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Chapter 1

Introduction

In 1924, Einstein investigated theoretically the ideal atomic Bose gas with the statistics
introduced by Bose the same year for photons. He predicted that, at temperatures close
to the absolute zero, the bosons occupy the lowest energy level, where quantum effects
can be observed on the macroscopic scale. This state of matter is called the Bose-Einstein
condensate (BEC).

Its experimental realization remained a challenge over about seventy years, because
temperatures of the order of the nano-Kelvin has to be reached. In 1995, thanks to laser
and evaporating cooling techniques, this was achieved with rubidium [1], sodium [12] and
lithium [6] atoms. The way was paved for the exploration of quantum phenomena on a
macroscopic scale: interference between two condensates [2], collective modes [11], etc.
Many-body effects, such as the quantum phase transition between a Mott-insulating and
a superfluid state, were revealed experimentally in [20].

In a Bose-Einstein condensate, the interaction energy in usually about 200 lower than
the kinetic energy. This weakly interacting regimes are well-described by mean-field
theories [42]. However, regimes where the kinetic energy of the atoms is of the order
of the interaction energy are even more interesting, because the correlations between
the atoms become important. Experimentally, this was achieved: because the bosons
mainly interact by s-wave scattering, increasing the s-wave scattering length by Feshbach
resonance [42] allows to reach strong coupling regimes. The drawback is a decrease of the
lifetime of the atomic cloud [10, 13].

However, experiments performed by M. Greiner and collaborators provided another
approach. There, the kinetic energy is lowered, allowing a longer lifetime for the BEC.
To do so, the cloud of cold atoms is first loaded into an optical potential (see [5, 19]
and references therein), which is an artificial lattice potential created by two counter
propagating laser beams. The motion of the bosons is then frozen: they are trapped
into the intensity maxima or minima of this light field. They can only move from site
to site by tunneling. The tunable height of the optical lattice allows to vary the kinetic
energy by several orders of magnitude. A large height is tantamount to a small tunneling
probability, and conversely.

Much more stable, the atomic cloud obtained with this method can also be very
finely tuned: the parameters in the Hamiltonian are much more controlled. They can
be changed almost at will, and measurement of quantities such as the momentum distri-
bution or the parity correlation function [9] can be done with a great precision. Either
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a BEC with non-interacting bosons or a strongly interacting atomic cloud can be cre-
ated and maintained. Depending on the interaction strength, the atomic cloud can be
found in two different phases. The properties of both are now well-known, and the phase
transition which takes place revealed experimentally [20]. In chapter 2, we present those
properties, notably the differences between the superfluid and Mott-insulating phases.
We introduce the physical quantities which will be important in the next chapters, the
one-body correlation function, and the momentum distribution, because they allow a real
understanding of the cold bosons.

In the weakly interacting regime, the atoms show long-range phase coherence and can
be described by a macroscopic wavefunction. Thus quantum phenomena can be seen on a
macroscopic scale. This phase coherence can be revealed by the momentum distribution
[19]. Experimentally accessible by so-called time-of-flight measurement (see section 2.3.1),
theoretical studies have to be led numerically, when no approximative analytical methods
exist.

For several years a powerful numerical tool in the study of one-dimensional systems on
a lattice, called the Density Matrix Renormalization Group (DMRG), has been developed
and used extensively on a variety of situation. This work will also use intensively. In
chapter 3, we present its essence, and its efficiency to modelize one-dimensional systems.

But the new method of M. Greiner et al also opened a whole new area of non-
equilibrium phenomena. Quenching, for example, which is a sudden change of a parameter
in the Hamiltonian, resulting in the propagation of information with a certain speed. This
is studied in chapter 4, where the optical lattice height, initially high, is lowered, so as to
facilitate tunneling from site to another. After the quench, propagating quasiparticles are
formed of elementary excitations. We try to understand their structure, and to decipher
the dynamics the quench induces. In 4.2, we show a coherence exists between the several
superpositions of quasiparticles. With the help of a perturbative tool developed in chapter
3, we understand which frequencies are involved in those quasiparticles.

Finally, in chapter 5, the behavior of two different bosonic species in interaction is
considered, from both the static and time-dependent points of view. The addition of a sec-
ond species can modify considerably the ground state properties, introducing new phases.
However, we focus on the interaction between a strongly correlated Mott-insulating state
and a superfluid, in a range of parameters far from these new and intriguing phases. A
quench is performed on the strongly interacting species, towards lower interactions, a
situation comparable to the one studied in the previous chapter.

We investigate qualitatively whether the quasiparticle picture, valid in the single-
species case, is still applicable, or if the added superfluid invalidate this picture. Our
study indicates that the superfluid “dresses” the quasiparticle without destroying it, and
increases the coherence of the system.
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Chapter 2

The Physics of Cold Atomic Gases

In this chapter, we start by deriving the Hamiltonian of an atomic cloud in an optical
lattice. Within some approximation, a discrete form can be obtained, which is correct
provided only the lowest-lying energy band is occupied. Experimentally, this can be en-
sured by maintaining the typical energies of the system below the gap. This Hamiltonian
shows two parameters, one accounting for the interaction, one for the tunneling (“hop-
ping”) between the lattice sites. Both are experimentally tunable with great precision,
respectively by choosing atoms with different s-wave scattering length and changing the
lattice depth (that is, the laser amplitude).

Once this is done, we diagonalize the Bose-Hubbard Hamiltonian obtained in two
limiting cases, no interaction, and no hopping. For a particular value of the filling fac-
tor, which is the number of sites divided by the total number of atoms in the cloud,
two phases are found. We then turn to a numerical, approximate diagonalization to ex-
plore the properties of this Hamiltonian, such as energy, one-body correlations, etc. The
momentum distribution is introduced and its importance in experiments explained.

Finally, a first approach of a non-equilibrium situation is presented as well as the
notion of quench, which will be used extensively in chapter 4.

2.1 Static Bose-Hubbard Model on a Lattice

As explained in the introduction, a stable atomic gas in which the interaction and kinetic
energies are comparable can be achieved by creating a periodic lattice over the atomic
cloud. This lattice hinders the movements of the atoms, which becomes only possible
through quantum tunneling. Therefore, the kinetic energy is considerably reduced, to
the order of the interaction energy. As compared to the techniques where the interaction
energy is increased to the order of the kinetic energy, the system gains in life-time and
stability.

By the interference of two counter-propagating laser beams, a so-called optical lattice
can be induced, which simulates the desired lattice potential. Via the optical dipole
interaction (see [21, 19] for details), the atoms will be located at the intensity minima
or maxima of the lasers. A cloud of (bosonic) atoms can thus be ordered into a one-
dimensional lattice. Their interaction is repulsive and mostly take place through s-wave
scattering theory [24].
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In this section, we construct the Hamiltonian of the BEC, and use the fact that we
now have a discrete lattice to obtain a discrete formulation, which is the most helpful
form.

The most general form is:

H =
∫

d3xΨ†(x)

(

− ~
2

2m
∇2 + Vexternal(x) +

2πas~
2

m
Ψ†(x)Ψ(x)

)

Ψ(x), (2.1)

where Ψ(x) is the bosonic field operator and Ψ†(x) its hermitian conjugate. The first
term contains the kinetic energy of the atoms and Vexternal all optional external potential,
including the lattice potential. m is the mass of the atoms, as their s-wave scattering
length; these experimental parameters weight the interaction term of the Hamiltonian.
In the case of cold bosons, this interaction is on-site and short-range, and therefore well
approximated by an isotropic pseudopotential. Once for all we set ~ = 1 and do not
repeat it.

The presence of a periodic potential induces an energy band structure, which will be
discussed in section 2.2.2. A gap opens between the lowest lying bands, which increases
with the lattice depth. Therefore, if a large lattice depth is used, the typical energies
involved in the system are smaller than the gap, and the atoms are confined to the lowest
band. The Wannier function of the lowest band, w0, can be used to describe this situation.

The Wannier functions wn are a set of orthogonal functions obtained from the Bloch
functions φ(n)

q [27]:

wn(x− xj) =
1

Z

∑

q

eiqxjφ(n)
q (x).

Above, Z is some normalization constant, and if L is the even number of sites in the
lattice1, q = 2πj/L where j is an integer running from −L/2 to L/2 − 1.

Whereas a Bloch function is delocalized, a Wannier function becomes more and more
peaked at the lattice site xj as the lattice height is increased. Therefore, it can be useful
to describe localized particles. This tendency toward localization is expected, since the
deeper the lattice, the smaller the tunneling probability, and therefore the more localized
near one given site atoms are.

Thus, the Wannier functions are useful to discuss phenomena in which a strong spacial
localization in a periodic potential takes place. Note that we retain only the lowest in
energy, w0, and neglect excitations, that is, higher bands.

To derive a discrete form of the Bose-Hubbard Hamiltonian from the continuous
model (2.1) (done in [23]), the bosonic field operator are written with the lowest Wannier
function only:

Ψ(x) =
∑

j

w0(x− xj)aj,

where the xj localize the minima of the optical potential, and aj is an annihilation
operator acting at xj. Moreover, we keep only on-site interactions, because they are the
most important, due to the strong localization (see appendix B of [28] for a detailed
justification) we obtain:

H = −J
∑

i

(a†
iai+1 + a†

i+1ai) +
U

2

∑

i

a†
ia

†
iaiai. (2.2)

1Then, if a is the interspace between two sites (the lattice period), La is the total size of the lattice.
However, to simplify, we take a = 1 in the following.
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First presented in a seminal paper by M. P. A. Fisher in 1989 [15], this very simple
expression –however physically rich– features a kinetic term (the first) in the form of a
trend toward displacement from site j to site j + 1. Here, another simplification is done
by supposing that jumps of more than one site at once is impossible: terms like a†

iai+2+
h.c. are neglected. In more refined models, however, they could appear (see [25]), but
would only marginally alter the physics. Thus, the parameter:

J =
∫

d3xw0(x− xi)

(

− ~
2

2m
∇2 + Vexternal(x)

)

w0(x− xj), (2.3)

can be viewed as a positive hopping parameter, measuring the probability of tunneling
from one site to its closest neighbor.

The second term, which, from bosonic commutation relation, can be expressed as:

Vinteraction =
U

2

∑

i

a†
iai(a

†
iai − 1) =

U

2

∑

i

ni(ni − 1),

with the local density operator ni, giving exactly the number of particles located at site i.
This term vanishes at sites empty or occupied by only one particle. For higher occupation,
it gives U times the number of possible pairs: 1 for nj = 2, 6 for nj = 4, etc. Thus it
describes, in an intuitive manner, the interaction between particles. Its expression in
term of the Wannier function and experimental parameters (mass and s-wave scattering
length) is:

U =
4πas

m

∫

d3x|w(x)|4.
Yet simple in its expression, the Bose-Hubbard model is in general not solvable exactly:

for N atoms spreading over L sites, the dimension of the Hilbert space is:

D =
(L+N − 1)!

N !(L − 1)!
,

if the total number of atoms is conserved2, D = NL otherwise. For small lattice sizes,
L = 7 − 10, exact diagonalization is possible with the Lanczos method [34], but as D
grows exponentially, one is forced to use approximate, numerical methods. An efficient
one, called the Density Matrix Renormalization Group, will be described in chapter 3.

These efforts are worth, because the competition between the interaction, which acts
to localize particles, and the kinetic (hopping) term, which does the contrary, produces
fascinating effects. In particular a rich phase diagram, exhibiting, in one dimension, a
critical point at U/J ≈ 3.37, when the filling L/N is equal to one [14]. Moreover, as Both
J and U are tunable, this model is particularly suited for experimental studies (see for
instance [19] and references therein), what is discussed in the following sections.

2.2 Quantum phase transition in the Bose-Hubbard

Model

The Bose-Hubbard Hamiltonian can be solved exactly in two limiting cases: when hopping
is completely neglected, and when interactions are. In this section, we begin by exploring

2Which will always be the case for us.
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them, in order to have a clear idea of the physics at least for the extremes U/J = 0 and
J/U = 0. Whereas at incommensurate fillings (N/L not an integer) the phase is the
same for both limits (superfluid), it is not for J = 0 in a commensurate filling (N/L is an
integer). The obtained state, so-called Mott-insulating, is gapped. Armed with this, we
investigate, with the help of a numerical scheme described in the next chapter, the cases
when U/J is finite and non-zero.

With an incommensurate filling, the same phase remains, whatever the ratio U/J .
This is not the case with commensurate filling, where a phase transition is expected
from Mott to Superfluid state. This is the interesting situation, on which we focus our
attention. We present several ways to distinguish between the two phases: one-body
correlation, fluctuation in the occupation number, momentum distribution. The aim is
not to pinpoint the critical as was done in [14, 15], but to present an overview, and
to focus on the tools which will be important in the next chapters, namely one-body
correlations and momentum distribution.

2.2.1 The Mott Insulator and Superfluid Ground States

In the limit of strong interaction (that is, J/U → 0), the Bose-Hubbard Hamiltonian
reduces to:

H =
U

2

∑

ni(ni − 1),

which is diagonal in the Fock occupation basis; this basis is formed by Fock vectors
|n1, n2, ..., nL〉 where ni = 0, 1, ..., N provided

∑

i ni = N . Imagine that the filling n̄ =
N/L = 1. In this case the ground state is simply the state with one particle per site,
because it costs a lot of energy to form a pair and leave a vacant site. Localization is
therefore maximal. Moreover, the energy levels are clearly located at 0, U, 2U, ..., because
the spectrum of the operator ni(ni − 1)/2 is N. Therefore, an energy gap exists in this
limit.

