half-filling kF = π/2 to a completely filled band kF = π.
The energy range of absorption is maximal ω ∈ (0, 4J ] at kF = π/2 since all states up
to k = π/2 are filled such that ωmin slightly above 0 and empty states are available to
transfer particles from k to k + π for all k < kF . This situation is shown in Figure
4.4. For kF < π/2 not enough states below k = π/2 are occupied to obtain an energy
transfer of ω < 4J | cos(kF )|. For kF > π/2 the energy range of absorption decreases
again because the empty states above k = π/2 which are needed for the excitation get
successively occupied. The response is symmetric around kF = π/2 such that kF < π/2
and 2π − kF > π/2 show the same response. This situation is displayed in Figure 4.5.
Note that the response is suppressed at ω = 4J for all kF because the prefactor∼ sin2(k)
equals zero at k = 0. The strongest response occurs at ωmin where the prefactor

takes its maximum value. In the continuum limit this is reflected in the
√

1−
(
ω
4J

)2
-

dependence.

The finite temperature response At finite temperature particles are thermally ex-
cited around the Fermi surface such that the filling softens around µ. This softening is
governed by the Fermi function

f(εk − µ) =
1

1 + eβ(εk−µ)
, (4.63)

where β = kBT is the inverse temperature. At zero temperature the Fermi function
equals 1 for ε < µ and sharply drops to zero at ε = µ. At finite temperatures this
feature softens such that the so-called Fermi tails appears which widens with increas-
ing temperatures. We expect the sharp cut-off at the filling in the zero temperature
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response to soften and show a Fermi tail.
To obtain the finite temperature response we have to replace 〈GS|c†k,σck,σ|GS〉 by

〈c†k,σck,σ〉T in the equilibrium correlation function given by Equation (4.55). The fi-

nite temperature expectation value of the number operator nk,σ = c†k,σck,σ is given by
the Fermi function,

〈c†k,σck,σ〉T = f(εk − µ). (4.64)

We obtain

(a) response at quarter-filling for T =
0.1J

(b) response at half-filling for T = 0.1J

(c) response at quarter-filling for T = J (d) response at half-filling for T = J

Figure 4.6. – We compare the finite temperature response (dashed line) to the zero tempera-
ture response (solid line) for J = 1 and two different temperatures at quarter-filling (equivalent
to three-quarter-filling) and half-filling. In Figure (a) the response for quarter-filling and in
Figure (b) the response for half-filling are shown for a small temperature of T = 0.1J . The
Fermi tail is clearly visible in the finite temperature response, in particular in the case of
quarter-filling. In Figure (c) the response for quarter-filling and in Figure (d) the response for
half-filling are shown for a larger temperature of the order of the hopping parameter T = J . In
contrast to the low temperature case the occupancy is smeared out over the entire band such
that the temperature dependence is less distinct and excitations at all energies are possible.

〈[O(t), O]〉T = 8
∑
k

sin2(k)f(εk − µ)
(
e−i∆εkt − ei∆εkt

)
. (4.65)

Note that the sum now runs over all k in the first Brillouin zone in contrast to the zero
temperature case since the Fermi momentum kF is no longer defined. Cutting the sum
at kF is now replaced by the Fermi factor which smoothly cuts of the response and
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introduces a temperature dependence. The response is given by

ImχO,O
L

= −8δ

L

∑
k

sin2(k)f(εk − µ)

(
1

δ2 + (ω −∆εk)2
− 1

δ2 + (ω + ∆εk)2

)
(4.66)

= −8π

L

∑
k

sin2(k)f(εk − µ) (δ(ω −∆εk)− δ(ω + ∆εk)) (4.67)

=
2

J

√
1−

( ω
4J

)2 (
f
(ω

2
− µ

)
− f

(
−ω

2
− µ

))
. (4.68)

At zero temperature the filling is given by µ such that the response is cut off at the cor-
responding minimal excitation energy. Here, in the finite temperature case, the filling
is softened around the Fermi surface leading to a Fermi tail in the response. The Fermi
tail is clearly visible for intermediate fillings away from zero, half or complete filling.
The finite temperature response in comparison to the zero temperature response for
different temperatures is shown in Figure 4.6. The softening is of the order of magni-
tude of kBT such that is gets completely washed out for temperatures approaching the
order of magnitude of J . Particles are smeared out over the entire band such that the
range of excitations covers the maximal range ω ∈ (0, 4J ] even for smaller fillings, but
with a reduced amplitude.

The response of the trapped system The study of the one-dimensional homogeneous
system is very instructive since it becomes clear what excitations are possible depending
on the filling at zero temperature and how the cut-off softens due to thermal excitations
at finite temperatures. However, since we aim at measuring the energy absorption and
extracting the temperature from it, we need to study a setup that is more realistic in
experiment, i.e. adding an external trapping potential and considering three dimensions
for the equilibrium system.
In three dimensions the single-band tight binding Hamiltonian is analogous to the
one-dimensional case give by Equation (4.1) where the sum over j now sums over all
three-dimensional lattice vectors ~rj . The dispersion is now given by

ε~k = εkx + εky + εkz (4.69)

= −2J cos(kx)− 2J cos(ky)− 2J cos(kz). (4.70)

We consider an isotropic harmonic trapping potential

V (~r) = Vt

(
|~r|
a

)2

, (4.71)

with strength Vt = (m/2)ω2
t , where ωt is called the trapping frequency.

The total response in the trap is determined within the local density approximation
as introduced in Section 2.2. The space dependence of the external trapping potential
is incorporated into the chemical potential. The total response is then obtained by
summing the response of the homogeneous system over the chemical potential which
varies when moving through the trap. We choose to normalize the strength of the
trapping potential by half the bandwidth such that the characteristic density ρ given
by Equation (2.21) becomes

ρ1D = N

√
Vt
2J
, (4.72)

ρ3D = N

(
Vt
6J

)3/2

(4.73)
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in one and three dimensions respectively.
The mean response, which is the total response in the trap normalized to the total
number of particles becomes

ImχO,O1D =
1

N1D

√
2J

Vt

∫ µ̄0

−∞
dµ̄

1√
µ̄0 − µ̄

ImχO,O(µ̄ · 2J)

L
, (4.74)

ImχO,O3D =
2π

N3D

(
6J

Vt

)3/2 ∫ µ̄0

−∞
dµ̄
√
µ̄0 − µ̄

ImχO,O(µ̄ · 6J)

L
, (4.75)

in one and three dimensions with µ̄ = µ/2J and µ̄ = µ/6J respectively. In both cases

1.5

(a) central density n0 = 0.5

20

(b) central density n0 = 1

25

(c) central density n0 = 1.5

Figure 4.7. – The total response ImχO,O3D of the three-dimensional system perturbed along
one direction taking into account an external trapping potential for a temperature T = 0.1J ,
different central densities n0 and parameters specified in 4.84-4.87. The Fermi tail is clearly
visible in the case of a central density n0 = 0.5 in Figure (a) and gets less distinct at a central
density of n0 = 1 in Figure (b). In contrast to the homogeneous system, where densities of
n = 0.5 and n = 1.5 lead to the same absorption, this is no longer the case in the inhomogeneous
system. At a central density of n0 = 1.5 in Figure (c) absorption now occurs over the entire
energy absorption range since all densities below n0 = 1.5 contribute.

ImχO,O/L(µ̄) is the response of the one-dimensional homogeneous system normalized
to the number of lattice sites L. Note that the response of the one-dimensional ho-
mogeneous system governs the total response in three dimensions since our periodic
perturbation is only applied along one direction. However, the total particle number
N given by Equation (2.20) depends on the one-dimensional and three-dimensional
density respectively such that the same central chemical potential µ0 corresponds to
different particle numbers N1D and N3D. The particle numbers are given by

N1D =

√
2J

Vt

∫ µ̄0

−∞
dµ̄

1√
µ̄0 − µ̄

n1D(µ̄ · 2J), (4.76)

N3D = 2π

√
6J

Vt

3 ∫ µ̄0

−∞
dµ̄
√
µ̄0 − µ̄ n3D(µ̄ · 6J), (4.77)
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with the densities of the homogeneous system

n1D = n1D,↑ + n1D,↓ =
1

L

∑
j,σ

〈c†j,σcj,σ〉 (4.78)

=
2

L

∑
k

f(εk − µ) (4.79)

=
2

π

∫ π

−π
f(εk − µ)dk, (4.80)

n3D =
2

L3

∑
~k

f(ε~k − µ) (4.81)

=
2

π3

∫ π

−π

∫ π

−π

∫ π

−π
dkxdkydkzf(ε~k − µ). (4.82)

In the three dimensional case the result may easily be generalized to an anisotropic
confinement by replacing Vt by the mean value V̄t = (Vt,xVt,yVt,z)

1/3. For central
densities n0 < 1 the response shows similar behavior as in the homogeneous case. The
Fermi tail is clearly visible for central densities of n0 ∼ 0.5 and gets less distinct for
n0 → 1 which is shown in Figure 4.7. However, for larger central densities n0 > 1
the response no longer resembles the homogeneous case since all densities below n0 >
1 contribute and are summed up. Absorption occurs over the entire range and the
temperature dependence is less distinct.
In experiment the total particle number N is known and may be controlled. For a
certain particle number we want to extract the temperature and the central chemical
potential from the measured full response given by Equation (4.75). We theoretically
test this procedure by first interpolating the central chemical potential µ0 as a function
of total particle number N using Equation (4.77) for central densities between n ∼ 0
and n ∼ 1. For a certain particle number, we calculate eight data points for the
full three-dimensional response given by Equation (4.75) between ω = 0 and ω = 4J
(corresponding to the minimum and maximum possible energy transfer as explained in
Section (4.1.2)) since this a realistic amount of data for experiment. We then fit the
same Equation (4.75) for the full response but including an overall constant prefactor as
the measured intensity in experiment may deviate from theory. Fit parameters are the
constant prefactor, the temperature T and the central chemical potential µ0. We use
educated guesses as starting values for the fit parameters and consider a temperature
range between T = 0.1J and T = J . We test the procedure for experimentally realistic
parameters for a gas of potassium 40 atoms in a three-dimensional optical lattice with
harmonic confinement. The parameters are the following,

J = ~103Hz, (4.83)

ωt = 2π · 70Hz, (4.84)

m = 40u (40K), (4.85)

λ = 1064nm (4.86)

a =
λ

2
, (4.87)

where u is the atomic mass unit. We normalize by the recoil energy Er = (~k)2/2m =
h2/2mλ2 where h is Planck’s constant and ~ = h/2π. Note that the trapping frequency
ωt < 4J/~ = ωmax.
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Discussion Note one important aspect that we have neglected so far. Collective ex-
citations of the trapped atomic cloud may be triggered by our perturbation. There
are different kinds of in-trap modes for harmonically trapped clouds in three dimen-
sions [50]. One distinguishes between surface excitations and compressional modes.
The most important surface mode is the so-called dipole mode. The entire cloud oscil-
lates in the trap at the trapping frequency ωt. The motion of the center of mass is that
of a free particle moving in a harmonic oscillator potential. Another surface mode is
the quadrupole mode. Also of importance is the so-called monopole mode or breathing
mode which is a compressional mode. For a non-interacting Fermi gas the quadrupole
mode and the breathing mode are given by 2ωt. As the collective frequencies lie within
the bandwidth 4J which is the range of the perturbing frequency ω, in-trap modes will
be excited at certain frequencies. We need to be aware that the above results are not
valid at these frequencies and the measurements have to be excluded.