This localization forbids any transport of particle in the ground state, and because of
the gap, the system is an insulator, so-called Mott Insulator state. However, this state is
easily destroyed: there suffices to add a particle on top of this state to suppress the gap.
Indeed, in a simplified picture, the excess particle has no preferred location and moves
freely on top of an array of particle. It is delocalized, and consequently the whole system
is. As a consequence transport phenomena are now allowed and the state is no more an
insulator state, but a superfluid state.

Thus, one sees that Mott insulator state only happens at integer fillings. In the first
case above, we had n̄ = 1, but in the second, n̄ = (L+ 1)/L = 1 + 1/L, which can not be
an integer. However, the Mott Insulator state can also be suppressed when U/J becomes
too small, that is, when hopping starts to delocalize particles. For filling n̄ = 1, a phase
transition to a superfluid state takes place, at U/J ≈ 3.37 (in the thermodynamic limit,
that is, L → ∞, keeping n̄ constant) [14, 31], rather smoothly. Closely around the critical
value, the system is found in a intermediate Kosterlitz-Thouless phase [26].

Now, we switch to the opposite limit, of vanishing interaction, where the bosons are
free: with the hopping term alone, they move freely on the lattice. The Hamiltonian
reduces to:

H = −J
∑

i

a†
iai+1 + a†

i+1ai,
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and can be diagonalized by a Fourier transform. The creation operator becomes:

a†
q =

1

L

L−1
∑

l=0

eiπql/La†
l ,

and the Hamiltonian is transformed into:

H = −2J
L−1
∑

q=0

cos
(

qπ

L

)

a†
qaq. (2.4)

The eigenstates of the Hamiltonian have eigenenergies Eq = −2J cos
(

qπ
L

)

, and the

state of lowest energy (q = 0) can be written as:

|ψ0〉 =
(a†

q=0)N

N !
|0〉,

where |0〉 is the vacuum.

This state is also a superfluid. So far, out of three cases, we found a Mott insulator
in only one case. The table below summarizes the situation.

Filling U J State

Incommensurable Any Any Superfluid
Commensurable Any 0 Mott Insulator
Commensurable 0 Any Superfluid

Now, with this knowledge of the limiting cases, we go to a more general situation
where U and J are both finite and non-zero, and study numerically several observables.

2.2.2 Energy in the Bose-Hubbard Model

The first observable to look at is of course the eigenenergy of the ground state. To do
so, we choose to vary the ratio U/J . Thus, in figure 2.1 for example, localized systems
(because the filling is one), with high interaction stength as compared to the hopping,
lies at the right side. Towards U/J = 0 lies the superfluid, delocalized states. This is
where the energy grows the fastest with U/J . By contrast, it tends to 0 as U/J → ∞.
The ground state itself tends to the maximally localized state, a so-called “atomic” state
[15], ⊗i=1..L|1〉, simply the tensor product state with eigenenergy 0.

However, energy tends to 0 only when n̄ ≤ 1, when there are more sites than particles.
If, in contrast, n̄ > 1, at least two particles are always interacting, and the energy has
no upper bound. The band-structure of the Bose-Hubbard model is difficult to find.
Without hopping, it is simple the countable set {0, U, 2U, ...}, for any momenta. But the
kinetic part introduces a k-dependence and a certain bandwidth; see for example [43] for
Monte-Carlo calculations.

11



0 5 10 15 20
U/J

−2.0

−1.5

−1.0

−0.5

0.0

E
_0

L=64, N=64

Figure 2.1: Groundstate energy of a system of 64 sites with unit filling, versus the ratio
U/J . The vertical line at U/J = 3.37 locates approximatively the transition point,
according to [31]. The energy at U/J = 0 is exactly Eq=0 = −2.0. When U/J → ∞,
every particle have one and only one site to populate, and therefore, the ground state is
a simple atomic Mott state with 0 energy.
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Figure 2.2: One-body correlation function 〈a†
0ad〉, versus the distance d, for various ratios

U/J , at a commensurate filling, n̄ = 1. In (a), one sees how fast the correlations drop to
0 for U/J > 3.37, so in the Mott insulator state. Those states are weakly correlated, the
decrease is exponential, as (c) shows. By contrast, in (b), the ground state is superfluid,
and one-body correlations decrease slowly, following an algebraic law. A connection
persists even for sites far apart: in a superfluid, particles are coherent. Note a little
drop at d ≈ L/2: this is a slight boundary effect. Note that, though our system is large
enough to see the exponential and algebraic decays, it would not be correct to determine
a correlation length from these data. Its value would suffer from finite-size effects.
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Figure 2.3: Variance of the occupation number, 〈n2
0〉 − 〈n0〉2. The red line at U/J = 3.37

indicates approximatively the critical point. The algebraic decaying (linear decaying in a
log-log scale) in the Mott insulator state is clear, but the regime is different in Superfluid.
Moreover, the linear regime ceases slightly after the red line, indicating a intermediate
phase (Kosterlitz-Thouless).
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2.2.3 One-body Correlation Function and Occupation Variance

In this section, we consider the one-body correlation functions, 〈a†
0ad〉. a is the annihi-

lation operator, 0 denotes the center of the lattice and d some distance with respect to
this middle. The bracket 〈〉 is a quantum mechanical average over some central sites, so
as to cancel possible boundary effects.

As figure 2.2 (a) shows, for small U/J , the freedom of the atoms on the lattice results
in strong one-body correlations between them (blue, green and red lines). However, in
one-dimension, no true long-range order exists, i.e. 〈a†

0ad〉 approaches 0 for d → ∞: in
the superfluid phase, 〈a†

0ad〉 decays algebraically [17],

〈a†
0ad〉SF ∝ d−K/2,

where K is the Luttinger parameter. This decay can be seen in 2.2 (b): in a log-log scale,
〈a†

0ad〉 decays almost linearly. However, notable boundary effects bend the curve more
and more as d increases. These effects, as well as finite size effects (due to the small value
of L), modify the value of K, which universal value can not be determined safely with
such a small system.

This algebraic decay is a peculiarity of one-dimensional systems, which does not exist
in higher dimensions. In one-dimension, the high quantum fluctuations are responsible
for this algebraic decay (see below).

In contrast, as U/J grows, particle number fluctuations become energetically costly
and correlations are rapidly suppressed (see purple, yellow and black lines of 2.2 (a)).
Their decay is exponential in the Mott-insulating state [17]:

〈a†
0ad〉MI ∝ exp(−d/ξ).

Here ξ is the correlation length. Figure 2.2 (c) shows this exponential decay in a semi-
logarithmique scale. In this state, particle number is well determined on each site and
the system shows no phase coherence.

The importance of quantum fluctuations in the superfluid phase can also be caught
by the variance of the occupation number n0 of the central site,

σ2
0 = 〈(n0 − n̄)2〉.

This quantity measures the statistical fluctuations in the occupation of the middle site.
It is shown in Figure 2.3. They are high in the superfluid regime, because a the number of
atoms located at the same site can fluctuate due to delocalization. But, as already noted
in figure 2.3, they are clearly suppressed in the Mott Insulator region. As correlations
do, the occupation fluctuations decay algebraically.

2.3 The Momentum Distribution

In this section, we introduce an important quantity, the momentum distribution, which
can be though as a Fourier transform of the one-particle correlation function. We first
show that this is one of the easiest measurable quantity by so-called time-of-flight mea-
surements, easier to obtain than, for example, the density ni. Then, we explain why it
provides in fact more informations on the system than the sole density ni. Finally, we
calculate numerically the momentum distribution in several cases to see more precisely
how to discriminate between superfluid and Mott-insulating states.
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2.3.1 Introduction and Experimental Considerations

The density distribution n(x, y, z) of a three-dimensional atom cloud can be measured
by absorption imaging. In this technique, the cloud is illuminated by a laser beam. The
atoms absorb light and therefore attenuate the beam; if the laser propagates in the z
direction with intensity I0(x, y) before its passage through the cloud, it reads, after the
passage [19],

I(x, y) = I0(x, y)e−D(x,y),

where the optical density D(x, y) is proportional to the integrated density n(x, y, z) along
the propagating axis z,

D(x, y) =
αλ2

2π

∫

z
n(x, y, z)dz.

α is a factor which depends only on the laser beam, not on the cloud state. λ/2 is the
lattice spacing. Thus, by measuring the ratio I/I0, the integrated column density can be
obtained directly. However, this presents two drawbacks.

First, this technique is destructive, because the photons brought by the laser scatter
incoherently with the cloud and heat it strongly, resulting in the loss of the sample.
Moreover, the laser has to pass throughout a cloud of very high optical density, which is
in general not possible, because the density is too high.

This density has to be lowered by letting the cloud expand freely and ballisticaly
for a while. This is possible because, even before any optical potential, some confining
potential has to be introduced, simply to gather all the atoms and isolate them from the
external environment [19]. This is done by a magnetic trapping potential of harmonic
shape. The atoms naturally populate the bottom of this trap, where lies its minimum.

Therefore, before imaging, all trapping potential are turned off and the cloud expands.
It is only after a certain time, so-called time-of-flight, usually between 2 and 20 ms [19],
that the imaging process in launched. Therefore, it is not exactly the spatial density
n which can be measured, but the momentum distribution, because the cloud expands
according to the momentum distribution of the atomic cloud.

Secondly, the optical resolution of the imaging systems is larger than the lattice spac-
ing. In [19], where atoms of 87Rb were used, the lattice spacing was as small as λ/2 = 425
nm. It was not possible to resolve individual sites and therefore ni remained unknown
(nowadays, however, this becomes possible). But this is not a problem, because the
momentum distribution carries actually more information about the cloud, and can be
accurately obtained in time-of-flight measurements.

In such measurement, once the atomic cloud is believed to be in the desired state, the
trapping potentials are switched off. Consequently, particles can move across the lattice.
As we mentioned, they are well described by the Wannier functions. These wavepackets
spread and overlap with each other, while the cloud expands. This produces interferences
which can be imaged. The quantity recorded is the momentum distribution, which,
provided interactions during the flight can be neglected [19], is the Fourier transform of
the original macroscopic wave function in the lattice.

If the optical lattice height was high, the atoms experienced a strong lattice potential
and were confined. Their wavefunction can be approximated by a Gaussian with a certain
width, which depends on the exact value of U . Its Fourier transform is then also a simple
Gaussian, and the momentum distribution will be an isotropic Gaussian. The width of
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the Gaussian is the inverse of the ground state expansion around a site, once its increase
due to the expansion of the cloud during the flight is substracted. Macroscopically, in
the Mott-insulating state, there is comb-like wacefunction, very localized peaks without
overlaps.

In contrast, with a shallow lattice potential, the local wavefunctions can not be ap-
proximated by Gaussian. Delocalized over the lattice, the wavefunctions overlap, and a
large phase coherence exists. The Fourier transform will show peaks arrayed in the recip-
rocal lattice of the lattice created the laser beams (optical lattice). The width of these
peaks is the inverse of the extension of the wavefunctions at each site (coherence length).
Macroscopically, this means a smooth, global wave-function non-zero everywhere.

This fact was observed experimentally in section 4.2 (figure 4.11) of [19]: a 2D su-
perfluid cloud (shallow lattice) yielded an interference pattern with narrow peaks in it,
arranged in simple (square) periodic structures, after a time-of-flight of typically 15 ms.
On the contrary, with a deep Mott insulator (so a high lattice depth), the interference
pattern is completely absent, replaced by an isotropic Gaussian.

Therefore, besides the density distribution ni which provides direct information on
the system, the momentum distribution is also interesting, because it gives indications
about the many-body state of the atoms before their release from the trapping potentials,
and allows to distinguish with a good precision between superfluid and Mott insulating
states, from the difference of coherence in the two states.

2.3.2 Momentum Distribution from DMRG Calculations

In this section we calculate numerically the momentum distribution and examine if the
statements of the previous section are verified.

In general, the momentum distribution is given by:

nk =
1

L
|w(k)|2

∑

d

eikd〈a†
0ad〉, (2.5)

where w(k) is the Fourier transform of the associated Wannier function. Because the
Wannier function in real space is localized, the factor |w(k)|2 is a slowly varying envelope
which will be neglected in the following. DMRG gives access to 〈a†

0ad〉, and therefore to
the momentum distribution. Exact calculation with a L = 10, N = 10 system were done
in [44], and an hydrodynamical approach in [37]. In [28], the influence of the parabolic
trap were investigated, and the decay of the peak height and the width is studied to
discriminate between superfluid and Mott-insulator phases with a good precision.

Figure 2.4 shows nk − n̄ (we substract n̄ because it is the constant contribution for
d = 0). As expected from the previous section, a peak is seen in the superfluid phase
(curves with circle markers) at k = 0, with a 2π-periodicity. However, there are additional
smaller peaks arising from finite-size effects [28]. In the Mott-insulating state (curves
with square markers), for U/J high enough, the peaks have completely disappeared, no
phase coherence remains in the system. At U/J = 7, the momentum distribution is yet
not completely flat, indicating residual coherence, which disappears as U/J is further
increased.

This is in good agreement with the statements of the previous section; the only added
feature is the finite-size effects, which introduce additional minor interference peaks in
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Figure 2.4: Momentum distribution nk − n̄ for several values of the interaction strength
U , where n̄ = 1 is the filling factor. Negative values are due to the substraction. A
peak at k = 0 is seen is the superfluid phase (curves with circle markers), along with
additional peaks due to finite-size effects. In the Mott state (curves with square markers),
the distribution is very flat, and only a residual coherence persists.
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the superfluid phase. In the following chapters, we will use extensively the momentum
distribution to explore non-equilibrium properties of a system. Before this, we introduce
the dynamic of a quench with an example from the literature.

2.4 Dynamics with the Bose-Hubbard Model

2.4.1 Motivation

In the previous sections, we used one-body correlations to characterize the low energy
properties of quantum many-body states. We saw how they can be used to discriminate
between superfluid and Mott-insulating phases, either directly or after a transformation,
via the momentum distribution. However, dynamics also raises interest: How does a
system evolve far from equilibrium ? We also insisted on the fact that the parameters in
the Bose-Hubbard Hamiltonian, the interaction strength U and the hopping parameter
J , are highly tunable. In particular, it is nowadays possible [19] to change suddenly the
value of some parameter. Thus, some ground state can be suddenly brought into a new
set of parameters for which this state is not the ground state anymore. It undergoes a
non-equilibrium dynamics, and thus, non-equilibrium quantum many-body states can be
easily created and studied by the setup introduced in 2.3.1.

Fundamental questions raised are, for example, How does the state evolve ? Starting
from a superfluid ground state, if the lattice height is suddenly increased, the state
intuitively, should move toward the ground state of the final Hamiltonian. However,
because of energy conservation, revival of the initial state will occur. As time goes on,
the intuition is less clear, and the system will be found in an intriguing non-equilibrium
state. What is the period of this revival ? In this section, we show, that, for a quench in
the interaction parameter, within some approximation it is ν0 = 2π/Ufinal, where Ufinal is
the final interaction (after the quench).

However, the situation is not so simple, and after a few revival the simple picture
developed fails. The reason is, the evolution operator, e−iHfinalt can only be diagonalized
in its interaction part. Hopping presents difficulties, and is responsible for the loss of
periodicity. Observables evolve in a messy pattern after about 3ν0.

Another general question is, How fast can information propagate ? One-body corre-
lations 〈a†

0ad〉 links distant sites; distant particles will feel the quench after longer times
than nearest-neighbors. This gives a notion of a propagating signal. Is there a speed limit
on this propagation ? Lieb and Robinson found indeed an upper bound on the spreading
velocity of correlation [35], in the case of spin systems. For the Bose-Hubbard model,
several studies were already led [36, 9], and also found a finite velocity. In this section,
we briefly present the results of [36] so as to get a feeling with the general dynamics.

2.4.2 Quenches from the Superfluid Ground State

We consider a 1D system in its superfluid ground state, U/J < 3.3. If we suddenly
increase the interaction strength to large values, we expect the one-body correlations (or
density correlations) to lower toward Mott-insulating values – however not the ground
state values, because energy, in our case, is conserved, and a Mott-insulator ground state
has larger energy than a superfluid one. But this shift is far from trivial and some memory
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of the initial one-body correlations may persist, even after long times. In the meantime,
transient phenomena, such as oscillations, short revivals of the initial state [19], may take
place, depending on the range Uinitial − Ufinal.
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Figure 2.5: Time evolution of one-body (top) and density correlations (bottom) for the
quench described in the text, U = 2 → 40, for different distances d. On top, 〈a†

0a2〉 for
example shows a revival after 2π/U and 4π/U . The amplitudes are clearly attenuated
[29]. But further, a quasi-steady-state is reached, in which correlations present small
oscillations in a messy pattern. By looking at the time at which this regime is reached for
each d, a propagation velocity can be extracted, as was done in [36]. Similarly, on bottom
panel, 〈n0n2〉 presents a minimum at Jt ≈ 0.45, which moves approximately linearly with
d. The location of this minimum can also be used to determine the propagation velocity.

In general, the time evolution of the ground state with respect to Hfinal is governed
by the Schrödinger equation,

|Ψ(t)〉 = exp(−iHfinalt)|Ψ(0)〉.

We can expand |Ψ(0)〉 in the Fock basis:

|Ψ(0)〉 =
∑

n

cn|n〉,

where |n〉 denotes some occupation configuration of n̄L particles on the lattice. If we
neglect the hopping part of the Bose-Hubbard Hamiltonian, keeping only the local inter-
acting part, those Fock states become eigenstates of the Hamiltonian. The expectation
value of some operator O can then be written:

〈Ψ(t)|O|Ψ(t)〉 =
∑

n,n′

c∗
ncn′ exp(−i(En − En′)t)〈n|O|n′〉, (2.6)

20



0.0

0.5

1.0
d=2

0.0

0.5

1.0
d=3

0.0

0.5

1.0
d=4

0.0

0.5

1.0

<
a

+ 0
a
d
>
(ω
)

d=5

0.0

0.5

1.0
d=6

0 20 40 60 80 100 120 140
0.0

0.5

1.0
d=7

Figure 2.6: Fourier transform of the correlations 〈a†
0ad〉 versus frequency ω (in units of

J), for several distances d. For clarity the peak at k = 0 is omitted. The vertical dashed
lines are at ω = nU for n = 1, 2, 3. Peaks can be seen, at least for n = 0, 1, 2, with a
large bandwidth at n = 2. This bandwidth is the due to the hopping J and cannot be
understood in the simple approach developed in the text.
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where En is the interaction energy of state |n〉 = |n1, n2, ..., nL〉,

En =
Ufinal

2

L
∑

i=1

ni(ni − 1).

Thus, in the limit of strong interactions, the evolution of correlation functions can be
estimated. Writing a†

i for the creation operator at the site i and aj for the annihilation
operator at site j, we have (supposing 1 < i < j < L):

〈n1, ..., nL|a†
iaj|n′

1, ..., n
′
L〉 = 〈n1, ..., nL|n′

1, ..., n
′
i + 1, ..., n′

j − 1, ..., nL〉
=

√

n′
i

√

n′
j + 1δn1,n′

1
...δni,n′

i
+1...δnj ,n′

j
−1...

Thus,

〈a†
iaj〉 =

∑

n,n′

δni,n′

i
+1δnj ,n′

j
−1c

∗
ncn′ exp(−iUfinal(n

′
j − n′

i − 1)t)
√

n′
i

√

n′
j + 1.

This is a sum of oscillating terms at frequencies ν = 2πn/Uf , where n = nk − nj − 1 is
an integer. Figure 2.5 shows those correlations. Such oscillations can be seen during two
periods (for d = 2), before a new regime is reached, in which the above picture is not
true anymore. The effects of the hopping cannot be neglected anymore.

The superposition of frequencies can be made explicit by the Fourier transform, which
will show peaks at multiples of Uf . In figure 2.6, we can see peaks near n = 0, 1, 2. This
means:

nk − nj = 1, 2 or 3,

with a clear preference for 1,2, except maybe at small d. Thus, the occupation fluctuates
up to three particles for all distances; higher fluctuations are much rarer.

Coming back to the real data, we can see clear oscillations persisting, for d = 2 for
instance, for almost 3 periods, when the effect of the hopping starts to be important.
Before, the interacting part dominates and induces regular oscillations. Physically, the
system, at times 2πn/Uf , becomes much less correlated than its final averaged values,
which is quite fascinating. One-body correlations, as well as density correlations, quickly
lower to Mott-insulating value, but then, in half-period, reach their initial superfluid
values. The non-hopping picture predicts this alternating scheme forever; but J can not
be cast to 0. The kinetic part of the Hamiltonian drives the systems toward a quasi-steady
state, with instabilities, small variations, whose behavior remains unclear.

In [29], a simple model in terms of Bessel’s function is developed, so as to take into
account this finite bandwidth (≈ 6J) of the Bose-Hubbard model. They manage to
reproduce the decrease of the peaks towards a steady value.

How could we extract some kind of sound velocity from these data ? One can decide
when 〈a†

0ar〉 becomes messy, that is, when the large, regular oscillations ceased for a
meandering curve. However, if we come back to (2.6), we can see that the density-density
correlations should read:

〈ninj〉 =
∑

m

|cm|2 〈m|ninj |m〉 ,
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and should therefore remain constant, because ninj is a diagonal operator in the Fock
occupation basis. It does not, however, once more because of the final value of J . Looking
at figure 2.5, we see 〈n0n6〉 remaining constant until t ≈ 0.9J , where it begins to drop.
After reaching a minimum at t ≈ 1.3J , it rises again to a plateau. This behavior can
be linked with the arrival at site L/2 + 6 of some quasiparticle excitation, produced at
site L/2 and at time t = 0, induced by the quench. This excitation seems to be endowed
with some width, like a Gaussian wave propagating. The position of the minimum of
〈n0nr〉 can thus be used to extrapolate a velocity from the formula v = r/t + v0, with
some constant v0.

The relation between r and t is found linear in [36] for a wide range of initial and
final interaction, and also different fillings n̄. Several approximation methods (continuous
Lieb-Liniger model, bozonisation, etc.) are also presented in order to predict the values
of this velocity.

In this section, we showed that, after a quench, correlations “spread” with a certain
velocity. They show a few oscillations with period 2π/Ufinal, but, because of the finite
tunneling probability, a messy pattern rapidly supersedes the simple prediction obtained
with a purely interaction Hamiltonian. However, the latter allows to understand partly
the situation, and why there are two different regimes of oscillation. In the next chap-
ters, we will focus on a different situation, with initial U/J deep in the Mott-insulating
region. In such region, the hopping part of the Hamiltonian may be treated perturba-
tively. Though the configuration is opposite, the same tool will be available to extract a
propagation velocity.
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Chapter 3

Methods

This chapter is devoted to the methods which will serve the analysis of a non-equilibrium
quantum many-body states in chapter 4. The Density Matrix Renormalization Group
(DMRG), presented in section 3.1, were already used in the previous chapter. It is a
variational scheme particularly suited for physical problems on a lattice, either finite of
infinite. We present the idea and pay a particular attention to its limitations and its
control parameters. DMRG for ground state calculations as well as time-evolution are
considered.

In the second part, 3.2, we develop a perturbative analysis of the time-evolution of an
atomic Mott state. Because it can be written as a simple tensor product, this eigenstate
of the Bose-Hubbard Hamiltonian with J = 0 is suited for this kind of treatment. The
hopping in introduced as a perturbation. We show that this analysis is very good for
quenches down to U/J ≈ 20, and over large timescales by examining an observable,
〈a†

0ad〉 and comparing them to DMRG data. In conclusion, we give clue toward other
approximative methods potentially better than simple quantum perturbation theory.

3.1 The Density Matrix Renormalization Group Method

Density Matrix Renormalization Group (DMRG) [45] was invented in 1992 by S. White
[52] and proved to be one of the best algorithm to study one-dimensional systems on
a lattice [46], along with quantum Monte-Carlo, exact diagonalization, series expansion
and coupled cluster expansion. Time-evolution [7, 51], low-lying properties of virtually
any one-dimensional systems can be unveiled by DMRG, including infinite-size systems,
and since recently, dynamical quantities such as the dynamical correlation functions [30]
are also accessible. Moreover, extensions of DMRG were developed to treat systems at
finite-temperature [47].

In section 3.1.1, we present the idea at the foundation of DMRG, the Matrix Product
State, which consist in a clever writing of a quantum state. Instead of specifying a
explosively large set of probability amplitude, a set of matrix can be used. By setting
an upper limit on their size, the amount of number required can be made manageable
with controllable loss of precision (section 3.1.2). Expectation values of operator can be
calculated easily (section 3.1.3). Then the ground state is obtained variationally (section
3.1.4), and the time-evolution of any MPS obtained by a Trotter-Suzuki decomposition
of the evolution operator e−iHt (section 3.1.5).
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3.1.1 Matrix Product States

Start with a one-dimensional lattice of L sites, with a local state space {σi} on each site
i = 1, ..., L. For spin 1/2 for example, we would have σi = {+1/2,−1/2}, for bosons,
σi = {0, 1, ..., N} where N is the maximum number of particle at site i. The most general
pure quantum state reads:

|Ψ〉 =
∑

σ1,...,σL

cσ1,...,σL
|σ1, ..., σL〉.

We have to deal with a large number of coefficients cσ1,...,σL
, which explodes with L (or

N if we have bosons). The first step is to find a new way to write down a quantum state,
not as a row of coefficients, but as a Matrix Product State. Although at first glance it
will seem that the number of coefficients is even higher, with a clever truncation this
number will become manageable.

Let us assume that the local dimension of the Hilbert space is d. Then the full Hilbert
space has dimension dL, which is also the number of coefficients cσ1,...,σL

. The first step
is to reshape this set into a matrix Ψ of dimension d× dL−1:

Ψσ1,(σ2,...,σL) = cσ1,...,σL
.