The fitting procedure works perfectly for all considered temperatures up to central den-
sities of n0,3D = 1. For the highest temperature of the order of the hopping strength
T = J we obtain the exact values for the fitting parameters down to central densities
n0,3D ∼ 0.1. The lower bound increases for decreasing temperatures. However, fitting
works down to central densities of n0,3D ∼ 0.4 for the lowest temperature T = 0.1J . In
Figure 4.8 the data points are compared to the response given by Equation (4.75) for
a prefactor, a temperature and a central chemical potential obtained from the fit.

0.04 0.08 0.12

- 1.5

- 1.0

- 0.5

(a) central density n0 = 0.5

0.04 0.08 0.12

- 14
- 12
- 10
- 8
- 6
- 4
- 2

(b) central density n0 = 0.8

Figure 4.8. – The total response ImχO,O3D of the three-dimensional case for 8 data points
and the fit of the full function to these data points for T = 0.1J . The fit function is the full
response given by (4.75) including a constant prefactor. Fit parameters are the prefactor, the
temperature T and the central chemical potential µ0

The quantity of interest is the entropy per particle s = S/N rather than the absolute
temperature T . In condensed matter systems, temperature is imposed by a reservoir
of fixed temperature. In contrast, cold atom systems are isolated quantum systems
such that the absolute temperature is very sensitive to small parameter changes. But
slow parameter changes are assumed to be adiabatic such that the entropy may be
considered constant. The entropy is a measure of the number of accessible quantum
states and constitutes a good quantity to characterize quantum phase transitions in
cold atom systems. Hence, the term cooling refers to lowering the entropy per particle
s and not to lowering absolute temperature T .
In experiment cooling is typically achieved without a lattice. A standard procedure is
to then ramp up the lattice adiabatically (at constant entropy) into the strong cou-
pling regime until approximately one particle per site over most of the trap. The Néel
temperature TN for entering the antiferromagnetic state has a maximum at interme-
diate couplings U/J and is of the order of the antiferromagnetic coupling strength
kBTN ∼ 4J2/U in the strong coupling regime where the system at half-filling is de-

47



Chapter 4. Thermometry of fermions in optical lattices by modulation spectroscopy

scribed by a Heisenberg chain. The entropy per particle sN corresponding to TN is
exponentially small at weak coupling such that the antiferromagnetic state is difficult
to reach in the weak-coupling regime by directly cooling to such low entropy. However,
sN reaches a finite value at large U/J which is given by the entropy per particle of
the quantum Heisenberg model at its critical point sH = kB ln 2. Only spin degrees
of freedom remain present below this value and magnetic ordering becomes possible.
Quantum fluctuations further reduce this number to about sN = 0.5kB ln 2 in the cubic
lattice [51]. This corresponds to a temperature kBT/TF = sN/π

2 ≈ 0.035kB for non-
interacting particles in an external trapping potential [52] which is much higher than
TN at weak coupling. Antiferromagnetic ordering can not be achieved at this entropy
in the weak coupling limit. However, cooling non-interacting particles to this tem-
perature and then following the equal entropy line in the T -U -phase diagram towards
higher interactions by adiabatically ramping up the lattice is a prospective way. Tem-
perature is further reduced and the antiferromagnetic phase is reached at intermediate
fillings [51]. When further following the equal entropy to even stronger interactions,
the temperature increases again. This Mott insulating regime at intermediate filling is
where antiferromagnetic ordering is most likely to be observed.
We want to get a rough idea of how the temperatures considered here in the above
measurement scheme compare to this low-temperature regime of interest in the Fermi-
Hubbard phase diagram. In the Mott insulating regime at intermediate filling the
entropy is high in the liquid wings but small and approximately constant across the
central Mott plateau [53]. The central density is also constant. We therefore neglect
the trapping potential to get a first rough estimate of s corresponding to the temper-
atures considered above. We compute s for a cubic lattice at half-filling. We consider
L = 100 lattice sites in each direction which is a reasonable number in experiment.
The highest temperature considered T = J corresponds to S/N ≈ 0.8kB which is per-
fectly attainable in current experiments. Our temperature measurement works down
to temperatures of T = 0.1J that correspond to S/N ≈ 0.09kB which is way below
what has been achieved in experiment so far. Furthermore, this is also well below
sN = 0.5kB ln 2, the entropy expected for the Néel transition.

In the next Section we repeat the same analysis for a slightly different equilibrium
system which is the dimerized fermionic non-interacting tight-binding mode. However,
a detailed analysis of the possible experimental implementation of the above discussion
with a focus on the measurement procedure follows in Section 4.4.

4.2. Non-interacting tight-binding fermions with dimerized
hopping subjected to a periodic perturbation

We repeat all steps from Section 4.1.2, computing the response function to an external
superlattice modulation defined by Equation (1.20) for a slightly different equilibrium
system. We now consider the dimerized fermionic non-interacting tight-binding model
given by Equation (4.89) as our equilibrium Hamiltonian. In the dimerized case the
hopping amplitude alternates between neighboring sites. In this case the modulation
wraps up to modulating the dimerized lattice around a mean value as indicated in
Figure 4.9. The bottom offset is constant as in the non-dimerized case.

The homogeneous system in one dimension The single-band tight binding Hamil-
tonian for non-interacting fermions in a dimerized optical lattice in one dimension is
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Figure 4.9. – Periodic modulation of the dimerized lattice. The lattice is modulated between
the two configurations, dark solid line and light solid line around a mean value (dashed line).

given by

H = −
L∑
j,σ

(J1 + (−1)jJ2)(c†j,σcj+1,σ + h.c.)− µ
L∑
j,σ

c†j,σcj,σ (4.88)

= −J
∑
j odd,σ

(c†j,σcj+1,σ + h.c.)− J ′
∑

j even,σ

(c†j,σcj+1,σ + h.c.)− µ
∑
j,σ

c†j,σcj,σ, (4.89)

where J = J1 − J2 and J ′ = J1 + J2. We define all hopping parameters to be positive
and J1 > J2 such that J ′ > J . The size of the unit cell is doubled with respect to the
non-dimerized lattice in Section 4.1 such that the lattice spacing is now given by 2a.
There is two sites per unit cell that may be assigned to two sub-lattices with creation

and annihilation operator a
(†)
j,σ and b

(†)
j,σ that connect to the original lattice via

ajσ = c2j+1,σ, (4.90)

bjσ = c2j,σ, j = 1, ... ,
L

2
. (4.91)

The Hamiltonian becomes

H = −J
L/2∑
j,σ

(a†j,σbj,σ + h.c.)− J ′
L/2∑
j,σ

(a†j+1,σbj,σ + h.c.)− µ
L/2∑
j,σ

(a†j,σaj,σ + b†j,σbj,σ).

(4.92)

The Fourier transform

aj,σ =

√
2

L

∑
k

eik2ajak,σ, (4.93)

bj,σ =

√
2

L

∑
k

eik2ajbk,σ, (4.94)

leads to

H = −
∑
k,σ

(
(J + J ′e−2ik)a†k,σbk,σ + h.c.

)
− µ

∑
k,σ

(a†k,σak,σ + b†k,σbk,σ), (4.95)

where we set a ≡ 1. The first Brillouin zone has half the size (−π
2 ,

π
2 ] compared to

the case without dimerization (see Section 4.1). The lattice momentum has the same
discretization k = 2πl/L but l = −L/4 + 1, ..., L/4 such that there is only half the
number of k-values L/2. However, the total number of available states 2L is the same
since there is now two sites per unit cell and two possible spin configurations per site.
We diagonalize the Hamiltonian by the following transformation

αk,σ = ukak,σ − vkbk,σ, (4.96)

βk,σ = ukak,σ + vkbk,σ, (4.97)
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where

uk =
1√
2

exp

(
−iϕ(k)− k

2

)
, (4.98)

vk =
1√
2

exp

(
−iϕ(k)− k

2

)
, (4.99)

with

ϕ(k) =

{
arctan

(
− (J ′−J) sin(k)

(J ′+J) cos(k)

)
, k ∈ (−π

2 ,
π
2 )

−π
2 , k = π

2

. (4.100)

We obtain

H =
∑
k,σ

Ek(α
†
k,σαk,σ − β

†
k,σβk,σ)− µ

∑
k,σ

(α†k,σαk,σ + β†k,σβk,σ) (4.101)

with

Ek =
√
J ′2 + J2 + 2JJ ′ cos(2k). (4.102)

The sub-lattice structure leads to the emergence of two energy bands which is shown
in Figure 4.10. A positive energy band +Ek corresponding to quasiparticles α and a
negative energy band −Ek corresponding to quasiparticles β. An energy gap ∆ opens
between the two bands due to the dimerization. The energy gap and the total band
width W are given by

∆ = 2(J ′ − J), (4.103)

W = 2(J ′ + J). (4.104)

In the case J ′ = J the gap closes and the total bandwidth W = 4J . We recover the
non-dimerized case treated in Section 4.1. Applying the same transformation to the

Figure 4.10. – The band structure of the dimerized lattice. The dimerization leads to the
emergence of two energy bands of ±Ek with total bandwidth W and a gap ∆ opening at the
Brillouin zone border k = ±π/2.

perturbing operator given by Equation (1.22) leads to

O =
∑
j,σ

(−1)j(c†j,σcj+1,σ + h.c.), (4.105)

=
∑
k,σ

(e−2ik − 1)a†k,σbk,σ + h.c., (4.106)

=
∑
k,σ

C0(k)(α†k,σαk,σ − β
†
k,σβk,σ) + C(k)(β†k,σαk,σ − h.c.), (4.107)
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4.2. Non-interacting tight-binding fermions with dimerized hopping subjected to a periodic perturbation

with

C0(k) = 2 sin(k) sin(ϕ(k)), (4.108)

C(k) = 2i sin(k) cos(ϕ(k)). (4.109)

The perturbing operator O now transfers particles from occupied α-states of momen-
tum k in the lower band to unoccupied β-states of same momentum k in the upper
band. This may seem as a contradiction to the non-dimerized case where we found
that the perturbation introduces momentum π. This was due to the fact, that the
perturbation has a periodicity which is twice the periodicity of the equilibrium system.
In contrast, in the dimerized case the equilibrium system and the perturbation have
the same periodicity such that lattice momentum is conserved and we do not expect a
momentum transfer. A momentum difference of π in the dimerized system corresponds
to equal momentum since the periodicity of the reciprocal lattice is 2π/2a ≡ π.
In the following we compute the response of the dimerized system to the periodic per-
turbation completely analogous to the non-dimerized case treated in Section 4.1. We
mainly give the results and interpret these. For details in the calculations refer to the
non-dimerized case in Section 4.1.