The next step consists in decomposing the matrix Ψ into a product of three matrices by
the Singular Value Decomposition (SVD) [49], so as to get:

Ψσ1,(σ2,...,σL) =
∑

a1

Uσ1,a1
Sa1,a1

V †
a1,(σ2,...,σL),

and to reshape back into a vector the product SV †. After those operations,

cσ1,...,σL
=

r1
∑

a1

Uσ1,a1
ca1,σ2,...,σL

=
r1
∑

a1

Aσ1

a1
ca1,σ2,...,σL

.

For convenience we rewrite the matrix U as A, placing upper the physical indices σ1 and
lower the unphysical indices a1, over which the sum is performed. The SVD decomposition
is useful because U (or A) is left-normalized, A†A = 1. Moreover, S is diagonal, something
which we will benefit from soon.

The idea now in to continue with ca1,σ2,...,σL
: reshape it, decompose it to get a set of d

matrices Aσ2 , each of dimension r1 ×r2, and carry on. If we sweep throughout the lattice,
we obtain:

cσ1,...,σL
=

∑

a1,...,aL−1

Aσ1

a1
Aσ2

a1,a2
...AσL−1

aL−2,aL−1
AσL

aL−1
,

or, with implicit matrix multiplication:

cσ1,...,σL
= Aσ1Aσ2 ...AσL−1AσL .

So far all this looks very tedious and complicated, but the point will appear a bit later.
At the moment, we have a new notation for the quantum state as:

|Ψ〉 =
∑

σ1,...,σL

Aσ1Aσ2 ...AσL−1AσL |σ1, σ2, ..., σL−1, σL〉,
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so-called left-canonical Matrix Product State (MPS). In fact, changing a little the oper-
ations the physical sense underlying MPS can be made explicit. After l operations, we
have:

cσ1,...,σL
= (Aσ1 ...Aσl)al

Sal,al
V †

al,(σl+1,...,σL).

We can decide to reshape V † differently, as Ψ(al,σl+1,...,σL−1),σL
– instead of Ψal,(σl+1,...,σL)

–, perform a SVD an go on this way until the end of the lattice. What we will obtain is:

V †
al,(σl+1,...,σL) =

∑

al+1,...,aL−1

Bσl+1

al,al+1
...BσL

aL−1
,

where the matrices B are now right normalized, BB† = 1. In total, the coefficients c
read:

cσ1,...,σL
= Aσ1 ...AσlSBσl+1 ...BσL ,

with a diagonal matrix S. In the MPS language, this is called the mixed-canonical
representation. If we write Sa,a = sa, and introduce:

|al〉A =
∑

σ1,...σl

(Aσ1 ...Aσl)al
|σ1, ..., σl〉,

|al〉B =
∑

σl+1,...σL

(Bσl+1 ...BσL)al
|σl+1, ..., σL〉,

the quantum state now reads:

|Ψ〉 =
rl
∑

al

sa|al〉A|al〉B,

which is exactly the Schmidt decomposition of a pure quantum state [41]. In this decom-
position, the lattice is split in two parts, A and B. When sa is just one number, this is
only a product state. On the contrary, when the sum runs over several values, |Ψ〉 is an
entangled state. In the latter, such a decomposition allows to read off easily the reduced
density operators for A and B and therefore to calculate easily interesting quantities such
as the von Neumann entropy [46]. This is a first advantage of the MPS over the classical
representation of the state with an array of coefficients cσ1,...,σL

.

3.1.2 Truncation of the MPS

Though we have a clever new notation for the quantum state, it is still impossible for any
computer to handle exactly a MPS, except maybe for very small systems. The problem
is that the size of matrices grows at each step: in a right canonical decomposition (with
matrix A only), 1 × d for the first site, d × d2 for the second, etc., until the central
site, where the dimension is maximal, dL/2−1 × dL/2 (if L is even). The next matrix has
dimension dL/2 × dL/2−1, and the dimensions decrease to d2 × d and d× 1 for the two last
sites.

However, this difficulty is overcame by using the SVD. A maximal size D is sat on the
matrix, and upon SVD a truncation is made to conserve only D rows and/or columns.
How do we decide which one should be cut ? Since the matrix S is diagonal, it provides
a “weight”, in the form of a singular value, for each row/column, and there suffices to cut
the ones corresponging the lowest singular values.
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In other words, in a mixed-canonical representation, we write:

|Ψ〉 =

r′

l
∑

al

sa|al〉A|al〉B,

with r′
l < rl. This results in a loss of precision, but the Hilbert space is still complete.

In general this truncation is possible because the singular values sa decay exponentially
[46]. It is possible to show [50] that the overall error is at worst:

||Ψ〉 − |Ψ〉truncated|2 ≤ 2
L
∑

i=1

εi(D),

where εi(D) is the sum of the squared discarded singular values. In one-dimension, this
error is manageable, but not in higher dimension [46].

3.1.3 Overlaps and Expectation Values

Before we turn to the ground state calculations, we need to be able to perform operations
with MPS. Having two states |Ψ〉 and |Φ〉, written as two MPS with matrices M and N
(without necessary assumption on the normalization), their overlap reads:

〈Ψ|Φ〉 =
∑

{σ}

Mσ1∗...MσL∗Nσ1 ...NσL

=
∑

{σ}

MσL†...Mσ1†Nσ1 ...NσL

=
∑

σL

MσL†

(

...

(

∑

σ1

Mσ1†Nσ1

)

...

)

NσL .

Written in the last form, the scalar product is incredibly simple to evaluate. If |Φ〉 = |Ψ〉
and the matrices are normalized, we immediately found that 〈Ψ|Ψ〉 = 1. In this way,
the number of operations done scales as O(LD3d), which is reasonable, especially when
compared to exponentially increasing number of operation we would have to do with the
classical representation in term of a row of coefficients c.

Similarly, to evaluate expectation values such as 〈Ψ|O|Ψ〉, the operator O is written
as:

Ol =
∑

σl,σ
′

l

Oσl,σ
′

l |σl〉〈σ′
l|,

on each site l. Then, obviously,

〈Ψ|O|Ψ〉 =
∑

{σ},{σ}′

Mσ1∗...MσL∗Oσ1,σ′

1 ...OσL,σ′

LMσ′

1 ...Mσ′

L

=
∑

σL,σ′

L

OσL,σ′

LMσL†



...





∑

σ1,σ′

1

Oσ1,σ′

1Mσ1†Mσ′

1



 ...



Mσ′

L .

As before, the numerical cost of this operation is essentially O(LD3d).
Thus, though is may be difficult to catch the interest of the MPS representation at the

beginning, it quickly proves to be extremely efficient, at least in one-dimension, and able
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to deal with potentially large lattice sizes L. It relies on the singular value decomposition
to truncate the matrices, and the information lost can be minimized. The first advantage
of MPS shows in the calculation of overlaps and expectation values which are extremely
easy. In the next section, we explain why it allows to calculate the ground state also
efficiently.

3.1.4 Ground State Calculation

At this point, we are virtually done. We know how to generate a vector |Ψ〉 randomly,
simply by filling randomly all the matrices which dimensions are known, before normal-
izing them correctly. The size of these matrices is manageable, thanks to a particular
truncation, which preserves the full Hilbert space. We are able to evaluate expectation
values with this MPS, in particular the energy, E|Ψ〉 = 〈Ψ|H|Ψ〉, where H is the Hamilto-
nian written in a matrix form similar to MPS. In this form, the evaluation is numerically
reduced to matrix products, for which the most efficient routine are at hand.

To find to ground state now is just a matter of defining cleverly the variational al-
gorithm which starts from random state |Ψ〉 and progressively goes down to the ground
state. To this end, a Lagrange multiplier λ is introduced and 〈Ψ|H|Ψ〉 − λ〈Ψ|Ψ〉 is
extremized. After some tedious but straightforward calculations [46], one arrives at a
generalized eigenvalue problem of matrix dimension dD2 × dD2 near every bond of the
lattice. If dimension if still too large for exact diagonalization, the Lanczos algorithm can
be used to find the lowest eigenvalues and eigenvectors.

This procedure is first carried on a the first bond, which modifies the matrix Aσ1 . It
is then carried on iteratively along the lattice until the last site, and then backward, until
convergence. Each passage throughout the lattice, in one sense or the other, is called
a sweep. Convergence is achieved when the energy becomes constant, but other, more
precise tests are possible, such as the convergence of 〈Ψ|H2|Ψ〉 − (〈Ψ|H|Ψ〉)2, see [46].
Moreover, improvement can be brought to the procedure by, for example, multiple sites
variation, instead on variations on only one site.

The drawbacks are the usual ones met with variational problems: since the initial
state is random, many sweeps will be required. However, this is overcame with a good
initial guess, not too far from the true ground state. Another pitfall is to reach a local
minimum instead of a global minimum; in [46, 53] this question is addressed in detail.

The truncation D has to be chosen carefully. For bosons, the situation is simplified if
a constraint on the maximum number of particle per site can be set. Figure 3.1 shows the
probability to find 0 to 3 particles at the middle site of the lattice in the Bose-Hubbard
model (see chapter 2). These plots were obtained by DMRG with a constraint Nmax = 8,
which is considered as large. In the Mott-insulating state (right side of the vertical line),
clearly Nmax = 4 can be set. Unfortunately, it is not acceptable in the superfluid state.
The interaction creates a natural limit on the number of particles per site; therefore, the
case U/J = 0 is the most difficult for DMRG.

Thus, when doing ground-state calculations with DMRG, the main convergence pa-
rameter is the truncation D. For bosonic systems, another parameters, Nmax, naturally
arises. If both parameters are well-controlled, DMRG is a extremely powerful algorithm.
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Figure 3.1: Probability to find 0,1,2 or 3 particles at middle site, versus the interaction
strength U , for a commensurate filling, n̄ = 1. As soon as U/J ≥ 10, the probability to
find exactly one particle per site hit 0.9. By contrast, 3 and more particle per site are
found with a probability smaller than 10e−3. This probability become appreciable in the
superfluid phase. For U/J = 0, every occupation number is equally likely.

3.1.5 Time Evolution with MPS

Having a given state |Ψ〉 in a MPS form, for example the ground state of some H ′

Hamiltonian, its time-evolution is e−iHt|Ψ(0)〉, where H is the Hamiltonian of the system.
The matter is now the classical problem of applying the exponential of an operator.

The first step is to disretize time in T time-steps τ . Next, we split the Hamiltonian
into two parts, Hodd and Heven, corresponding respectively to odd and even bonds. A
popular way is to use the Trotter-Suzuki decomposition [38, 39]. At second order, it is:

e−iHτ = e−iHodd
τ
2 e−iHevenτe−iHodd

τ
2 + O(τ 3). (3.1)

A first control parameter is therefore the time-step. In general the error grows linearly
with time as τnt where n is the order of the Trotter-Suzuki decomposition [38].

Secondly, after each time step, the evolved state is truncated so as to adapt continu-
ously the Hilbert space to the state, instead of keeping the basis of the initial state. The
Hilbert space follows the time-evolution of |Ψ(t)〉 (adaptive t-DMRG, see [7, 28]). Thus,
convergence depends on a second control parameter. In practice, after truncation, the
wavefunction has norm less than one and has to be renormalized. It is not easy in general
to know how both errors combine and accumulate. In [18], a survey on a spin system
which time-evolution can be calculated exactly was led, and the authors found that error
at small times are dominated by the Trotter decomposition. However, the truncation
error grows exponentially with time and eventually destabilizes the whole system. In-
consistent results are found after this “runaway” time, but the deviation from analytical
results starts before.
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Therefore, the time-step τ and the number of retained states should be chosen with a
particular care. Several simulations should be led in parallel with different sets of control
parameters. Depending on the purpose (long or short final times), the optimal param-
eters are not the same: a time-step too small may increase dramatically the truncation
error and plague the simulation before the targeted final time. However, with sufficient
attention, DMRG is efficient in time-evolution as well as in ground state calculations.

3.2 Dynamics: Perturbative Evolution of an Atomic

Mott State

In section 2.1, we already introduced the notion of “atomic” Mott state. This is a product
state with integer filling. All particles are localized and cannot move across the lattice.
This is an ideal state, where the optical lattice height is infinite, and cannot be realized
experimentally. The hopping J is introduced perturbatively, or, equivalently, the lattice
height is lowered, toward strong but finite interaction.

The aim of this part is to calculate the evolution of an atomic Mott state under the
Hamiltonian after the quench, written with Ufinal. In the Schrödinger picture, this is:

|Ψ(t)〉 =
∑

p

exp(−itEp)〈φp|Ψ(0)〉|φp〉, (3.2)

where |Ψ(0)〉 is the initial atomic Mott state, and |φp〉 the eigenbasis of the new Hamil-
tonian, with eigenenergies Ep. We determine |φp〉 and Ep by first-order perturbation in
J/U . A similar approach were done in [9, 4], which relied on Jordan-Wigner fermionized
quasiparticles. They managed to reproduce the behavior of the one-body correlation func-
tion 〈a†

0ad〉, in good agreement with experimental data, down to U/J ≈ 15. Propagation
velocities were extracted.

On our side, we focus on the momentum distribution nk, in order to gain insight into
the dynamics of quasiparticles which takes place after the quench.

3.2.1 Perturbed Ground State and Excited States

The atomic Mott state is represented by the product state:

|Ψ(t ≤ 0)〉 = |n̄, n̄, ..., n̄〉 := |n̄〉,

where n̄ is the integer filling. Here, we focus on the case n̄ = 1, although our approach
stands for any other integer values. As we lower U by the quench, the ratio U/J decreases
but remains much larger than 1, allowing to introduce an hopping term,

T = −
∑

i

(a†
iai+1 + a†

i+1ai)

as a perturbation:

H =
U

2

∑

i

ni(ni − 1) + JT = Vinteraction + JT.
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In this picture, an excitation consists in removing one particle from a given site (with
therefore occupation n̄ − 1), and placing it elsewhere on the lattice, on top of another
particle (in total n̄+ 1 on this site). In this process a hole-doublon pair is created, lying

in the first excited band of energy U . Such pair can be denoted |φ(0)
m,d〉, and defined as:

|φ(0)
m,d〉 =

am+da
†
m

√

n̄(n̄ + 1)
|n̄〉,

with d 6= 0. It describes the transfer of only one particle from site m to site m+ d within
the chain. These states are normalized. Of course the hole and particle annihilates when
they are placed on the same site; therefore the constraint d 6= 0 is introduced. This
lowers the dimension of the excited basis to L(L − 1) (L choices for the hole, L − 1 for
the doublons, because the hole must remain), which is still highly degenerate.

To simplify the calculation, we restrict the spectrum of excitation to the first excited
band. This amounts to treating the excitations as hardcore bosons, since we forbid more
than two particles on the same site. However, to ensure that no information is lost,
higher excitations are taken into account in a symbolic way: the next energy band has
two doublons and two holes, at energy 2U with respect to the ground state. Thus, we
introduce symbolically the states:

|ψm,d,n,e〉 =
am+dan+ea

†
ma

†
n

n̄(n̄+ 1)
|n̄〉,

with the constraint m 6= n, d, e 6= 0 m + d 6= n + e. This states describes two doublons
and two holes located at four distinct positions. Because terms involving this state are
only meant to ensure the correctness of the approximation, we will drop the indices of
vector |ψ〉. We checked, when doing the time-evolution, that no terms involving these
higher excitation are present at first-order in J/U .

Let us now calculate precisely the perturbed ground state. At first-order [3]:

|Ψ(0)〉 =|n̄〉 − J
∑

m,d

〈

φ
(0)
m,d|T |n̄

〉

E0 − Em,d
|φ(0)

m,d〉

For convenience, we wrote E0 for the energy of state |n̄〉, and Em,d for the energy of the

state |φ(0)
m,d〉. Moreover, we already anticipated that 〈n̄|T |n̄〉 = 0. The denominators are

indeed U , the energy gap between the ground state and the first excited state, and the
sums read:

∑

m,d

〈

n̄|ama
†
m+dT |n̄

〉

|φ(0)
m,d〉 =

∑

m,d,n

〈

n̄|ama
†
m+d(a†

nan+1 + a†
n+1an)|n̄

〉

|φ(0)
m,d〉

=
√

n̄(n̄+ 1)
∑

m,d,n

(δn+1,m+dδn,m + δn,m+dδn+1,m)|φ(0)
m,d〉

=
√

n̄(n̄+ 1)
∑

m

(δ1,d + δ−1,d)|φ(0)
m,d〉.
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The coefficient is
√

n̄(n̄+ 1) since a doublon is first suppress and a hole is then filled.
In conclusion the perturbed ground state reads,

|Ψ(0)〉 = |n̄〉 +
J

U

√

n̄(n̄ + 1)
∑

m

(|φ(0)
m,+1〉 + |φ(0)

m,−1〉) (3.3)

In the same fashion we may calculate the correction to the excited states; however,
since excitations are degenerate, we have to take this degeneracy into account. To this
end, we first perform a Fourier transformation of |φm,d〉:

|φ(0)
k,q〉 ∝

∑

m

∑

d

exp(ikm) sin(dq)|φ(0)
m,d〉. (3.4)

One can show that the kinetic (hopping) operator T is diagonal in this basis. Here a
sinus is used instead of a complex exponential so as to take into account the constraint
d 6= 0. Next we restrict ourself to the k = 0 component, to remain in the same symmetry
sector as the initial state.

We have, writing q = pπ/L, with p ranging from 1 to L− 1, the relation :

∑

d

sin

(

pπd

L

)

sin

(

qπd

L

)

= δp,q
L

2
,

making the Fourier basis an orthonormal set. This property simplifies the treatment of
the degeneracy, because it implies:

J
〈

φ(0)
p |T |φ(0)

q

〉

=
2J

L2

∑

m,d,m′,d′,n

sin

(

dpπ

L

)

sin

(

d′qπ

L

)

〈

φ
(0)
m,d|(a†

nan+1 + a†
n+1an)|φ(0)

m′,d′

〉

=
2J

L
(2n̄ + 1)

∑

d

sin

(

dpπ

L

)

sin

(

(d+ 1)pπ

L

)

+ sin

(

dpπ

L

)

sin

(

(d− 1)pπ

L

)

=
4J

L
(2n̄ + 1) cos

(

pπ

L

)

∑

d

sin

(

dpπ

L

)

sin

(

dqπ

L

)

= 2J(2n̄+ 1) cos
(

pπ

L

)

δp,q.

Now, the perturbed excited state is, at first-order:

|φp〉 = |φ(0)
p 〉 − J

〈

n̄|T |φ(0)
p

〉

Ep − E0
|n̄〉 − J

∑

k

〈

ψk|T |φ(0)
p

〉

Ep −Ek
|ψk〉.

Above, we have:

L√
2

〈

n̄|T |φ(0)
p

〉

=
∑

m,d,n

sin

(

dpπ

L

)

〈

n̄|(a†
nan+1 + a†

n+1an)am+da
†
m|n̄

〉

=
√

n̄(n̄+ 1)L

(

sin
(

pπ

L

)

+ sin

(

(L− 1)pπ

L

))

.
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Therefore:

J

〈

n̄|T |φ(0)
p

〉

Ep −E0
=
J

U

√

2n̄(n̄ + 1)(1 − cos(pπ)) sin
(

pπ

L

)

.

We will use the notation ηp = 1 − cos(pπ). In conclusion,

|φp〉 = |φ(0)
p 〉 −

J
√

2n̄(n̄ + 1)

U
ηp sin

(

pπ

L

)

|n̄〉 − J

U

∑

k

βk|ψk〉, (3.5)

where βk =
〈

ψk|T |φ(0)
p

〉

is kept symbolic.

Finally, we need the eigenenergies of the perturbed states. With respect to the unper-
turbed ground state energy (which would result in an overall unimportant phase factor):

E0 = 0,

Ep = U − J
〈

φ(0)
p |T |φ(0)

p

〉

= U − 2J(2n̄+ 1) cos
(

pπ

L

)

.

In the second equation, we used:

∑

p

η2
p sin2

(

pπ

L

)

= L.

At this point, we know the perturbed ground state and excited states, as well as their
respective energies. The time evolution is then simply obtained from 3.2, what we do in
the following section.

3.2.2 Time Evolution of the Atomic Mott State

As mentioned, the time evolution is found by (3.2):

|Ψ(t)〉 = e−iE0t|Ψ(0)〉 +
L−1
∑

p=1

J

U
eiEpt|φp〉, (3.6)

where |Ψ(0)〉 is the perturbed ground state and |φp〉 the lowest band of excited state, of
energy Ep, obtained in the previous section. Replacing and neglecting terms in (J/U)n

with n ≥ 2 (because we want a first-order expansion), this reads:

|Ψ(t)〉 = |n̄〉 +
J
√

n̄(n̄+ 1)

U

(

∑

m

(|φ(0)
m,+1〉 + |φ(0)

m,−1〉) −
√

2
∑

p

e−iEptηp sin
(

pπ

L

)

|φ(0)
p 〉

)

.

(3.7)
Note that, at t = 0, second and third terms cancel each other, so that we recover |Ψ(0)〉 =
|n̄〉. Moreover, no term involving the second band appear, because a factor J2/U2 would
weight them. With this state in hand, we can calculate expectation values of the relevant
observables.
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3.2.3 Equal-Time Correlation Function

An mentioned in the introduction, we are mainly interested in one-body correlations,

Cr(t) =
〈

Ψ(t)|a†
0ar|Ψ(t)

〉

.

Replacing with the state |Ψ(t)〉 obtained in the previous section, we have at first-order
in J/U :

Cr(t) =
J
√

n̄(n̄ + 1)

U

(

∑

m

〈

n̄|a†
0ar|φ(0)

m,+1

〉

+
〈

n̄|a†
0ar|φ(0)

m,−1

〉

−
√

2
∑

p

ηp sin
(

pπ

L

)

e−iEpt
〈

n̄|a†
0ar|φ(0)

p

〉

)

+ h. c..

In this expression,

∑

m

〈

n̄|a†
0ar|φ(0)

m,+1

〉

+
〈

n̄|a†
0ar|φ(0)

m,−1

〉

+ h. c. = 2
√

n̄(n̄ + 1)δr,1

and:
〈

n̄|a†
0ar|φ(0)

p

〉

+ h. c. =
2

L

√

2n̄(n̄+ 1) sin
(

pπ

L

)

.

In conclusion,

Cr(t) =
2Jn̄(n̄+ 1)

U

(

δr,1 − 2

L

∑

p

cos
(

Ut− 2J(2n̄+ 1) cos
(

pπ

L

)

t
)

ηp sin
(

pπ

L

)

sin
(

rpπ

L

)

)

.

(3.8)
Remark that Cr(t = 0) = 0; for r = 1, the second term exactly cancels the first. In the
next chapter this formula will be confronted to DMRG data.

3.2.4 Momentum Distribution

We now turn to the other quantity of interest, the momentum distribution. From the
definition 2.5 (neglecting the enveloping Wannier function w and also the normalization
n̄), we have:

nk =
L
∑

d=0

2 cos(dk)〈a†
0ad〉

= n̄+
4Jn̄(n̄+ 1)

U
×

(

cos(k) − 2

L

∑

p

cos
(

Ut− 2J(n̄+ 1) cos
(

pπ

L

)

t
)

ηp sin
(

pπ

L

)

∑

d

cos(dk) sin

(

dpπ

L

))

,

where ηp = 1 − cos(πp).
As mentioned in the previous chapter, the nk − n̄ shows a peak at k = 0 in the

superfluid state, whereas a value close to zero in the Mott-insulating state. This peak is

35



a signature of the coherence which exists on the lattice. Therefore, we give here an exact
formula for k = 0. The second sum is given by the Lagrange identity:

L
∑

d=1

sin(dθ) =
1

2 tan(θ/2)
− cos((L+ 1/2)θ)

2 sin(θ/2)
:= L(θ),

where θ = pπ
L

. Therefore,

n0 = n̄ +
4Jn̄(n̄+ 1)

U

(

1 − 2

L

∑

p

cos
(

Ut − 2J(n̄+ 1) cos
(

pπ

L

)

t
)

ηp sin
(

pπ

L

)

L
(

pπ

L

)

)

.

(3.9)
Thus, a nice expression for the momentum distribution can be obtained for every k,

with a further simplification for k = 0 where only one sum over an additional quantum
number, p, remains. This number should be thought as the Fourier transform of the
distance separating a doublon and a hole. Before we compare this formula with the
DMRG data, a last observable can also be of great help: the time-averaged value of the
momentum distribution, 〈nk〉t.

Through averaging, the time-dependent part of nk vanishes, and there remains, at
first-order:

〈nk〉t = n̄ +
4Jn̄(n̄+ 1)

U
cos(k) + O

(

J2

U2

)

In particular, for k = 0, we simply find:

〈n0〉t = n̄+
4Jn̄(n̄+ 1)

U
. (3.10)

For k = π/2, the first-order contribution vanishes, and in our approximation 〈nπ/2〉t

should be zero. However, as said only constant terms will contribute here. Coming back
to (3.7), one sees that the only constant second-order terms arise from the overlap between
the second term with itself, and the first (|n̄〉) with a J2/U2 term, absent above. However,

the former results of the application of T on |φ(0)
m,±1〉. It will describe excitations with

2 holes and 1 triplon, two doublon-hole pairs separated on the lattice (where, in each,
doublon and hole are nearest-neighbor), or a back-scattering to the initial state, |n̄〉
(annihilation of the pair). But the application of a†

0ad to any of these three cases yields
states which are orthogonal to |n̄〉.

Therefore, the only contributing terms will be:

J2n̄(n̄+ 1)

U2

(

∑

m

〈

φ
(0)
m,−1|a†

0ad|φ(0)
m,+1

〉

+
〈

φ
(0)
m−1,+1|a†

0ad|φ(0)
m+1,−1

〉

+ h. c.

)

The first (second, its hermitian conjugate) term describes the displacement of a hole by
two sites leftwards (rightwards), the third (fourth) of a doublon by two sites rightwards
(leftwards). Thus, as expected from second-order, only d = 2 terms are non-zero.

Then, with nπ/2 =
∑

d cos(dπ/2)〈a†
0ad〉, we obtain:

〈nπ/2〉t = n̄− 4J2n̄(n̄ + 1)(2n̄+ 1)

U2
. (3.11)

As the next chapter demonstrates, both approximations produce accurate results
down to U/J ≈ 10.