4.2.1. Energy absorption in linear response theory

The zero temperature response At zero temperature all single-particle levels up
to the Fermi level are occupied. Note that the same Fermi momentum kF can either
correspond to a negative Fermi energy EF < 0 if only states in the lower band are
occupied or to a positive Fermi energy EF > 0 if also states in the upper band are
occupied. The ground state wave function is the Fermi sea

|GS〉 =
∏

|k|≤kF ,σ

β†k,σα
†
k,σ|0〉, (4.110)

where |0〉 is the vacuum and we need to keep in mind whether the Fermi surface lies
at negative or positive energies. We calculate the zero temperature response given by
Equation (2.10). We need to calculate the correlation function 〈[O(t), O]〉0, where 〈·〉0
denotes the expectation value with respect to the ground state |GS〉. We start by
calculating the response for less than or equal to half-filling. The product O(t)O is
given by

O(t)O =
∑

k,k′,σ,σ′

|C0(k)|2β†k,σβk,σβ
†
k′,σ′βk′,σ′ (4.111)

+|C0(k)|2α†k,σαk,σα
†
k′,σ′αk′,σ′ (4.112)

+|C(k)|2β†k,σαk,σα
†
k′,σ′βk′,σ′e

−2iEkt (4.113)

+|C(k)|2α†k,σβk,σβ
†
k′,σ′αk′,σ′e

2iEkt, (4.114)

where we used αk,σ(t) = exp(−i(Ek − µ)t)αk,σ and βk,σ(t) = exp(−i(−Ek − µ)t)βk,σ.
Note that the expectation values in the correlation function will only be non-zero for
k = k′ and σ = σ′ such that the sum over k′ and σ′ may be omitted. The terms (4.112)
and (4.114) may also be dropped in the correlation function due to the fact that the

51



Chapter 4. Thermometry of fermions in optical lattices by modulation spectroscopy

(a) quarter-filling (b) half-filling

(c) three-quarter-filling

Figure 4.11. – The ω-range of possible excitations in the dimerized system depends on the
filling as ω ∈ [2|EF |,W ]. The minimal possible absorption energy (orange arrow) and the
maximal possible absorption energy (green arrow) is shown for three different fillings. We show
quarter-filling in Figure (a), half-filling in Figure (2) and three-quarter-filling in Figure (c). The
range of absorption is maximal ω ∈ [∆,W ] for half-filling and decreases for less or greater than
half-filling. Unoccupied momentum states that do not contribute for less than half-filling are
occupied in both bands for more than half-filling and thus do not contribute either (compare
Figure (a) and Figure (c)).
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ground state is the α-vacuum in the case of less than or equal to half-filling. We obtain

〈[O(t), O]〉0 = 〈GS| [O(t), O] |GS〉 (4.115)

= 2

kF∑
k=−kF

|C(k)|2
(
e−2iEkt − e2iEkt

)
, (4.116)

|C(k)|2 = 4 sin2(k) cos2(ϕ(k)) (4.117)

=
(J + J ′)2 sin2(2k)

(J2 + J ′2) + 2JJ ′ cos(2k)
, (4.118)

where kF now is the momentum corresponding to the Fermi energy EF < 0 which is
negative for less than or equal to half-filling.
The response is given by

ImχO,O(ω) = −2δ

kF∑
k

|C(k)|2
(

1

δ2 + (ω − 2Ek)2
− 1

δ2 + (ω + 2Ek)2

)
(4.119)

= −2π

kF∑
k

|C(k)|2 (δ(ω − 2Ek)− δ(ω + 2Ek)) . (4.120)

Energy absorption and thus excitations in the system occur at ω = 2Ek. This corre-
sponds to exciting a particle of momentum k and energy −Ek from the β-band to a
state in the α-band of momentum k+π in the extended zone scheme or momentum k in
the reduced zone scheme with energy +Ek. The minimal energy that can be absorbed
by the system is the gap ∆ which corresponds to exciting a particle of momentum π/2
from the β-band to an empty state in the α-band. This is only possible at half-filling
when the β-band is completely occupied and the α-band is completely empty. The
maximal energy that can be absorbed by the system is the total bandwidth W which
corresponds to exciting a particle of momentum 0 from the β-band to an empty state
in the α-band. This transfer is possible for all fillings except zero filling. The minimal
possible energy of absorption decreases with increasing filling up to half-filling. The
possible particle excitations and thus the minimal and maximal possible absorbed en-
ergy is visualized in Figure 4.11.
For more than half-filling all terms in the product O(t)O given by Equations (4.111)
to (4.114) need to be taken into account since the ground state (4.110) is no longer the
α-vacuum. However, in the sum O(t)O − OO(t) they cancel in such a way that the
response for more than half-filling with a positive Fermi energy EF > 0 corresponding
to a momentum kF is exactly the same as for less than half-filling with Fermi energy
EF < 0 and same momentum kF . It it obvious that the response must be identical
since those k-values that are unoccupied for less than half-filling now populate both
energy states −Ek and +Ek for more than half-filling such that no particle transfer
and energy absorption is possible for these k-values in both cases. The response is thus
given by Equation (4.120) for all fillings and kF is the momentum corresponding to
either a negative EF < 0 or a positive EF > 0 Fermi energy.
The continuum limit for all fillings for ω > 0 is given by

ImχO,O(ω)

L
= −2

|C(k̄)|2

|g′(k̄)|
, ω ∈ [2|EF |,W ], (4.121)
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where

g(k) = ω − 2Ek, (4.122)

k̄ =
1

2
arccos

(
ω2 − 4J2 − 4J ′2

8JJ ′

)
. (4.123)

Note that 2|EF | refers to the absolute value of the Fermi level such that the range of
absorption is the same for equal ±EF as explained above. The ω-range of absorption
increases with increasing kF since 2|EF | decreases. Inserting k̄ given by Equation
(4.123) into Equation (4.121), the prefactor and the numerator become

|C(ω, J, J ′)|2 = ω2

(
−(J + J ′)2

16J2J ′2

)
+

(J + J ′)2(J2 + J ′2)

2J2J ′2

+
1

ω2

(
−(J + J ′)2(J2 − J ′2)2

J2J ′2

)
, (4.124)

|g′(ω, J, J ′)| =
4JJ ′

√
1− (ω2−4(J2+J ′2))2

64J2J ′2

ω
2

. (4.125)

The full response function may then be rewritten

ImχO,O(ω)

L
= −(J + J ′)2

8JJ ′ω

√
−ω

4 − 8(J2 + J ′2)ω2 + 16(J2 − J ′2)2

J2J ′2
. (4.126)

The response for different fillings is shown in Figure 4.12 in comparison to the fi-
nite temperature response (see following paragraph). The dependence on the filling
is clearly visible. The response sharply drops to zero at 2|EF | which is the minimal
absorption energy. For half-filling, where absorption is possible over the entire range
ω ∈ [∆,W ], the response steeply drops to zero when approaching ω = ∆ correspond-
ing to k = π/2 and at ω = W corresponding to k = 0 because the prefactor |C(k)|2
given by Equation (4.118) equals zero at these k-values. Furthermore, the response is
asymmetric, dropping to zero faster in the vicinity of ω = ∆. The expansion of |C(k)|2
in the vicinity of the critical points k = 0 and k = π/2 explains this asymmetry. In
the vicinity of k = 0, |C(k)|2 = 4k2 + O(k3), whereas in the vicinity of k = π/2,
|C(k)|2 = 4(J + J ′)2/(J − J ′)2(k − π/2)2 + O

(
(k − π/2)3

)
. This translates into an

asymmetry in the prefactor |C(ω)|2 as a function of ω given by Equation (4.124). Ex-
panding the prefactor in the vicinity of the critical points ω = ∆ and ω = W shows
linear behavior in leading order. However, the slope is different such that the prefactor
at ω = ∆ drops to zero with a steeper slope which reflects the asymmetry in the re-
sponse. The response itself given by Equation (4.126) shows

√
ω-dependence in leading

order in the vicinity of the critical points, with a steeper slope approaching ω = ∆.

The finite temperature response At finite temperature the filling is softened around
the zero-temperature cut-off µ = EF due to thermal fluctuations. The temperature
dependence is governed by the Fermi function given by Equation (4.63).
The finite temperature correlation function is given by

〈[O(t), O]〉T =
∑
k,σ

|C0(k)|2
(
〈β†k,σβk,σβ

†
k,σβk,σ〉T + 〈α†k,σαk,σα

†
k,σαk,σ〉T

)
(4.127)

+|C(k)|2
(
〈β†k,σαk,σα

†
k,σβk,σ〉T e

−2iEkt + 〈α†k,σβk,σβ
†
k,σαk,σ〉T e

2iEkt
)

(4.128)

−h.c.. (4.129)
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(a) half-filling, W ≈ ∆

1
(b) quarter-filling, W ≈ ∆

(c) half-filling, W >> ∆

0.25
(d) quarter-filling, W >> ∆

Figure 4.12. – The zero temperature response in comparison to the finite temperature response
for different temperatures for two different sets of parameters. In Figures (a) and (b), J = 1
and J ′ = 2 such that the gap ∆ = 2 is of the order of the total band width W = 6. In contrast,
in Figure (c) and (d), J = 5 and J ′ = 6 such that ∆ = 2 << W = 22. In all figures the
zero temperature response (long dashed line) is compared to different temperatures: T = ∆/10
(solid gray line), T = ∆ (dot-dashed line) and T = W (dotted line). The Fermi tail is visible
the most clearly in Figure (d). Here, ∆ << W . At a small temperature of T = ∆/10 << W/2
(solid line) thermal excitations only lead to a smearing out of the particles over a small fraction
of the band around quarter filling. Thermal excitations to the second band are suppressed. At
larger temperatures (dot-dashed and dotted line) particles get smeared out over the entire band
and also excited to the second band. In the case of ∆ ∼ W , in Figure (b), particles already
smear out a lot more around quarter filling for T = ∆/10 since the band is not as broad.
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The first two terms cancel with its hermitian conjugate. We need to consider the
following finite temperature expectation values

〈β†k,σαk,σα
†
k,σβk,σ〉T = 〈β†k,σβk,σ〉

Hβ
T 〈αk,σα

†
k,σ〉

Hα
T , (4.130)

= f(−Ek − µ) (1− f(Ek − µ)) , (4.131)

〈α†k,σβk,σβ
†
k,σαk,σ〉T = 〈βk,σβ†k,σ〉

Hβ
T 〈α

†
k,σαk,σ〉

Hα
T , (4.132)

= (1− f(−Ek − µ)) f(Ek − µ). (4.133)

where 〈·〉Hα/βT denotes the finite temperature expectation value with respect to Hα =∑
k,σ(Ek − µ)α†k,σαk,σ and Hβ =

∑
k,σ(−Ek − µ)β†k,σβk,σ respectively. The full Hamil-

tonian given by Equation (4.89) decouples into H = Hα+Hβ. Thus, the decomposition

of the expectation value is possible and 〈α†k,σαk,σ〉
Hα
T = f(Ek − µ) and 〈β†k,σβk,σ〉

Hβ
T =

f(−Ek − µ). We obtain

〈[O(t), O]〉T =
∑
k,σ

|C(k)|2
{
f(−Ek − µ) (1− f(Ek − µ))

(
e−2iEkt − e2iEkt

)
(4.134)

+ (1− f(−Ek − µ)) f(Ek − µ)
(
e2iEkt − e−2iEkt

)}
(4.135)

= 2
∑
k

|C(k)|2F (k, T, µ)
(
e−2iEkt − e2iEkt

)
, (4.136)

with the temperature-dependent function

F (k, T, µ) =

(
eβEk − e−βEk

e−βµ(eβµ + eβEk)(eβµ + e−βEk)