36



3.2.5 Quench to U/J = 0

As shown in [4, 16], the extreme quench to zero interaction is exactly solvable by working
in the Heisenberg picture, where the time evolution of the annihilation operator is written
as:

am(t) =
L
∑

l=1

Vm,l(t)al, (3.12)

with the free particle propagator:

Vm,m+r(t) =
1

2π

∫ π

−π
e−i(2J cos(φ)t−rφ)dφ = irJr(2Jt). (3.13)

Jr is the Bessel’s function of the first kind.
With this expression correlations can be derived (recall we have ~ = 1),

Cr =
〈

n̄|a†
0(t)ad(t)|n̄

〉

=
∑

m,l

V †
0,m(t)Vd,l(t)

〈

n̄|a†
mal|n̄

〉

= n̄
∑

m

V †
0,m(t)Vd,m(t) = n̄

∑

m

V †
0,m(t)V0,m−d(t)

= n̄
∑

m

im−d(−i)mJm(2Jt)Jm−d(2Jt).

From this expression it is possible to get an analytical formula for nk also.

In the next chapter, we base an analysis of the non-equilibrium quantum many-body
state produced by the quench on the perturbative expressions for the one-body corre-
lations and the momentum distribution obtained in this chapter. This will allow us to
understand the structure of this state, and in particular its coherence.
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Chapter 4

Dynamics with a Mott Insulator

Ground State

In this chapter, the effects of a quench in U/J on a atomic Mott state are investigated.
Although the initial state is particularly simple, these effects are not easily described,
and the system is driven by an interesting dynamics. After the quench, a quasiparticle is
created and propagates. It can be neatly seen as a wavepacket, which is a superposition of
oscillations at different frequencies. We show that, down to U/J ≈ 20, the perturbation
theory developed in the previous chapter allows to understand the structure of this quasi-
particle by revealing which frequencies are most important. This is discussed in section
4.1, where a propagation velocity is also extracted. The velocity is found asymptotically
independent of the final ratio U/J , in agreement with [9].

Next, in section 4.2, the momentum distribution is studied. It provides information
about the coherence of the atomic cloud, which is found enhanced after the quench. This
can be understood as a coherent superposition of quasiparticles. When U/J is lowered,
more and more quasiparticles are created and the coherence grows correspondingly. Per-
turbation theory predicts a power-law scaling, and it is close to the correct result, but
a discrepancy is observed for U/J smaller than approximately 5.5. There, coherence is
destroyed because the excitations are too strong, and the system enters a new regime
where the quasiparticle picture does not hold anymore.

4.1 Spreading of Correlations after a quench

We start by a brief study of the evolution of the one-body correlation function 〈a†
0ad〉.

The quench is performed on an atomic Mott state,

|Ψ(0)〉 =
L
⊗

i=1

|n̄〉,

with a filling n̄ = 1. Therefore, unlike section 2.4, the initial state is unique and not a
complicated superposition of many states. As a consequence, 〈a†

0ar〉 looks less noisy, and
it will be easier to extract the velocity.

As figure 4.1 (a) shows, for a quench to U/J = 60, the correlations spread in a
wavepacket. Its internal frequency is close to 2π/U (see below) and, at first glance,
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Figure 4.1: (a) Correlation function 〈a†
0ad〉 for U/J = 60 and d = 1 to 5, versus time.

Circles mark DMRG, squares the first-order perturbation formula, equation (4.1) Each
curve is normalized to one and shifted below the previous one for clarity. This emphasizes
the propagation of a wavepacket. A principal wavepacket can be seen, between 0 < t <
0.80 for d = 2 for example. Additionally, a second and third wavepackets, of smaller
amplitudes, can be seen between 0.9 < t < 1.4 and 1.5 < t < 1.75 for the same d. (b)
Fourier transform of the curves in (a). The bars is the Fourier transform of the DMRG
data, and the black curves indicates the frequencies ω predicted by perturbation theory,
weighted by a prefactor (see text). DMRG shows a bandwidth which is well reproduced
by perturbation, except for d = 1, where is is underestimated. For even d, a frequency
at ω = U = 60J is suppressed by perturbation. For the other distances the agreement is
good.
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Figure 4.2: Maximum amplitude reached by one-body correlations 〈a†
0ad〉 in the times

0 < Jt < 2, as a function of d for several final U/J . The DMRG data is in plain line
with circle marker, the perturbation theory results in dashed line with diamond marker.
The point d = 1 has a larger amplitude, because nearest-neighbor tunelling is the leading
process in the Bose-Hubbard Hamiltonian. For large U/J and d > 1, the decrease is linear
and slow. As U/J is lowered, small amplitude oscillations are observed. The perturbation
deviates for U/J < 20.
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Figure 4.3: Same as figure 4.1, with U/J = 30. In (a), the agreement between DMRG
data (circles) and perturbation theory (diamonds) is still very well for 〈a†

0ad〉. Similarly,
in (b), the frequency bands are well covered by the frequencies extracted from (4.1), but
the weight associated with each frequency may not be correct. With the current precision
of DMRG, it is not possible to validate such predictions.
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Figure 4.4: Same as figure 4.1, with U/J = 21. The comments of figures 4.1 and 4.3 still
apply here.
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Figure 4.5: Same as figure 4.1, with U/J = 12. (a) For 〈a†
0ad〉 the perturbation begins to

overestimate the speed of propagation: except for d = 1 the fronts are in advance over
the DMRG data. This worsens with the distance. (b) A discrepancy between DMRG and
perturbation can be seen: the predicted bandwidth is shifted toward large frequencies,
which results in the advance seen in (a).
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Figure 4.6: Same as figure 4.1, with U/J = 7. (a) In this case the first-order perturbation
fails completely, except for d = 1. For other distances oscillations are predicted, but 〈a†

0ad〉
reaches a plateau, which is vaguely reproduces by the perturbation. But the arrival of
the signal is missed, meaning the quasiparticle is not correctly described. (b) Frequencies
close to ω = 0 are becoming important. Though with formula (4.2) it is possible to reach
ω/J = 1 for U/J = 7, low frequencies are suppressed by the prefactor. A second-order
treatment may improve this.
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the velocity of the propagating front seems linear. However, the exact shape of the
wavepacket varies with distance: 10 peaks can be seen for d = 6, but only 7 at d =
2. Thus the wavepacket flattens with the distance: its width grows and its amplitude
(maximum height reached in time) decays slightly. Figure 4.2 shows this attenuation
with the distance, for several values of U/J . Moreover, the symmetry of the wavepacket
decreases with the distance, and a tail can be seen.

All these phenomena are reproduced with a good accuracy by the perturbation formula
obtained in the chapter 3.2.3,

〈a†
0ad〉 =

2Jn̄(n̄+ 1)

U

(

δd,1 − 2

L

∑

p

cos
(

Ut− 2J(2n̄+ 1) cos
(

pπ

L

)

t
)

ηp sin
(

pπ

L

)

sin

(

dpπ

L

))

.

(4.1)
This formula also allows to catch the main structure of the wavepacket. To extract the
main frequencies of the wavepackets, we plotted in figure 4.1 (b) the Fourier transform
〈a†

0ad(ω)〉. A band of frequency can be seen between 50J ≤ ω ≤ 70J . This can be
understood with the formula 4.1: the time-dependent part of shows a superposition of
cosines at frequencies:

ω = U − 2J(2n̄+ 1) cos
(

pπ

L

)

, (4.2)

where p is an integer running from 1 to L. This gives a frequency spectrum U − 6J ≤
ω ≤ U + 6J , or, with U/J = 60, 54J ≤ ω ≤ 66J , in agreement with the DMRG data.
These cosines are weighted by a p- and d-dependent factor. In 4.1 (b), we also plotted
those frequencies, weighted by their prefactors, for every distance (black curves). It shows
which frequencies are dominating, according to the perturbation theory. The prefactor
can be rewritten as:

sin
(

pπ

L

)

sin

(

dpπ

L

)

=
1

2

(

cos

(

(d− 1)pπ

L

)

− cos

(

(d+ 1)pπ

L

))

For d = 1, for example, this is maximal at p = ±L/2, that is, according to (4.2),
ω = U . This is simply the frequency obtained when J = 0, see chapter 2.4. However,
the other frequencies are not suppressed, but weighted. This results in the bandstructure
shown by the black curves in 4.1 (b). The true bandstructure (bars) is qualitatively
reproduced, even if underestimated. Moreover, the weights are symmetric with respect
to the frequency ω = U , which is not the case in the DMRG data.

Similarly, for d = 2, the prefactor is maximal for p = ±L/3, and therefore, two
frequencies, ω ≈ U ± 3J will dominate. The bandwidth is again with a good presicion
contained into the range of frequencies allowed by perturbation theory.

Continuing this way, we obtain the other black curves of figure 4.1 (b). For odd d,

the first cosine above gives a dominant frequency at U , at U ± 6 cos
(

(d+1)π
L

)

for even
d, with, in both cases, additional sub-frequencies. It is difficult, however, to reach with
DMRG long enough a time to obtain a presition on ω comparable to what we can obtain
in this approach. The border of the bands and their width are generally well reproduced,
and this is in favor or our approach. It would be interesting to reach longer times with
DMRG, so as to obtain a precision on ω which could allow a comparison with perturbative
predictions.

How is this modified when U/J is decreased ? Figures 4.3 (a) to 4.6 (a) presents 〈a†
0ad〉

for d = 1 to 5 and several values of the final U/J . The oscillations are fewer, indicating
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a decrease of the frequency. When U/J is roughly smaller than 15, perturbation theory
fails to catch this decrease, as (b) in those figures show. The bands do not fundamentally
change, and the perturbation can still cover them, but the main frequencies are shifted
toward low values. The bands are asymmetric, whereas the perturbation predicts a
symmetry: U + αJ and U − αJ are always evenly weighted.
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Figure 4.7: Linear fits of the DMRG data for the velocity of the propagating quasiparticle,
with the formula d = vt+ v0, for U/J = 40. The dth time is the one for which 〈a†

0ad〉 is
maximal.

An expending wavepacket exists down to U/J ≈ 5. Thus, for these values of U/J , a
velocity can clearly be defined. To extract it, we plot the time at which 〈a†

0ad〉 reaches
its maximum versus d. This gives for example the approximatively linear curve of figure
4.7. The slope of those curves provides a velocity, according to the formula d = vt+ d0.
We find a velocity v ≈ 5.16J for U/J = 40. In general, it is not clear how the velocity
depends on the final U/J [9] and the initial state. In our case, as indicated in figure 4.8,
it does not seem to vary much with the final U/J .

In conclusion, 〈a†
0ad〉 shows a clear behavior which allows to extract a propagation

velocity. A nice interpretation in terms of a propagating wavepacket can be thought,
with internal frequency close to the characteristic frequency 2π/U predicted by quantum
mechanics. To the eye, only the amplitude of this wavepacket depends on the ratio U/J
(figure 4.2), not its width nor group velocity. Thus, the velocity of the propagating front
is roughly independent of the ratio U/J , at least in the range U/J ≥ 10. This is not a
peculiarity of the chosen initial state: in [4], with an initial ratio (U/J)initial = 40, the
velocity was found asymptotically equal to 6J when U/J → 40 (figure 7 (c)), a value
comparable to our 5.16J .
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(b) d=4

Figure 4.8: Wavepackets of the propagating quasiparticles. The shift of fast frequency is
clear, but the whole wavepacket is not significantly shifted rightwards as U/J is lowered.
As a result, its propagation velocity poorly depends on the interaction strength, at least
in this range of final U/J .

4.2 Momentum Distribution

In the previous section, we saw that through the one-body correlations 〈a†
0ad〉 the propa-

gation of a wavepacket can be seen. This wavepacket can be though as a quasiparticle [4],
a superposition of several excitations, or different doublon-hole pairs in the perturbation
picture. The aim of this section is to understand in more detail which excitations are
involved. To this aim, the momentum distribution will be the tool.

An overall view of the momentum distribution nk − n̄ is presented in figure 4.9,
obtained from DRMG data. The first notable thing is the peak developing around k = 0
after t ≈ 2π/U , where U is the final interaction strength. This peak is an excitation at
small momentum. As time goes on, its amplitude seems to dicrease, and to be transferred
to other momenta around π/2. Thus, other excitations are accessible to the system after
the quench. In the first section, we focus on the spectrum of excitation at a large U/J ,
guided by the perturbation theory developed, which, as we explained in the previous
section, can reproduce the quasiparticles with a good precision. Next, we lower the final
U/J in order to see how this modifies the excitation spectrum.

4.2.1 Spectrum of excitation at U/J = 50

Let us start with the case k = 0. Figure 4.10 shows the evolution of nk=0 − n̄. It
presents fast oscillations of decreasing amplitude. An extrema is reached almost exactly
after ν0/2, where ν0 = 2π/50 ≈ 0.125 is the oscillation frequency neglecting completely
hopping. The amplitude is decreasing afterwards rather quickly. Perturbation theory can
help us to understand what happens.