)
, (4.137)

where β = kBT is the inverse temperature.
Thus, the response function is given by

ImχO,O(ω) = −2δ
∑
k

|C(k)|2F (k, T, µ)

(
1

δ2 + (ω − 2Ek)2
− 1

δ2 + (ω + 2Ek)2

)
(4.138)

= −2π
∑
k

|C(k)|2F (k, T, µ)
(
δ(ω − 2Ek))− δ(ω + 2Ek)

)
. (4.139)

In the continuum limit, for ω > 0, we obtain

ImχO,O(ω, T, µ)

L
= −2

|C(k̄)|2F (k̄, T, µ)

|g′(k̄)|
(4.140)

= −2
|C(ω)|2F (ω, T, µ)

|g′(ω)|
, (4.141)

where k̄, |C(ω)|2 and |g′(ω)| are given by Equations (4.123), (4.124) and (4.125) re-
spectively and with

F (ω, T, µ) =

(
eβ

ω
2 − e−β

ω
2

e−βµ(eβµ + eβ
ω
2 )(eβµ + e−β

ω
2 )

)
. (4.142)

This function is a combination of Fermi functions which leads to a temperature-
dependence in the response. The response for different parameters, fillings and temper-
atures is shown in Figure 4.12. The Fermi tail is clearly visible away from half-filling
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and for small temperatures T << W/2 as may be seen in Figure 4.12b and 4.12d. Away
from half-filling, for increasing temperatures, the particles smear out over all momenta
such that absorption occurs over the entire possible absorption range with a decrease
in amplitude. At half-filling (Figure 4.12a and Figure 4.12c) the suppression of the
response at ω = ∆ makes it harder to distinguish the Fermi tail. At small tempera-
tures, the zero temperature response and the finite temperature response coincide and
the temperature-dependence does not show. At increasing temperatures the response
decreases since particles get thermally excited into the second band. Note that the
temperature dependence is more distinct for W >> ∆ (Figure 4.12d) in comparison to
W ≈ ∆ (Figure 4.12b) where already small temperatures lead to a smearing out over
all momenta and thermal excitations into the second band.

The response of the trapped system We determine the one- and three-dimensional
in-trap response analogous to the non-dimerized case in Section 4.1.2 within the local
density approximation. Remember, that the perturbation is only applied along one
direction.
We normalize the trapping strength by the hopping parameter J such that the charac-
teristic densities are given by

ρ1D = N

√
Vt
J
, (4.143)

ρ3D = N

√
Vt
J

3

, (4.144)

with Vt → V̄t = (Vt,xVt,yVt,z)
1/3 in the case of anisotropic confinement in three dimen-

sions.
For the density of the homogeneous system, the total in-trap particle number and the
full in-trap response (normalized to the number of particles) in one dimension we obtain

n1D =
1

π

∫ π/2

−π/2

(
f(Ek − µ) + f(−Ek − µ)

)
dk, (4.145)

N1D =

√
J

Vt

∫ µ̄0

−∞
dµ̄

1√
µ̄0 − µ̄

n1D(µ̄ · J), (4.146)

ImχO,O1D =
1

N1D

√
J

Vt

∫ µ̄0

−∞
dµ̄

1√
µ̄0 − µ̄

ImχO,O(µ̄ · J)

L
. (4.147)

In three dimensions we obtain

n3D =
1

π3

∫ π/2

−π/2

∫ π/2

−π/2

∫ π/2

−π/2
dkxdkydkz

(
f(Ekx + Eky + Ekz − µ) + f(Ekx + Eky − Ekz − µ),

+ f(Ekx − Eky + Ekz − µ) + f(Ekx − Eky − Ekz − µ)

+ f(−Ekx + Eky + Ekz − µ) + f(−Ekx + Eky − Ekz − µ)

+ f(−Ekx − Eky + Ekz − µ) + f(−Ekx − Eky − Ekz − µ)
)
, (4.148)

N3D = 2π

(
J

Vt

)3/2 ∫ µ̄0

−∞
dµ̄
√
µ̄0 − µ̄ n3D(µ̄ · J), (4.149)

ImχO,O3D =
2π

N3D

(
J

Vt

)3/2 ∫ µ̄0

−∞
dµ̄
√
µ̄0 − µ̄

ImχO,O(µ̄ · J)

L
, . (4.150)
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In both cases the response of the homogeneous system ImχO,O(µ̄ · t)/L is given by
Equation (4.141).
We employ the same fitting procedure as in the non-dimerized case (see Section 4.1.2)
in the three-dimensional case for temperatures varying from T = 0.1J to T = J and
central densities n0 < 1 where the temperature dependence is clearly visible. We
use the same parameters as in the non-dimerized case with the additional parameter
J ′ = 1.1J such that the gap is much smaller than the total band width. We also
have to be aware of collective in-trap modes that may be excited at certain perturbing
frequencies as explained in detail in Section 4.1.2. The fitting procedure works well

0.02 0.04 0.06 0.08 0.10 0.12 0.14

- 7

- 6

- 5

- 4

- 3

- 2

- 1

(a) central density n0 = 0.65

Figure 4.13. – The total in trap response ImχO,O3D of the three-dimensional system for 8
data points and the fit of the full function to these data points for T = 0.1J . The fit function
is the full response given by (4.150) including a constant prefactor. Fit parameters are the
prefactor, the temperature T and the central chemical potential µ0

for all considered temperatures up to central densities of n0,3D = 1. For the highest
temperature of the order of the hopping strength T = J we obtain the exact values
for the fitting parameters down to central densities n0,3D ∼ 0.1. The lower bound
increases for decreasing temperatures. However, fitting works down to central densities
of n0,3D ∼ 0.4 for the lowest temperature T = 0.1J . In Figure 4.13 the data points
are compared to the response given by Equation (4.150) for a prefactor, a temperature
and a central chemical potential obtained from the fit.
Note one major advantage of the dimerized equilibrium lattice compared to the non-
dimerized case from the preceding section. We excite to the second band which is
crucial in order to reliably determine the absorbed energy from measurements of the
quasimomentum occupation 〈nk(t)〉 by adiabatic band mapping. We will discuss this
in more detail in Section 4.4.2.

4.3. Beyond tight-binding

We extend our study of the non-dimerized equilibrium lattice beyond tight-binding.
We include higher bands into the theory that may be excited by perturbing at higher
frequencies. Our motivation to do so is twofold. In the first place, the measurement
process is considerably simplified in comparison to the one-band model. We comment
on the measurement process and its advantages in detail in Section 4.4.2. Secondly, we
avoid exciting in-trap modes which lie in the order of magnitude of the lowest band
as explained in Section 4.1.2. We compute and discuss the response of the system to
perturbations at higher frequencies for a certain lattice setup in the following Section 4.4
on the experimental realization. Here, we merely introduce the underlying theoretical
formulas.
We start by writing the Hamiltonian in second quantized form in the Bloch basis. A
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particle in a periodic potential V0(x) is described by the Schrödinger equation

H1φnk(x) = En(k)φnk(x), (4.151)

H1 =
p̂2

2m
+ V0(x), (4.152)

where the eigenfunctions φnk(x) are called the Bloch wave functions of fixed quasimo-
mentum k. The Bloch function is delocalized over the entire lattice. It can be written
as the product of a plane wave with a periodic function

φnk(x) = eikx · unk(x), (4.153)

where unk(x) has the same periodicity as the lattice potential. The eigenenergies En(k)
are the eigenvalues corresponding to the Bloch function φnk(x) and n denotes the band
index. We denote the lowest band n = 1. We represent the orthonormal Bloch basis
by |n, k〉.
The Hamiltonian in second quantized form can then be written as

H =
∑
nkn′k′

〈n′k′|H1|nk〉c†n′k′cnk (4.154)

=
∑
nk

En(k)c†nkcnk. (4.155)

It is diagonal in quasimomentum space. We deal with a time time-dependent optical
lattice V (x, t) = V0(x) +h sin(ωt)Ṽ (x) as introduced in Section 1.3 such that the time-
dependent part of the Hamiltonian becomes

h sin(ωt)O, (4.156)

O =
∑
nkn′k′

〈n′k′|Ṽ (x)|nk〉c†n′k′cnk. (4.157)

We define the transition matrix element

Mnk→n′k′ = 〈n′k′|Ṽ (x)|nk〉 (4.158)

=

∫ xmax

xmin

dxφ∗n′k′(x)Ṽ (x)φnk(x), (4.159)

where the integral is taken over the entire length of the lattice with L lattice sites
and lattice spacing a such that xmin = −(L/2 + 1)a and xmax = La/2. The absolute
value squared |Mnk→n′k′ |2 of the transition matrix element gives the probability that a
particle in Bloch state |nk〉 is transferred to the Bloch state |n′k′〉 by the perturbation
Ṽ (x). The full time-dependent Hamiltonian in the Bloch basis is thus given by

H =
∑
nk

En(k)c†nkcnk + h sin(ωt)
∑
nkn′k′

Mnk→n′k′c
†
n′k′cnk. (4.160)

We determine En(k) and φnk(x) by numeric band structure calculations and deduce
the transfer matrix elements in Bloch basis for a certain optical lattice setup in the
following Section 4.4 on the experimental realization.
We compute the response function in the Bloch basis representation. We use the
spectral representation given by Equation (2.14),

ImχOO†(ω) = − π
Z

∑
n,m

|〈m|O|n〉|2e−β(En−µN)δ (ω − (Em − En))
(

1− e−βω
)
. (4.161)
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Here, the many body states |n〉 are given by |n〉 =
∏
{k} c

†
k|0〉 where |0〉 is the vacuum

and c†k creates a particle in Bloch state k. The product runs over all possible config-
urations of different k denoted by {k}. We insert the perturbing operator O in Bloch
basis given by Equation (4.157). For the lowest band we obtain

ImχOO†(ω) = −4δ
∑
k,k′

|Mk→k′ |2
(
f
(
E(k)− µ

)
− f

(
E(k′)− µ

))
· (4.162)

· 1

δ2 +
(
ω − (E(k′)− E(k))

)2 . (4.163)

The above calculation is carried out in Appendix C. Note that a direct comparison
of the response in Bloch basis within the lowest band and k′ = π to the response in
tight-binding from Section 4.1.2 is possible. If this is not clear to the reader we refer
to Appendix D where we show equivalence of the transfer matrix elements in Bloch
and in Wannier basis. We carry out the direct comparison for a certain lattice setup
in Section 4.4.3 to show that tight-binding is a good approximation. For excitations to
higher bands we obtain

ImχOO†(ω) = −δ
∑
k

|Mn=1,k→n′ 6=1,k′ |2
(
f
(
E1(k)− µ

)
− f

(
En′(k

′)− µ
))
· (4.164)

· 1

δ2 +
(
ω − (En′(k′)− E1(k))

)2 . (4.165)

4.4. The experimental approach

In this section we discuss the precise experimental situation in more detail. In Section
4.4.1 we introduce a particular optical lattice setup and we comment on the measure-
ment process in 4.4.2. In Section 4.4.3 we show that the tight-binding approximation
is valid for this particular setup. In Section 4.4.4 we extend our study of the system’s
response to an external perturbation at higher frequencies such that excitations to
higher bands occur. In this case we deduce a simple Hamiltonian of similar form to the
single-band tight-binding Hamiltonian.

4.4.1. The experimental setup

Here, we exemplify a realization of the non-dimerized equilibrium lattice superimposed
with a superlattice perturbation. We use the parameters from Reference [21]. An
optical lattice is created by superimposing a green laser of wavelength λg = 532nm
with its own retro-reflection. The wells of the emergent standing wave are separated by
a distance λg/2 = π/kg where kg = 2π/λg is the wave number of the green laser wave.
The green lattice is what we will call the equilibrium lattice. Note the relation to tight-
binding from Section 4.1 where we set the lattice spacing a ≡ 1 which leads to a first
Brillouin zone of size 2π. Here, we have a = π/kg such that the first Brillouin zone is of
size 2kg. A momentum transfer of ∆k = π in the tight-binding picture is thus equivalent
to a momentum transfer of ∆k = kg in the optical lattice picture. In the following we
will use both notations for ∆k equivalently. The lattice is loaded with a degenerate gas
of fermionic 40K atoms. An infra-red laser of wavelength λr = 1064nm and wave number
kr = 2π/λr and its retro-reflection are added to create a bichromatic superlattice. The
frequencies of the two lasers differ by a factor of two, up to a small detuning δν. The
detuning may be adjusted in such a way that the superlattice has a constant bottom
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offset. The red laser is modulated by an electro-optic modulator which leads to a time-
dependent modulation of the superlattice. The modulation can be chosen in such a
way, that the superlattice oscillates around the equilibrium configuration of the green
lattice as shown in Figure 4.14. We choose a time-dependence of the form sin(ωt) with a

(a) green equilibrium lattice (b) superlattice modulation

Figure 4.14. – The superlattice modulation (b) oscillates around the equilibrium lattice
(a) between the configurations indicated by solid and dashed lines. The amplitude of the
modulation h is small with respect to the equilibrium lattice and the oscillation frequency is
given by ω.

small amplitude h such that the superlattice modulation is a small perturbation to the
green equilibrium lattice. The modulation frequency ω ∼ 103Hz is much smaller than
the laser frequency ωg ∼ 1015Hz such that the perturbation does not excite electronic
levels of the atoms. The full time-dependent optical lattice potential is given by

V (x) = V0(x) + h sin(ωt)Ṽ (x), (4.166)

V0(x) = Vg cos2(kgx)− Vg
2
, (4.167)

Ṽ (x) = cos(kgx), (4.168)

where the lattice depth of the green lattice is chosen to be Vg = 40Ered
r . It is given in

units of the recoil energy of the red laser Ered
r = ~2k2

r/2m = ~2k2
g/8m = Egreen

r /4 with
the mass of 40K atoms, m = 39.96u, u = 1.660539 · 10−27kg.

4.4.2. The measurement

As explained in Section 4.1.2 we expect to observe a linear rise in the energy absorbed
by the system E(t) as a function of the duration t of the perturbation. We employ
linear response theory in Section 4.1 to compute the response function ImχOO†(ω)
within the lowest Bloch band. We establish the following relation to the slope m of
E(t) (Equation (4.39)),

ImχOO†(ω) =
−2m

|h|2ω
. (4.169)

We have to carry out the measurement for different values of ω within the range of
absorption ω ∈ (0, 4J ], where J is the hopping amplitude (see Section 4.1 for details)
to map out the full response function within the lowest Bloch band. In standard lattice
shaking experiments with bosonic atoms the energy absorbed by the system is usu-
ally estimated from the broadening of the central peak of the momentum distribution
measured in a time-of-flight absorption image after sudden switch off [14], see Section
1.3. More recently, single-site atom resolved detection has been employed to estimate
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the absorbed energy by an increase in fluctuations [16]. In fermionic lattice shaking
experiments the energy absorption may be quantified by the observation of the double
occupancy induced by a periodic modulation [54]. Here, we take advantage of the k-
selectivity of our perturbation. Each modulation frequency ω ideally only addresses a
single momentum |k| and |k + π| on resonance. Assuming the case where momentum
k is initially occupied and k + π unoccupied. The absorbed energy is then given by

E(t) = ~ω〈nk+π(t)〉, (4.170)

where 〈nk+π(t)〉 is the occupation of the momentum state k + π. Note that 〈nk(t)〉 +
〈nk+π(t)〉 = 1. This is experimentally appealing because the quasimomentum dis-
tribution may be measured fairly easily by adiabatic band mapping, see Section 1.3.
Applying adiabatic band mapping after a certain duration t of the perturbation di-
rectly gives access to the quasimomentum distribution 〈nk(t)〉 and thus to the energy
absorbed by the system.
There is a little drawback concerning the above scheme. When exciting within the low-
est band, excitations will not be clearly separated from the initial distribution in the
absorption image such that it will be difficult to reveal the time-dependence of 〈nk(t)〉
within a single band. However, this is why the dimerized equilibrium lattice discussed
in Section 4.2 is an appealing setup since we do not encounter this problem. In the
dimerized case, the size of the Brillouin zone is divided in half due to the doubling of the
unit cell. Its length is reduced to π such that a momentum kick of π transfers particles
to the next Brillouin zone and to the second band accordingly. Absorption imaging
here gives access to the number of particles in the second band as they appear in the
second Brillouin zone. In particular, as the perturbing frequency ω is fixed and ideally
only addresses a certain momentum k, we directly image the corresponding occupa-
tion after a certain duration t of the perturbation, 〈nk(t)〉. Consequently, measuring
the absorbed energy wraps up to counting all particles in the second Brillouin zone
which is initially unoccupied such that excitations are clearly separated from the initial
distribution in the first Brillouin zone. We want to recover this simple measurement
scheme for the non-dimerized equilibrium lattice. We succeed in doing so by consider-
ing its higher bands in Section 4.4.4. We deduce a tight-binding approach leading to a
measurement equivalent to the dimerized situation. Excitations to higher bands have
other advantages. Excitation frequencies are higher such that we avoid exciting in-trap
modes which lie within order of magnitude of the lowest band (see Section 4.1.2).
Note that this measurement scheme also applies to the exact time dependence discussed
in Section 4.1.1.

4.4.3. Verification of tight-binding

We verify that the tight-binding approximation is a good approximation in the case
of this particular lattice setup of the form V (x) = V0(x) + h sin(ωt)Ṽ (x). In order
to do so, we first compute the transfer matrix elements in Bloch basis (see Section
4.3) showing that the perturbation Ṽ indeed couples, to a good approximation, only
momentum states k and k+kg of the green equilibrium lattice. Remember that k = kg
in the optical lattice picture corresponds to k = π in the tight-binding picture. Note
that this k-selectivity of the transfer matrix elements is not clear a priori. We then
compute the corresponding response in Bloch basis and compare to the theory result
in tight-binding.
We start by computing the transfer matrix elements for all Bloch states of the lowest
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band, Mn=1,k→n=1,k′ ≡Mk→k′ , given by Equation (4.158). The Bloch functions φnk(x)
and the eigenenergies En(k) are determined by numeric band structure calculations,
see Appendix B, for the equilibrium lattice potential V0(x) = Vg cos2(kgx)− Vg/2 with
the parameters introduced in 4.4.1. We find the following order of magnitude

Mk→k′ =


O
(
10−12 − 10−8

)
, k′ 6= k + kg

O
(
10−5 − 10−4

)
, k′ = k + kg, k 6= {0, kg}

O(10−23), k′ = k + kg, k = {0, kg}
. (4.171)

We conclude that all transfer matrix elements with k′ 6= k+ kg are strongly suppressed
in comparison to transfers with ∆k = kg which promotes the tight-binding approx-
imation made. Exceptions are the ∆k = kg-matrix elements for k = {0, kg} which
are even more strongly suppressed. This corresponds to the prohibited transfer of the
bandwidth ω = 4J observed in tight-binding.
However, we still need to verify that the matrix elements for k′ 6= k + kg do not con-
tribute in the sum of the response function. We will do so in the following. We employ
two different comparisons in order to show that tight-binding is a good approximation.
To begin with, we compare the above result considering all ∆k to the response which
only includes transfer matrix elements with ∆k = kg. We verify that the matrix el-
ements Mk→k′ 6=k+kg hardly contribute to the response as was already hinted at by
their suppressed order of magnitude. The comparison gives good results for differ-
ent fillings (n very small up to n = 1) and temperatures T ∈ (0.01W,W ) where
W = E(k = kg) − E(k = 0) = 9 · 10−31Joule is the bandwidth for parameters from
Section 4.4.1. One example is shown in Figure 4.15a. We choose filling n = 0.5 and
T = 0.01W .

(a) The response in Bloch basis (b) The response in Bloch basis com-
pared to tight-binding

Figure 4.15. – In (a) we compare the finite size response in the Bloch basis considering only
transfers with ∆k = kg (solid line) to the response in Bloch basis considering all matrix elements
with ∆k arbitrary (dotted line). We compute the response for L = 100 lattice sites at half-filling
n = 0.5 and at a temperature T = 0.01W . We use the optical lattice parameters from Section
4.4.1 and eigenenergies and Bloch functions from the corresponding band structure calculation
in Appendix B such that the bandwidth is given by W = E(k = kg)−E(k = 0) = 9·10−31Joule.
In (b) we compare the finite size response in the Bloch basis considering only transfers with
∆k = kg (solid line) to the tight-binding response (dotted line). We choose L = 100 and filling
n = 0.5. We normalize all energy units by the bandwidth W = 4J = 4 in the tight-binding case
and W = E(k = kg)−E(k = 0) in the Bloch case for parameters from Section 4.4.1 and rescale

the response by its value at ~ω̃ = ~ω/W = 0.5. We use the rescaled temperature T̃ = 0.025.
In both cases, (a) and (b), we observe very good agreement which verifies the tight-binding
approximation (see main text).

Secondly, we compare the response for k′ = k + kg to the tight-binding result given by

63



Chapter 4. Thermometry of fermions in optical lattices by modulation spectroscopy

Equation (4.66). In order to do so we first normalize each energy unit by the bandwidth
W which is 4J in the case of tight-binding and given by En=1(k = kg)− En=1(k = 0)
in the Bloch basis case such that the response functions only depend on dimensionless
parameters. We then rescale by the response at ~ω̃ = ~ω/W = 0.5 and compare for dif-
ferent fillings and temperatures. The comparison shows excellent agreement for different
fillings and temperatures as above. One example for n = 0.5 and T̃ = T/W = 0.025 is
shown in Figure 4.15b.

4.4.4. Higher band excitations

We now take higher bands of the non-dimerized equilibrium lattice into consideration.
The measurement of a change in the quasimomentum occupancy 〈nk(t)〉 within the
lowest band requires a very high resolution of the absorption imaging as commented
on in Section 4.4.2. This is challenging in experiment. In the dimerized lattice we do
not encounter this problem as explained in Section 4.4.2 and measuring the absorbed
energy wraps up to counting all particles in the second Brillouin zone. We also want to
benefit from this simple measurement scheme for the non-dimerized equilibrium tight-
binding lattice. We show that we obtain an analogous situation for excitations to the
third band where measuring the absorbed energy wraps up to counting all particles in
the third Brillouin zone.
A schematic representation of the band structure obtained in Appendix B is shown in
Figure 4.16. We choose a higher perturbing frequency ω exciting to the third band but
remaining well below the atomic resonance frequency. The third band is roughly paral-
lel to the first (lowest) band. Excitations with ∆k = kg thus correspond to a certain ω
for each k as sketched in Figure 4.16 and we recover an equivalent measurement scheme
to the dimerized equilibrium lattice. Note, that the second band is not as suitable for
this kind of measurement as E1(k) and E2(k + kg) may be roughly parallel. If this is
the case our perturbation would no longer be k-selective. All k would get excited by
approximately equal ω such that the response function would not be resolved in energy.