Just as 〈a†
0ad〉, we found in section 3.2.4 that the evolutionary part of nk could be

written as a superposition of cosines at frequency ωp = U − 2J(2n̄+ 1) cos
(

pπ
L

)

, where p

is an integer running from 1 to L. The weight, however, is not the same as in 〈a†
0ad〉. It
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Figure 4.9: Color plot of the momentum distribution nk − n̄. From top to bottom:
U/J = 60, 30, 16, 9. The time is shown in vertical axis, the momentum k in horizontal
axis. Oscillation, fast in (a, top, U/J = 60), decreases with U/J . Whereas nk is just n̄
at t = 0 for any k a dependence on the momentum appears afterwards. The higher the
momenta, the smaller the frequency, which results in the boomerang-shaped red areas.
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Figure 4.10: For U/J = 50, momentum distribution nk=0 − n̄, perturbation (green,
formula 3.9) and DMRG (blue). The two vertical blue lines are at t = 2π/U = ν0

and t = 2ν0, to indicate that the first period is indeed close to ν0, which would be the
period of oscillation without hopping. After two periods, though, the deviation is already
appreciable, which means hopping is already acting (see also section 2.4 where the same
phenomena occurs). The perturbation, in green, agrees very well. The maxima, however,
are slightly underestimated.
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is a k-dependent factor,

f(k, p) =
∑

d

cos(dk) sin

(

dpπ

L

)

. (4.3)

This is found to be dominant for pπ/L close to k, and decreasing fastly with the
distance |pπ/L− k|. Therefore, unlike the previous section, here we clearly identity one
and only one main frequency,

Ωk = U − 2J(2n̄+ 1) cos

(

kπ

L

)

.

To understand deeper the structure of the curve 4.10, we plotted in the top part of figure
4.11 its Fourier transform. Besides the dominant frequency, a bandwidth can be seen.
Both can be understood by the perturbation theory. In figure 4.12, we plotted the main
expected frequency Ωk (dashed line); it is found extremely close to the main DMRG
frequency.

This proves that, for instance, for k = 0 (and n̄ = 1 to simplify), the main excitation
carries a frequency ω of U − 6J . Similarly, at k = π/2, it will simply be U . Moreover,
the decrease of the weight (4.3) is not the same for every k. It is decreasing almost
linearly for k = 0 and k = π, but exponentially for intermediate frequencies. Although
the DMRG data do not show such decrease, figure 4.12 shows that the bandwidths are
qualitatively reproduced. What is more satisfying is the position of the main frequency,
which is almost exactly the one predicted by perturbation theory.

We are now in position to study how individual momenta are excited after the quench.
Figure 4.13 shows, for every time t, near which k the momentum distribution is maximal.
Initially at k = 0, a competition with k = π/2 quickly appears, with a constant transfer
of the maxima between the two values. This is the signature of the quasiparticle with one
site between the hole and the doublon, because we have nk=π/2 = −〈a†

0a2〉 + 〈a†
0a4〉 + ...,

and presumably quasiparticles with larger distances between the hole and the doublon
are not yet formed.

Moreover, the peak at k = 0 is not destroyed, its amplitude decreases, but the oscilla-
tions continue. This can be understood as a growth of coherence in the lattice. Examining
figure 4.1 (a), we see that the quasiparticle 〈a†

0a1〉 has not disappeared when 〈a†
0a2〉 be-

gins to oscillate. Excitations with zero and two sites between the hole and the doublon
are superposed for a while, and this results in a double peaked momentum distribution,
and therefore larger coherence. The wavepackets are not in phase, consequently the two
peaks are not maximal at the same time, but the idea is clear.

As time goes on, the k = 0 momentum ceases to dominate, and, as figure 4.14 shows,
when t > 1.0J , peaks at several intermediate momenta are appearing. They can not
be directly associated with a precise doublon-hole pair, only with the superposition
∑

d cos(dk)〈a†
0ad〉, and therefore these peaks indicate that a particular superposition of

quasiparticles is taking place on the lattice. To see several peaks at the same time on the
momentum distribution, as in figure 4.14, indicates a coherence between several super-
positions of quasiparticles, something which was not obvious from the previous section,
with the sole 〈a†

0ad〉.
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In conclusion, even with a trivial initial state –an atomic Mott state– and a high
final interaction strength, the dynamic induced by the quench is rich and non-trivial.
Elementary quasiparticles are forming coherent superpositions, and individually, each of
them carries a different bandwidth. This bandwidth is the largest at low momenta, but
persists for every k. Right after the quench, the small momenta components dominate,
but quickly additional peaks can be seen, indicating an interplay between quasiparticles
and a growth of coherence.

As we showed, very simple first-order perturbative calculations proved to be useful
to catch the main structure of this dynamics. The main frequency of every quasiparticle
can be very precisely found. The range of excitation frequencies is U − 2J(2n̄ + 1) ≤
ω ≤ U + 2J(2n̄ + 1), a width of 12J centered around U . A qualitative aspect of the
bandstructure can also be extracted. Moreover, the analytical formula predicts, with a
good accuracy up to times t ∼ 2J , the evolution of every components of the momentum
distribution, which may allow a deeper understanding of the coherent processes at work.

In the next section, we evaluate the effects of a larger final U/J on those results.
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Figure 4.11: Power spectrum of nk for several momenta. The dashed line indicated the
most important frequency expected from perturbation theory, ω = U−6J cos(k) (we take
n̄ = 1). It is very close to the DMRG value. The spectrum shows a different bandwidth
for each k.

4.2.2 Influence of the Final Interaction Strength

In figure 4.9, less red areas can be counted as U/J is lowered, indicating smaller frequen-
cies. This can also be seen more precisely in nk=0 (figure 4.15). But this is simply due
to the lowering of U/J . By contrast, the amplitude grows, indicating larger coherence.
But does this result simply in a shift of position in time ? To answer this, we first plot
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Figure 4.12: Same as before, with the expected bandwidth from perturbation theory
(dashed lines). Each frequency is weighted by the factor (4.3). The agreement is quali-
tatively good with DMRG data (bars), even if slightly underestimated. For k = 0, the
weight decreases linearly, exponentially for other momenta.
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Figure 4.13: Momentum k for which, at time Jt (horizontal axis), the momentum distri-
bution nk(t) is maximal. Initially, it is k = 0, and so is it mostly until t ≈ 0.2J . But after
a period of 2π/U does k = π/2 grows in importance. This time is, referring to figure
4.1 (a), roughly when the wavepacket 〈a†

0a2〉 is reaching a local maximum Afterwards,
the maximum is moved around other medium momenta. Note that k = 0 continues to
compete long after the quasiparticle 〈a†

0a1〉 has extinguished.
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Figure 4.14: Momentum distribution nk, versus k, at several times. The initial peak at
k = 0 is progressively transferred to other momentum. More and more local maxima
appear as time goes on. The perturbation formula of section 3.2.4 (green diamonds) is
in good agreement with the actual DMRG values.
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nk (U, t = mν0(U)), that is, we compare the momentum distributions at different times,
given by 2πm/U . This is shown in 4.16. In (a, m = 1), an excellent agreement in found
between every cases (we went down to U/J = 20, which is still high). This means the dif-
ference of U/J does not produce genuinely new effects after one period. This is expected:
this time is too short for the bosons to move across the lattice.

Next, comparisons at multiples of ν0 do not make sense, since it is not the period
of oscillation. Instead, we compare the momentum distribution when nk=0 reaches a
local extrema. This way, we are able to see which momenta is excited when the k = 0-
component is relaxed. This is shown in picture 4.17. By the third extrema, (b), the
difference is clear, and indicates that, with smaller final U/J , higher momenta are excited
faster: for U/J = 60, three periods are not enough to create the characteristic peak the
case U/J = 20 shows already well formed and detached from the k = 0 region.

Whereas the cases U/J = 60 and U/J = 30 are mostly comparable, clearly the
quasiparticles are propagating faster at U/J = 30 and U/J = 30, because for the latter
additional peaks are already present but nothing of the kind for higher U/J . This com-
plements the observations of the previous section on the propagation velocity. If U/J is
further lowered, a new phenomena takes place, which is the subject of the next section.
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Figure 4.15: Momentum distribution at k = 0, versus time, for several values of the final
interaction parameter. The wavelength decreases with U/J . At too small U/J , however
(see bottom curve, U/J = 8), the signal is no more sinusoidal.

4.2.3 Mean Value of the Momentum Distribution

In section 3.2.4, two expressions, particularly simple, were found for 〈nk=0〉 and 〈nk=π/2〉,
with the peculiarity that the latter is a second-order expression. Figure 4.18 (a) presents
the DMRG results. To obtain such results, simulations up to times Jt ≈ 4 have to be
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Figure 4.16: Comparison of the momentum distributions, where the comparing time t
depends on the interaction strength as t = 2πn/U , that is, is a multiple of the simplest
oscillation frequency arising from the interactions alone.

performed so as to reach steady values. In (b), these formulae are applied in a logarithmic
scale (with absolute values). The results deviate considerably for k = 0 as soon as
U/J < 15, but are good for k = π/2 down to U/J ≈ 10.

Contributions to 〈nk〉t mostly stem from the overlap of the perturbed ground state
with itself, because all time-dependent part vanished when averaging, and they come from
the excited states |φp〉 (see chapter 3.2.1). Therefore, 〈nk〉t gives an insight into the steady
state the system is reaching, upon which a dynamics of excitations is superimposed and
do not relax because of energy conservation. For large U/J , the agreement is excellent
for both k = 0 and k = π/2 terms. The growth of the curve when U/J is lowered is well
reproduced.

Going toward low U/J , 〈nk=0〉 grows rapidly, indicating a growth of coherence. The is
also shown in figure 4.19, where 〈nk〉 is plotted versus k, for several final U/J . The curves
approach superfluid shapes, in which state coherence is important. However, this ceases
when U/J ≈ 5.5, where a cross-over takes place. The momentum distribution flattens
again. In this regime, the excitations are too strong, and they destroy the coherence. At
U/J = 0, an exact solution can be derived (see section 3.2.5), and was reported to the
figures. It is in continuation of the DMRG data and therefore support the existence of
the crossover, which can be interpreted as an effective temperature: the system is heated
up permanently to some excited state.

4.3 Conclusion

In this chapter the evolution of an atomic Mott state was investigated. For large final U/J ,
the evolution is nicely described by perturbation theory. The propagation velocity can be
extracted, which is found for high U/J mostly independent of this ratio, in agreement with
[9]. In the picture where doublon-hole pairs are considered as propagating quasiparticles,
they propagate at a frequency close to U , in a band for which perturbation provides
details which remain to be confirmed and understood. During the propagation, coherent
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Figure 4.17: Momentum distribution for different U/J , at times when nk=0 reaches a
minimum (tops) and maximum (bottoms). The corresponding times are indicated in the
legend, and every curves are normalized to 1. Whereas few difference are seen in (a),
notable differences arises in (b, third extrema). Note that, in (a), the minima are not
reached exactly at 2π/U , but slightly after.
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Figure 4.18: (a) Time-averaged value of the momentum distribution nk, for k = 0 and
k = π/2, versus the final ratio U/J . In (b), the simple results from perturbation theory
are compared to DMRG data in a log-log scale. The agreement between DMRG data
(plain lines with circle markers) and perturbation theory (dashed lines with diamond
markers) is good down to U/J ≈ 5.5, where a cross-over takes place.
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The growing at small momenta reveals the increase of coherence in the system. However,
when U is smaller than approximately 5.5, coherence decreases again (see figure 4.18).
Excitations are too strong in this regime and destroy coherence.

superposition of quasiparticles are formed around frequencies Ωk = U−2J(2n̄+1) cos(k),
for momentum k with a non-negligible bandwidth.

But, as U/J decreases, higher band excitations takes more importance and the per-
turbation theory fails. The coherence continues to grow however, until U/J ≈ 5.5, where
a cross-over to a incoherent state takes place. This is confirmed by the value obtained
at U/J = 0. Below this point the excitations are too strong and destroy coherence.
The quasiparticle picture is invalid, and at approximately the same point it becomes
impossible to speak of a propagating signal is the one-body correlation function.
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Chapter 5

Dynamics with Mixtures of Bosons

In this final chapter, we study qualitatively the quench of a Mott-insulating state to a
low value of U/J in presence of an additional superfluid, and with interactions between
the two species. Such mixture can be realized experimentally via state-dependent optical
lattices [48]. The two species couple through their density [40, 22]. In our setup, the
second species is in a superfluid phase, in which particles move fastly.

However, how this complication quantitatively modifies the behavior of the Mott-
insulating state is not clear. Can it be thought as an additional friction in the Mott-
insulating species ? Though this interaction induces only tiny modifications in the ground
state properties, the time-evolution is different. We find that a propagation signal can
still be found in the one-body correlation function and therefore a propagation velocity
defined, which decreases when the superfluid is added. In the range of parameter we
consider, the quasiparticle picture seems to remain valid, and the added superfluid slows
down their spreading. The decoupled case seems to be recovered in the limit of infinite
hopping in the added superfluid. Moreover, we give hints in favor of a growth of coherence
in the finite coupling case.