Figure 4.16. – The band structure of the lattice potential V0(x) = Vg cos2(kgx) − Vg/2.
Excitations to the third band are k-selective and enable a simple measurement scheme of the
occupation 〈nk(t)〉 (see main text).
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Note an important advantage with respect to the prior case dealing with excitations
within the lowest Bloch band only. Excitation energies to the third band are higher
such that we avoid exciting collective in-trap modes (see Section 4.1.2) that would
render the treatment invalid at certain frequencies. These frequencies lie within the
band width of the lowest band and below our range of absorption for excitations to
the third band. Hence, we can map out the response function over the entire range of
absorption.
However, it remains to verify that our perturbation, to a good approximation, only
excites particles to the third band with a momentum kick of ∆k = kg such that the
response is resolved in energy. We do this by computing the transfer matrix elements
from the first to the third band Mn=1,k→n′=3,k′ given by Equation 4.158. This com-
putation is analogous to Section 4.4.3 where we compute the transfer matrix elements
within the lowest Bloch band. We use the Bloch functions and eigenenergies for the
optical lattice from Section 4.4.1 obtained by numeric band structure calculations in
Appendix B. We find that the result agrees with our expectation of k-selectivity. All
matrix elements with k′ 6= k + kg are strongly suppressed compared to those with
k′ = k + kg. Just as for the lowest band k = 0 and k = kg are an exception. These
transfers are suppressed for arbitrary ∆k.

Figure 4.17. – We compare the finite size response for excitations from the lowest band
n = 1 to the third band n = 3 in the Bloch basis considering only transfers with ∆k = kg
(solid line) to the response in Bloch basis considering all matrix elements with ∆k arbitrary
(dotted line). We use the results of the band structure calculation in Appendix B and use the
following parameters L = 100, half-filling n = 0.5, T = 0.01W , bandwidth of the lowest band
W = E1(k = kg)−E1(k = 0) = 9.0·10−31Joule. The possible range of absorption lies in between
~ωmin = E3(0) − E1(kg) = 9.0 · 10−29Joule and ~ωmax = E3(kg) − E1(0) = 1.3 · 10−28Joule.
Absorption is not observed over the entire range as the lowest band is only half-filled. Note that
this in in contrast to the response within the lowest band where half-filling leads to excitations
over the entire possible range of absorption (see main text).

We compute the corresponding response function in Bloch basis given by Equation
(4.164) where we set n′ = 3. We consider two different cases. On the one hand,
the response including all matrix elements for arbitrary ∆k. On the other hand, the
response only including matrix elements with ∆k = kg. We show that only matrix
elements for ∆k = kg significantly contribute to the response such that we can write
down a simple k-selective Hamiltonian for this scheme similar to the tight-binding case
restricted to the lowest band. The response for all ∆k and ∆k = kg in compari-
son is shown in Figure 4.17 for the case n = 0.5 and T = 0.01W with bandwidth
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W = E(k = kg) − E(k = 0) = 9.0 · 10−31Joule. Both curves sufficiently coincide such
that a ’tight-binding’-like treatment is also valid for higher bands. We checked that
both functions coincide for different fillings (between empty and completely filled) and
different temperatures within T = 0.01W and T = W .
Note an important difference to the response of the prior case within the lowest Bloch
band shown in Figure 4.15. The dependence on the filling is different. Here, the range
of absorption lies within ~ωmin = E3(0) − E1(kg) = 9.0 · 10−29Joule and ~ωmax =
E3(kg)− E1(0) = 1.3 · 10−28Joule as is clear from Figure 4.16. The response will only
be finite over the full range if the lowest band is completely filled in contrast to the
prior case where the full range was covered at half-filling. The response at half-filling
is shown in Figure 4.17 and obviously does not cover the maximal possible range of
absorption.
We can now write down a ’tight-binding’-like Hamiltonian for a perturbation exciting
to the third band,

H =
∑

n=1,3;k

En(k)c†nkcnk + h sin(ωt)
∑
k

Mn=1,k→n=3,k+kgc
†
n=3,k+kg

cn=1,k, (4.172)

assuming that the third band is initially unoccupied.
Note different behavior of the prefactor in the response in comparison to tight-binding
restricted to the lowest band. In tight-binding, the prefactor of the response is found to
be of the form ∼ sin2(k) and numeric band structure calculations yield the same shape
for |Mn=1,k→n=1,k+kg |2 as shown in Figure 4.18. Here, the prefactor is proportional to
|Mn=1,k→n=3,k+kg |2 which is no longer sin2(k)-shape but also suppresses transfers at
k = 0 and k = k + kg as shown in Figure 4.18. We emphasize the analogy between

Figure 4.18. – The prefactor of the response for the different considered cases in comparison.
The prefactor for the tight-binding case restricted to the lowest band (solid line) is given by
sin2(k). The prefactor for the response in Bloch basis restricted to the lowest band (dotted line
of small point size) is given by |Mn=1,k→n=1,k+kg |2. We normalize by |Mn=1,k=kg/2→n=1,k+kg |2.

It perfectly coincides with the sin2(k)-dependence found in tight-binding. The prefactor for the
response in Bloch basis exciting to the third band (dotted line of large point size) is given by
|Mn=1,k→n=3,k+kg |2. We normalize by |Mn=1,k=kg/2→n=3,k+kg |2. It does not coincide with the

sin2(k)-dependence but also suppresses excitations at k = 0 and k = kg.

this measurement scheme including higher bands and the simple tight-binding case
restricted to the lowest band in Section 4.1.2. The response shows a clear signature

66



4.4. The experimental approach

of the temperature-dependent Fermi tail due to the k-selectivity of the perturbation.
We expect that the same fitting procedure as in the tight-binding case in Section 4.1.2
can be applied in order to extract the temperature from the fit with a minimum of
fitting parameters. Note, that we profit from a considerably simpler measurement
scheme here compared to tight-binding as measuring the absorbed energy basically
wraps up to counting the number of particles in the third Brillouin zone in a time-of-
flight absorption image after adiabatically turning off the lattice potential. Repeating
this measurement for different energies within the range of absorption ~ω ∈ (E3(0) −
E1(kg), E3(kg) − E1(0)) maps out the full response function. We can directly extract
the temperature without the input of theoretical modeling.

Discussion We conclude, that the simplicity in both, theory and experiment, clearly
outruns other attempts to measure the temperature in fermionic gases trapped in a lat-
tice. One example is a temperature measurement based on measuring the double occu-
pancy [45] in the lattice. From the experimental side, a combination of radio-frequency
spectroscopy, Stern-Gerlach separation of the spin components and absorption imaging
is needed. Moreover, a full theoretical understanding of the dependence of the number
of doubly occupied sites with temperature is required and numerical methods have to
be employed. The combination of all this is quite demanding to implement. It is also
limited to temperatures above the on-site interaction strength such that thermal fluc-
tuations induce double occupancy. There is other theoretical proposals. One possible
concept is a temperature measurement based on the fluctuation-dissipation theorem
for non-uniform systems combined with a spatially resolved density and its fluctua-
tions [55]. However, very good local resolution is required for measurements which has
not been attained in fermionic experiments yet. Alternatively, a temperature measure-
ment based on Raman spectroscopy has been proposed [56], transferring a portion of
the atoms stored in the lattice to a third hyperfine state. This somewhat resembles our
concept as excitations occur with fixed energy and momentum such that the Raman
transition rate depends on temperature only through the Fermi function. However,
from the experimental side an additional Raman laser is needed. Finally, measuring
the light intensity after diffraction of light from regular arrays of atoms in an optical
lattice was proposed to determine the system’s temperature resembling the method of
x-ray diffraction from crystalline materials [57]. The diffraction pattern from elastic
scattering is insensitive to thermal atomic correlations but inelastic scattering events
carry information thermal fluctuations which they separate by blocking elastic scatter-
ing events. However, this proposal depends on sufficiently large density fluctuations
such that it is not practical in the low temperature regime of interest.
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Chapter 5.

Summary and outlook

Research in the field of strongly correlated many-body systems has been in the focus
of cold atom experiments for more than a decade and fast progress in both, theory and
experiment, has enabled us to develop a deeper knowledge of these systems. However,
our understanding is far from being complete. In this work we have studied the influence
of a periodic superlattice modulation onto both, bosonic and fermionic atoms, trapped
in an optical lattice, pursuing the objective to gain a deeper understanding and new
insights into the underlying physics. This work constitutes yet a further building stone
in genuinely characterizing strongly correlated quantum systems. We have studied the
nature of excitations that exhibit interesting properties due to a distinct characteristic
of the superlattice modulation. It injects momentum π into the system which strongly
affects the underlying physics. Besides a theoretical analysis, we have exploited the
possible experimental applications that we can deduce, motivated by the fact that our
ability to probe these systems is still very limited. In particular, we have developed
a new scheme to measure the temperature of ultracold fermions trapped in an optical
lattice.

Modulation spectroscopy of ultracold bosons in optical lattices In the first part
of this project, in Chapter 3, we study bosonic particles in a one-dimensional optical
lattice at commensurate filling in the Mott-insulating regime subjected to a periodic su-
perlattice modulation. We consider low-lying excitations in a perturbative approach at
strong coupling, comparing this to a numerical study employing the time-adaptive den-
sity matrix renormalization group method. We study the lowest peak in the absorption
spectrum and find that energy is absorbed within a narrow range around a maximum
near the on-site interaction strength which corresponds to the energy needed to create
an excitation. The reduced width compared to standard lattice shaking setups [17] is a
characteristic of the superlattice modulation which creates a particle-hole pair of center
of mass momentum π whose lowest excited energy band is particularly narrow. This
is appealing for experimental applications. The position of the spectral response may
be used to calibrate the lattice depth [21] such that our setup gives a more accurate
measure. At weaker interactions approaching the phase transition, a numerical analy-
sis shows a broadening and a shift to higher energies of the spectral response and we
expect to gain interesting insights into the rich physics in future studies.

Thermometry of fermions in optical lattices by modulation spectroscopy In the
second part of this project, in Chapter 4, we study non-interacting fermions in a three-
dimensional optical lattice with an additional external trapping potential subjected to a
periodic superlattice modulation along one direction. We show how a clear signature of
the Fermi tail appears in the spectral response. Again, this is a consequence of the su-
perlattice modulation which only couples selectively if ∆k = π such that the thermally
softened Fermi surface becomes resolved in energy. As a result the temperature can be
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reliably extracted down to remarkably low temperatures well below the Néel tempera-
ture where antiferromagnetic ordering is expected to occur. These temperatures have
not been reached in experiment so far which remains one of the major goals in current
experiments. Our scheme clearly outruns other attempts to measure the temperature
in fermionic gases trapped in a lattice due to its simplicity in both, theory and exper-
iment, and its validity down to ultra low temperatures. We developed a scheme how
to directly measure the spectral response by adiabatic band mapping when including
higher bands where the excited states are clearly separated from the initial distribu-
tion and taking advantage of the fact that each perturbing frequency only addresses a
certain momentum state. This is a major advance as accurate probes for the absorbed
energy in fermionic lattice systems are severely limited. We verify that this implemen-
tation is possible for a certain lattice setup available in the lab such that we go beyond
pure theoretical reasoning. We are hoping to witness experimental implementation in
the near future as the status quo of experiments permits this. Prospectively, it may
be of interest to incorporate the influence of interactions which will make theory more
complicated but should not degrade the basic idea of the measurement scheme.

Outlook Quite generally, one may envisage several routes how to study intriguing
physics taking advantage of the periodic superlattice modulation. For example, it
could be exploited to gain insight into more complex lattice models such as the ionic or
extended Hubbard model which are expected to exhibit a so-called bond-ordered wave-
phase of long-range order in a narrow region between a charge density wave phase
and a spin density wave phase [58–61] as the order parameter of the bond ordered

phase
∑

j,σ(−1)j〈c†j,σcj+1,σ + h.c.〉 is essentially the expectation value of what we call
the superlattice operator. Furthermore, we may also generalize our perturbation to
arbitrary wave numbers of the additional laser beam such that the dimerization (−1)j

is replaced by cos(Kj) and the momentum kick introduced by the lattice is now of
arbitrary value K which may serve to study the properties of various other quantum
phases.
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Appendix A.

Numerical convergence and error analysis

In this Appendix we carry out a detailed analysis of numerical convergence of the
energy absorbed by a single site Ej(t) determined by a time-dependent density matrix
renormalization group study in Section 3.2. We exemplify this for two cases, one at
strong coupling U/J = 20 and one at weak coupling U/J = 4. For these two cases we
also give the errors on the energy absorption rate defined in Section 3.2.1.

Numerical convergence For each interaction strength U/J and system length L we
ensure that the observable Ej(t) numerically converges within a certain total time in
a sense defined in the following. We vary the Hilbert-space cut-off D, the time step
∆t of the Trotter decomposition and the number of available states per site σ for a
few modulation frequencies across the range of absorption. We compute the relative
error on the energy Ej(t) when varying the parameters ∆t, D and σ and choose the
parameter values for our analysis such that the relative error is sufficiently small when
varying to a value that would give more precise results. We define the relative error at
a certain time t when changing one of the preceding parameters param between values
param = vala and param = valb, while all other parameters are kept fixed, as

eparamrel (t) =
(Ej(t, vala)− Ej(t, valb))

Ej(t, valb)
, (A.1)

where valb is the value that would give better results. We determine the relative error
at the time tmax which is the upper bound of the fitting range. We also consider the
relative error when varying the system length L to a larger value and the site j to a
neighbouring one that is likewise odd or even in order to verify that we can separate
bulk properties from boundary effects.
For U/J = 20 we choose a fitting range of t = [1, tmax = 4]. The variation of parameters
∆t, D, σ, L and j are summarized in Table A.1. The first column vala contains the
parameters used for our analysis. The second column contains the parameters valb that
we vary to when determining the relative error. Note, that at each variation of one
of the parameters from vala to valb all others are kept fix at vala. The corresponding
relative errors are given in Table A.2. We conclude that Ej(t), for L = 30 at site
j = 15, gives satisfactorily precise results for parameters ∆t = 0.01, D = 128 and
σ = 3. Additionally, we can separate bulk properties from boundary effects.
For U/J = 4 we choose a fitting range of t = [1, tmax = 6]. The variation of parameters
∆t, D, σ, L and j are summarized in Table A.3 and the corresponding relative errors
are given in Table A.4. We find that Ej(t), for L = 40 at site j = 20, gives satisfactorily
precise results for parameters ∆t = 0.05, D = 128 and σ = 7.

Errors on the energy absorption rate We follow the procedure explained in Section
3.2.1 for a few frequencies ω across the range of absorption. We determine the leading
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Appendix A. Numerical convergence and error analysis

parameter vala valb

∆t 0.01 0.005

D 128 196

σ 3 5

L 30 50

j 15 13

Table A.1. – Variation of parameters chosen to test the convergence of Ej(t) at a time tmax = 4
for U/J = 20. Note, that at each variation of one of the parameters from vala to valb all others
are kept fix at vala.

ω e∆t
rel(tmax) eDrel(tmax) eσrel(tmax) eLrel(tmax) ejrel(tmax)

19 1.2 · 10−2 3.0 · 10−5 4.3 · 10−2 7.4 · 10−3 2.3 · 10−2

20 7.2 · 10−3 1.6 · 10−5 2.2 · 10−2 5.0 · 10−3 2.1 · 10−2

21 1.0 · 10−2 2.4 · 10−5 1.2 · 10−2 7.1 · 10−3 3.2 · 10−2

22 1.4 · 10−2 1.2 · 10−5 4.4 · 10−3 8.1 · 10−3 2.6 · 10−2

Table A.2. – The relative errors eparamrel (tmax) on Ej(tmax) for U/J = 20 when varying the
parameter param from vala to valb as given in A.1.

parameter vala valb

∆t 0.05 0.01

D 128 196

σ 7 9

L 40 60

j 20 18

Table A.3. – Variation of parameters chosen to test the convergence of Ej(t) at a time tmax = 6
for U/J = 4. Note, that at each variation of one of the parameters from vala to valb all others
are kept fix at vala.

ω [J ] e∆t
rel(tmax) eDrel(tmax) eσrel(tmax) eLrel(tmax) ejrel(tmax)

4.1 1.0 · 10−2 2.0 · 10−5 4.5 · 10−6 3.8 · 10−3 2.5 · 10−3

5 4.8 · 10−3 3.2 · 10−4 2.2 · 10−5 3.5 · 10−3 2.3 · 10−3

5.9 6.1 · 10−3 8.7 · 10−4 1.6 · 10−5 5.5 · 10−3 3.4 · 10−3

6.8 1.7 · 10−2 2.5 · 10−3 4.6 · 10−4 9.3 · 10−3 5.0 · 10−3

7.7 3.7 · 10−2 5.7 · 10−3 3.1 · 10−4 6.1 · 10−3 6.8 · 10−3

8.6 1.4 · 10−2 4.1 · 10−3 2.2 · 10−4 - 3.4 · 10−3

Table A.4. – The relative errors eparamrel (tmax) on Ej(tmax) for U/J = 4 when varying the
parameter param from vala to valb as given in A.3.
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ω [J ] dominant eparamrel (tmax) m ∆num ∆fit ∆range

19 eσrel(tmax) = 4.3 · 10−2 0.19 8.2 · 10−3 5.8 · 10−3 4.6 · 10−3

20 eσrel(tmax) = 2.2 · 10−2 0.33 1.7 · 10−2 1.1 · 10−2 1.3 · 10−2

21 ejrel(tmax) = 3.2 · 10−2 0.36 5.1 · 10−3 5.5 · 10−3 1.5 · 10−2

22 ejrel(tmax) = 2.6 · 10−2 0.22 4.2 · 10−3 9.7 · 10−3 7.3 · 10−3

Table A.5. – For different ω across the range of absorption for U/J = 20 we summarize the
dominant relative error eparamrel (tmax) on Ej(t), the fitted energy absorption rate m and the
errors on m given by ∆num, ∆fit and ∆range. These errors are of similar magnitude. The largest
of these three errors is used for the errorbars in Figure 3.2a.

ω [J ] dominant eparamrel (tmax) m ∆num ∆fit ∆range

4.1 e∆t
rel(tmax) = 1.0 · 10−2 0.61 · 10−2 6.2 · 10−5 7.4 · 10−4 4.3 · 10−4

5.0 e∆t
rel(tmax) = 4.8 · 10−3 1.5 · 10−2 7.8 · 10−5 9.0 · 10−4 3.0 · 10−4

5.9 e∆t
rel(tmax) = 6.1 · 10−3 2.1 · 10−2 2.9 · 10−4 9.6 · 10−4 3.8 · 10−4

6.8 e∆t
rel(tmax) = 1.7 · 10−2 2.9 · 10−2 7.8 · 10−4 9.8 · 10−4 9.6 · 10−4

7.7 e∆t
rel(tmax) = 3.7 · 10−2 3.4 · 10−2 1.0 · 10−3 1.5 · 10−3 5.6 · 10−4

8.6 e∆t
rel(tmax) = 1.4 · 10−2 1.3 · 10−2 4.4 · 10−4 1.6 · 10−3 1.4 · 10−3

Table A.6. – For different ω across the range of absorption for U/J = 4 we summarize the
dominant relative error eparamrel (tmax) on Ej(t), the fitted energy absorption rate m and the
errors on m given by ∆num, ∆fit and ∆range. ∆fit and ∆range are of same order of magnitude
whereas ∆num is one order of magnitude smaller. The largest error is ∆fit for all ω. This error
is displayed by the errorbars in Figure 3.2b.

relative error on Ej(t) from a change in parameters ∆t, D, σ, L and j and then

determine the errors ∆fit, ∆range and ∆num onm = (1/L)·dE(t)/dt defined in 3.2.1. The
results for U/J = 20 and U/J = 4 are summarized in Tables A.5 and A.6 respectively.
The errorbars presented in Figure 3.2 display the largest of the three errors. For
U/J = 20 all errors are on the same order of magnitude and the dominating error
differs between different ω. For U/J = 4 the dominating error is ∆fit for all ω.
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Appendix B.

Numerical bandstructure calculation

We carry out a numeric bandstructure calculation for the optical lattice V0(x) =
Vg cos2(kgx)−Vg/2 with parameters introduced in Section 4.4.1 and determine the en-
ergy bands as well as the corresponding Bloch functions. We need this for the detailed
analysis of the experimental implementation in Section 4.4. We rewrite the Schrödinger
equation for a particle in a periodic potential V0(x) given by Equation (4.151) for the
periodic function unk(x) defined through Equation (4.153),(

~2

2m
(k2 − 2ik∂x + ∂2

x) + V0(x)

)
unk(x) = Enk(x)unk(x). (B.1)

The potential V0(x) and the function unk(x) have the same periodicity which is given
by the lattice spacing of the optical lattice a = λg/2 = π/kg such that the first Brillouin
zone of the reciprocal lattice is (kg, kg]. This is equivalent to the Brillouin zone being
(−π, π] in the tight-binding picture. Note that the momentum transfer ∆k = π is now
given by ∆k = kg. Due to the periodicity we can write V0(x) and unk(x) as Fourier
sums of the reciprocal lattice vector 2kg,

V0(x) =
∑
r

Vre
ix2kgr = Vg cos2(kgx)− Vg

2
=
Vg
4

(
e2ikgx + e−2ikgx − 2

)
, (B.2)

unk(x) =
∑
l

cnkl e
ix2kgl. (B.3)

From the first line it follows Vr=+1 = Vr=−1 = Vg/4 and we set Vr=0 = 0. Substituting
into the Schrödinger equation B.1 yields

∑
l′

(
(~k + 2~kgl′)2

2m
cnkl′ δl,l′ + Vl−l′c

nk
l′

)
= En(k)cnkl , (B.4)

which can be written in matrix form∑
l′

Hl,l′c
nk
l′ = En(k)cnkl , (B.5)

with

Hl,l′ =


(
k
kg

+ 2l′
)2
Egreen
r , l = l′

Vg
4 , |l − l′| = 1

0, else

, (B.6)

with the recoil energy Egreen
r = 4Ered

r , Ered
r = ~2k2

r/2m (see Section 4.4.1). We numer-
ically diagonalize the Hamiltonian matrix to obtain the eigenenergies En(k) and the
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Appendix B. Numerical bandstructure calculation

corresponding vectors cnk that define the Bloch function through Equations (B.3) and
(4.153). The coefficients cnk become sufficiently small for large |l| such that we can trun-
cate the Hamiltonian in order to carry out the diagonalization. For the lowest bands
l = −5, 4, ..., 5 is a reasonable choice. We discretize k = −kg + 2kgj/100, j = 1, ..., 100.
The bandstructure and the corresponding Bloch functions for our particular lattice
setup with Vg = 40Ered

r = 2.9 · 10−30J are shown in Figure B.1.