5.1 Introduction and Static Properties of Bosonic

Mixtures

The Hamiltonian we are considering is:

H = Ha +Hb + Uab

∑

i

na,inb,i, (5.1)

where:

Hλ = −Jλ

∑

i

(λ†
iλi + λ†

i+1λi) +
Uλ

2

∑

i

nλ,i(nλ,i − 1)

is the usual Bose-Hubbard Hamiltonian of species λ. Different species are denoted a
and b, and their associated annihilation operators at site i are ai and bi, their densities
na,i and nb,i, respectively. The additional term in the Hamiltonian (5.1) couples the two
species via their densities. Though simple in its expression, this new coupling resists
mean-field approach [8], in the sense that mean-field fails to predict new phases. Yet, the
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ground state of this Hamiltonian is rich and varied [32, 33], exhibiting, beneath Mott-
insulating and superfluidity, counter-flow superfluidity and paired superfluidity. On top
of superfluidity, charge density waves can exist.

Counter-flow superfluidity takes place at repulsive inter-species interaction Uab/Ja > 0
in an incommensurate lattice. Particle-hole pairs are formed (called “anti-pairs” in the
literature): a particle in one species bounds with a hole in the other species. On the
contrary, in the paired superfluid state, particle-particle pairs are formed. The inter-
species interaction Uab has to be attractive (i.e. Uab/Ja < 0).

However, in the range of parameters we choose, no pairing can be observed. Species a
is initially in a Mott-insulating ground state with Ua/Ja = 40. Species b is in a superfluid
ground state because its filling is 1/2. An additional hardcore constraint is sat on this
species, meaning Jb/Ub = 0. The hopping Jb/Ja is varied. The inter-species interaction
is sat to Uab/Ja = 4, the tenth of the ratio Ua/Ja. Below this value, no clear effects on
the dynamics can be seen. At the ground state level, for the range 0.5 ≤ Jb/Ja ≤ 4
considered, the addition of an inter-species interaction does not modify the one-body
correlation functions of a and b above the numerical error, and is therefore completely
negligible.

Unlike the single Mott-insulating case, where it is the simple atomic Mott state, in
the limit Jb/Ja → 0 the superfluid can not be written down as a product state. Even
with the hardcore constraint, it remains a complicated superposition. The superfluid can
not be though as “frozen” as would be an integer-filling species, because delocalization
remains. However, it will be in some sense “slowed down” to a certain level, in opposition
to the large Jb/Ja where delocalization is facilitated. When Jb/Ja → 0, delocalization is
not suppressed, only reduced.

In the following sections we investigate the effects of the superfluid on the spreading
of correlations in a. To evaluate the influence of b on a (and possibly conversely), Ua/Ja

is quenched down to 9, following [9], where such a quench is studied in the single species
case. Results are first presented, and discussed in section 5.3, where conjectures on a
possible extended quasiparticle picture are formulated.

5.2 Effects of the Superfluid on the Time-evolution

5.2.1 One-body Correlations and Propagation Velocity

Our aim is to investigate the effects of the parameter Jb/Ja which controls the kinetic
energy of the superfluid. Figure 5.1 presents the time-evolution of the correlations func-
tions of both species. The blue curve is the single-species results, obtained therefore with
Uab = 0. It serves as a witness. Such curves were discussed in the previous chapter;
although there we had initially Ja/Ua = 0, the situation is mostly comparable.

The propagating signal is preserved. A notable thing is the lowering of the correlations
in b, which are stronger for small Jb/Ja. The case Jb/Ja = 4 (purple curves) is the closest
to the Uab/Ja = 0 situation, in both 〈a†

0ad〉 and 〈b†
0bd〉. This implies the superfluid mainly

act as a friction in a.
In the quenched Mott-insulating state, the dynamics is different. As the green curves

of the top panels of 5.1 (a) and (b), for which Jb/Ja = 1 is small, show, the peak
is flattened, and it becomes difficult to localize clearly a maximum. This broadening
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Figure 5.1: One-body correlation functions for the quenched Mott-insulating state
(〈a†

0ad〉, tops) and the superfluid state (〈b†
0bd〉, bottoms), for (a) d = 1 and (b) d = 2. Each

curve is for a different Jb, except the blue lines with diamond markers, for which Uab = 0
(the single species case). At short times (Jat < 0.1), no effects can be seen. Whereas in
the quenched Mott-insulating state a propagating signal can be identified, in the super-
fluid the one-body correlations decrease to a plateau and show small oscillations around
a steady values. This indicates that quasiparticles are formed in the Mott-insulator, but
not in the superfluid.
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Figure 5.2: Fourier transform of the one-body correlation function, (a) 〈a†
0a1〉 and (b)

〈a†
0a2〉 of the Mott-insulating species. Whereas in the single-species cases (Uab/Ja = 0) the

main frequency is close to the final Ua/Ja, it appears shifted for small Jb/Ja toward lower
values. This is why, on figure 5.1, the maxima is observed at later times. When Jb/Ja is
higher, the main frequency moves toward the single-species one, Ua/Ja ≈ 9. Moreover,
the superfluid modifies the spectrum. Smaller frequencies carry more weight whereas
large frequencies are deprecated. For large Jb/Ja the single-species Fourier transform
seems to be recovered (see the proximity between the purple and blue bars).
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indicates slower propagation, that is, with smaller frequencies, as figure 5.2 shows. In
this figure is plotted the Fourier transform of the signals of figure 5.1. A shift of frequencies
toward values lower than ω ≈ Ua/Ja = 9 can be observed as well as the suppression of
higher frequencies. However, as Jb/Ja is increased, the Fourier transform of the single-
species case is approximately recovered.

This can also be seen in 5.3, which shows the times for which correlations hit a
maxima. Propagation seems to remain linear. However, it is difficult to say how the
velocity is modified. As we already noticed, for low Jb/Ja, the broadening of the one-
body correlation function makes it difficult to find a true maximum. Figure 5.4 indicates a
velocity which decreases with increasing Jb/Ja, until Jb ≈ Uab. This confirms the previous
results: the propagation is slowed down by the superfluid, except in the cases Uab/Jb = 0.
However, the actual velocities obtained from our fits should be taken with care, because
the one-body correlation function does not show a clear maxima when Jb/Ja < 2 (see
green and red curves of 5.1 (a) and (b) top). This is why our results are only indications
of a tendency which remains to be demonstrated experimentally.

5.2.2 Momentum Distribution and Coherence

In the previous chapter and for a initial single Mott atomic state, the coherence grew
after the quench for Ua/Ja > 5.5. For mixtures, the one-body correlation function of
the quenched Mott insulator also shows a propagating signal, but, for low Jb/Ja, the
signal is broader. How is the coherence enhancement modified ? To answer, we study
the momentum distribution nk(t) − n̄a of species a, the Mott insulator. It is plotted in
figure 5.5 for several momenta. As in the previous section for 〈a†

0ad〉, the frequencies are
lower for small Ja/Jb, and approach the case Uab/Jb = 0 as Ja/Jb grows. This fact is also
supported by the Fourier transform, see figure 5.6 for an example with k = 3π/4.

What is more interesting is the fact that nk=0(t) is actually larger in amplitude when
Uab/Ja 6= 0, at least in the range Jb/Ja presented. This indicates a growth of coherence
on the presented time-scales. It can also be seen in the Fourier transform, figure 5.6: for
Jb/Ja < 4, although the bandwidths are not larger, more frequencies appear, and they
carry more weight. Thus, more modes are coherently superposed when a superfluid is
present. As Jb/Ja is increased, the situation must tend toward the blue line, Uab/Ja = 0,
because it is a particular case of Uab/Jb = 0, and therefore coherence decreases.

5.3 Discussion and Conclusion

As in the single-species case, a propagating signal can be seen in the one-body correlations.
By looking at the maxima of this signal, the propagation is approximately linear, and a
velocity can be extracted. This supports the transposition of the quasiparticle picture to
mixtures at non-zero and finite Uab/Jb. However, the signal is also found flatter and the
error in the velocity determination larger.

With a slower signal, the times-scales which should be reached to gain a correct insight
into the dynamics are larger. In particular, for the momentum distribution, the growth of
coherence we saw for Jat < 2 might not reflect the long-standing behavior of the system,
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Figure 5.6: Example of the fourier transform of the momentum distribution of the Mott
insulating state, nk(ω), for k = 3π/4. A broadening can be seen when Uab/Ja 6= 0. As
for 〈a†

0ad〉 (see figure 5.2), the Fourier transform for Jb/Ja = 4 (bottom) is the closest to
the case Uab/Ja = 0. The same phenomena are observed for all other momenta.
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Figure 5.7: Time-averaged momentum distribution, versus momentum k, for different
final Jb/Ja, and the witness Uab/Ja = 0 in blue. This is the average of the DMRG data
on the range 0 < Jat < 2.0, which is, for k ≈ 0, too small to obtain true steady values.
Therefore, this curve is only a hint which might indicate a growth of coherence when
Uab/Jb 6= 0. This growth can be interpreted as the contribution of the superfluid: the
two species are interacting coherently. Small Ja/Jb results in higher coherence, because
the quasiparticle of figure 5.1 is broader, and have therefore more time to interact. This
can be interpreted as a dressing of the quasiparticle.
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but is gives an indication: whereas for other momenta nk is not modified in average (see
figure 5.7 and the legend), for k = 0 (and close to 0) the momentum distribution is larger.

In the single-species case, a cross-over was observed at some low final Ua/Ja, where
coherence was destroyed (see chapter 4.2.3). This also corresponds approximately to the
point where the quasiparticle picture failed, because no propagation could be seen in the
one-body correlation function. Therefore, if this additional coherence is confirmed, it
would be a firm indication that the quasiparticle picture can be transposed to mixtures.

Physically, this would mean the Mott quasiparticles are dressed by the superfluid,
traveling slower, but with additional frequencies. As the figure 5.6 indicates, the quasi-
particles have a broader and higher power spectrum. Though slower, they are not de-
stroyed by the superfluid, but they have more time to interact and carry a more complex
structure, something one could not infer from the broadening of 〈a†

0ad〉 alone. One the
contrary the less well-defined maxima could have been interpreted as the destruction of
the quasiparticle, which does not seem to be the case.

However, it not clear how the situation will evolve if Uab/Ja is larger. We considered
the case Ua,initial/Uab = 10, and therefore the superfluid could almost be treated as a
perturbation. As mentioned in the introduction, the ground state will be modified when
Uab ∼ Ua by the formation of bound particle/particle pairs or particle/hole pairs. Such
pairs do not necessarily increase coherence, because the interaction between these pairs
might be destructive. We also performed simulations with Ua,initial/Uab = 5, so closer
to the non-perturbative regime, but with the same ground state, and a similar growth
of coherence was observed. The same proviso on the time-scale applies. In contrast, a
propagation velocity became more complicated to find. It is therefore not clear whether
the quasiparticle picture will stand when Uab ∼ Ua,initial.

In conclusion, though further studies are necessary to confirm our tendency, the ad-
dition of a superfluid seems to result in a growth of coherence, and not in the destabi-
lization of the Mott state. The picture of a propagating quasiparticle developed in [9]
may remain applicable even at larger Uab/Ua,initial, although the signal in the one-body
correlation function might not be convincing. The growth of coherence, which can be
seen in the momentum distribution, may serves as an indication.

At small Uab/Ua,initial, a dressed quasiparticle theory should be enough to describe
the physics. On the numerical side, more systematic exploration of the parameter space,
spanned by Uab/Jb, should be led. DMRG is adapted to this end, even if the limit
Jb/Uab → 0 is also very hard to simulate. From both points of view, the space is open
for improvements and new methods.
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Chapter 6

Conclusion

In this work we studied the time-evolution of a Mott-insulating state in one dimension
when quenched to a lower interaction strength. Mott-insulating states are obtained with
a strongly interacting cold atomic cloud loaded in an optical lattice, a setup which is
experimentally common nowadays. Though we adopted a numerical point of view, the
physical quantities we studies are accessible experimentally, and our results are ready for
experimental confrontations. In particular, we used the momentum distribution, which
can be measured by time-of-flight measurements. It provides a fascinating insight into
the quantum many-body physics at work.

In particular, the momentum distribution gives information about the coherence in
the system. Whereas the atomic Mott state, which is obtained by taking the interactions
to infinity, presents no coherence, after the quench, coherence appear and do persist. To
interpret this phenomena, the picture of propagating quasiparticles was developed in [9].
They transports correlation with a finite velocity, which depends on the final ratio U/J .

A dynamics between quasiparticles takes place. In chapter 4, we showed they are
superposed coherently in time. The simplest first-order perturbation theory catches the
main structure of the evolution down to U/J ≈ 10, in agreement with more sophisticated
approaches such as the one developed in [4].

Below, the naive picture in which a particle is removed from site i and placed on
site i + 1 after the quench is not correct anymore. At some U/J ≈ 5.5, a crossover
takes place: as if an effective temperature was raised, excitations become too strong and
destabilize the system, destroying coherence. So far no theoretical model can describe
this phenomenon.

Similarly, to our knowledge no theoretical predictions of the behavior of the quenched
Mott-insulating state in interaction with an additional superfluid exist. In our intuition,
for the range of parameter considered, the quasiparticles picture is still valid, and the
superfluid increases their coherence. Our results suggest that a dressed quasiparticle
picture might prove useful when Ua/Uab is small enough.

What happens in the limit of small Uab/Jb remains open. In future works, numerical
simulations have to be optimized for the treatment of mixtures at strong Jb/Uab, along
with the development of a new theoretical approach, for example based on a dressed
quasiparticle.
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