(a) lowest band n = 1 (b) bands n = 1 − 4

Figure B.1. – Bandstructure En(k) of the equilibrium lattice V0(x) = Vg cos2(kgx)− Vg/2 in
units of the recoil energy Egreen

r = 1.17 · 10−29J for a lattice depth of Vg = 40Ered
r = 10Egreen

r .

Figure B.2. – Bloch functions of the lowest band n = 1 of the equilibrium lattice V0(x) =
Vg cos2(kgx)− Vg/2 for quasimomentum k = 0 (black) and k = kg (grey).
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Appendix C.

The response in Bloch basis representation

In this appendix we compute the response in Bloch basis representation which is given
in Section 4.3 without derivation. We use the spectral representation given by Equation
(2.14),

ImχOO†(ω) = − π
Z

∑
n,m

|〈m|O|n〉|2e−β(En−µN)δ (ω − (Em − En))
(

1− e−βω
)
. (C.1)

Here, the many body states |n〉 are given by |n〉 =
∏
{k} c

†
k|0〉 where |0〉 is the vacuum

and c†k creates a particle in Bloch state k. The product runs over all possible config-
urations of different k denoted by {k}. We insert the perturbing operator O in Bloch
basis given by Equation (4.157) and constrain the calculation to ∆k = kg since the
calculation for all ∆k is analogous but less clear in notation. We obtain

ImχOO†(ω) = − π
Z

∑
n,m

∣∣∣∑
k

Mk→k+kg〈m|c
†
k+kg

ck|n〉+M∗k→k+kg〈m|c
†
kck+kg |n〉

∣∣∣2· (C.2)

· e−β(En−µN)δ
(
ω − (Em − En)

) (
1− e−βω

)
(C.3)

= − π
Z

(
1− e−βω

)∑
n(k)

|Mk→k+kg +M∗k→k+kg |
2〈n|c†k+kg

ck|m〉· (C.4)

· 〈m|c†kck+kg |n〉e−β(En−µN)δ
(
ω − (Em − En)

)
(C.5)

= −π
(

1− e−βω
)∑

k

4|Mk→k+kg |2f
(
E(k + kg)− µ

)
· (C.6)

·
(

1− f
(
E(k)− µ

))
δ
(
ω −

(
E(k)− E(k + kg)

))
(C.7)

= −4π
∑
k

|Mk→k+kg |2
(

1− e−β(E(k)−E(k+kg))
)
f
(
E(k + kg)− µ

)
· (C.8)

·
(

1− f
(
E(k)− µ

))
δ
(
ω −

(
E(k)− E(k + kg)

))
(C.9)

= −4π
∑
k

|Mk→k+kg |2
(
f
(
E(k + kg)− µ

)
− f

(
E(k)− µ

))
· (C.10)

· δ
(
ω −

(
E(k)− E(k + kg)

))
(C.11)

= −4δ
∑
k

|Mk→k+kg |2
(
f
(
E(k + kg)− µ

)
− f

(
E(k)− µ

))
· (C.12)

· 1

δ2 +
(
ω − (E(k)− E(k + kg))

)2 . (C.13)

Note that in step 2 we reduce to a sum over n(k) as for a certain k there is only one
matching pair of |n〉 and |m〉 which gives non-zero expectation values. In step 3 we use
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Appendix C. The response in Bloch basis representation

〈n|c†k+kg
ck|m〉·〈m|c†kck+kg |n〉·e−β(En−µN)/Z = f

(
E(k+kg)−µ

)
·
(

1−f
(
E(k)−µ

))
and

replace by a sum over k. In step 4 we insert the resonance frequeny ω = E(k)−E(k+kg).
We then simplify. Note that in the last line δ is an infinitesimal parameter and no longer
the δ-function. Analogous calculations yield the response including all k′

ImχOO†(ω) = −4δ
∑
k,k′

|Mk→k′ |2
(
f
(
E(k)− µ

)
− f

(
E(k′)− µ

))
· (C.14)

· 1

δ2 +
(
ω − (E(k′)− E(k))

)2 . (C.15)

Including excitations to higher bands we analogously obtain

ImχOO†(ω) = −π
∑
k

|Mn=1,k→n′ 6=1,k′ |2
(
f
(
E1(k)− µ

)
− f

(
En′(k

′)− µ
))
· (C.16)

· δ
(
ω −

(
En′(k

′)− E1(k)
))

(C.17)

= −δ
∑
k

|Mn=1,k→n′ 6=1,k′ |2
(
f
(
E1(k)− µ

)
− f

(
En′(k

′)− µ
))
· (C.18)

· 1

δ2 +
(
ω − (En′(k′)− E1(k))

)2 . (C.19)
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Two representations of the transfer matrix
element: Bloch basis and Wannier basis

In Section 4.4.3 we show that the tight-binding representation of the perturbation, i.e.
O =

∑
j(−1)j(c†jcj+1 + h.c.) =

∑
k(exp(i(k+ π))c†kck+π + h.c) as introduced in Section

1.3, is a good approximation in the case of the particular lattice setup specified in Sec-
tion 4.4.1. We do so by comparing the response function in Bloch basis representation,
Equation (4.162), for the particular lattice setup with the help of numeric bandstructre
calculations (Appendix B) to the tight-binding result from Section 4.1.2. In this Ap-
pendix we relate the Bloch basis representation from Section 4.3 to the tight-binding
representation in order to show that a direct comparison is possible.
The tight-binding Hamiltonian (1.19) is obtained by writing the HamiltonianH1 (4.151)
and the perturbing potential δV (x, t) 1.17 in second quantized form in the Wannier ba-
sis representation. Wannier functions wn(x−xj) are maximally localized on individual
lattice sites j at position xj = aj in contrast to Bloch functions φnk(x) (4.153) that are
delocalized over the entire lattice. The Wannier functions can be constructed from the
Bloch functions and constitute an orthonormal basis,

wn(x− xj) =
1√
N

∑
k

e−ikxjφnk(x), (D.1)

where N is a normalization constant. We choose the notation wn(x− xj) or |nj〉. The
equilibrium Hamiltonian in second quantization is given by

H =
∑
njn′j′

〈n′j′|H1|nj〉c†n′j′cnj (D.2)

≈ −J
∑
j

(c†j+1cj + h.c.), (D.3)

where H1 is given by Equation (4.151). The tight-binding Hamiltonian in the second
line is obtained by only considering the lowest band and nearest-neighbor tunneling.
The tunneling matrix element is given by

J = −〈n = 1, j + 1|H1|n = 1, j〉 (D.4)

= −
∫

dx w∗(x− xj+1)H1w(x− xj). (D.5)
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The perturbing operator in the Wannier basis representation is given by

O =
∑
njn′j′

〈n′j′|Ṽ (x)|nj〉c†n′j′cnj (D.6)

≈
∑
j

(−1)j(c†jcj+1 + h.c.) (D.7)

=
∑
k

(ei(k+π)c†kck+π + h.c), (D.8)

where Ṽ (x) the time-independent part of the perturbing potential 1.17 and we set
the lattice spacing a ≡ 1. For the time being, the tight-binding representation of the
perturbing operator is an assumption. It neglects higher bands and only considers
nearest-neighbor tunneling processes. This leads to a k-selective coupling after Fourier
transformation cj = (1/

√
V )
∑

k exp(ikaj)ck.
Quite generally, the Fourier transformation can be written in the following form (we
neglect the band index for now)

O =
∑
jj′

〈j′|Ṽ (x)|j〉c†j′cj (D.9)

=

{
1
V

∑
jj′
∑

kk′〈j′|Ṽ (x)|j〉ei(jk−j′k′)c†k′ck∑
jj′
∑

kk′〈j′|k′〉〈k′|Ṽ (x)|k〉〈k|j〉c†j′cj
(D.10)

=
∑
kk′

〈k′|Ṽ (x)|k〉
∑
j

〈j′|k′〉c†j′
∑
j

〈k|j〉cj (D.11)

=
∑
kk′

〈k′|Ṽ (x)|k〉c†k′ck (D.12)

=
∑
kk′

Mk→k′c
†
k′ck. (D.13)

We identify ck =
∑

j〈k|j〉cj , 〈k|j〉 = (1/
√
V ) exp(−ikaj) and the transfer matrix ele-

ment in Wannier basis

Mk→k′ = 〈k′|Ṽ (x)|k〉 =
1

V

∑
jj′

〈j′|Ṽ (x)|j〉ei(jk−j′k′). (D.14)

In the following we will show that Mk→k′ are equivalent in Bloch -and Wannier basis
such that the tight-binding approximation may be verified by computing the transfer
matrix elements in Bloch basis which is carried out in Section 4.4.3.
We restrict the proof to the lowest band. We denote Wannier states by |j〉, Fourier
transformed Wannier states by |k〉 and Bloch states of quasimomentum k̃ by |k̃〉. We
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start with the transfer matrix element in Wannier basis representation.

〈k′|Ṽ (x)|k〉 =
∑
jj′

〈k′|j′〉〈j′|Ṽ |j〉〈j|k〉 (D.15)

=
∑
jj′

〈k′|j′〉〈j|k〉
∫

dx w∗(x− xj′)Ṽ w(x− xj) (D.16)

=
∑
jj′

∑
k̃k̃′

〈k′|j′〉〈j|k〉ei(k̃′xj′−k̃xj) 1

V

∫
dx φ∗

k̃′
(x)Ṽ φk̃(x) (D.17)

=
∑
jj′

∑
k̃k̃′

1

V
e−ik

′aj′eikajeik̃
′xj′e−ik̃xj

1

V

∫
dx φ∗

k̃′
(x)Ṽ φk̃(x) (D.18)

=
∑
k̃k̃′

δk,k̃δk′,k̃′

∫
dx φ∗

k̃′
(x)Ṽ φk̃(x) (D.19)

=

∫
dxφ∗

k̃′
(x)Ṽ φk̃(x) (D.20)

= 〈k̃′|Ṽ |k̃〉. (D.21)

We finish with the matrix element in Bloch basis representation which completes the
proof. We used w(x − xj) = (1/

√
V )
∑

k exp(−ik̃xj)φk̃(x) in step 3, setting a ≡ 1,

xj = aj ≡ j, 〈k|j〉 = (1/
√
V ) exp(−ikaj) in step 4 and

∑
jj′ exp(ij(k− k̃)) exp(ij′(k̃′−

k′)) = V 2δk,k̃δk′,k̃′ in step 5.
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