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Abstract

We investigate the preparation of stationary states of an open system, as the attractor states
of the dissipative dynamics are more robust than the many-body states of a closed system. We
consider theoretically ultracold interacting bosonic atoms con�ned to quasi-one-dimensional
ladder structures formed by optical lattices and coupled to the �eld of an optical cavity. The
atoms can tunnel along the leg direction and collect a spatial phase imprint during a cavity-
assisted tunneling along a rung via Raman transitions employing a cavity mode and a transverse
running wave pump beam. By adiabatic elimination of the cavity �eld we obtain an e�ective
Hamiltonian for the bosonic atoms, which needs to be analyzed self-consistently. Firstly, we
characterize the low energy properties of the e�ective Hamiltonian by performing a Bogoliubov
theory for quasiparticles excitations on top of the bosonic condensate, whose spectrum has
characteristic features of the super�uid phase. Furthermore, using the numerical density matrix
renormalization group method, we obtain a rich steady state diagram of self-organized steady
states. Transitions between super�uid to Mott-insulating states occur, on top of which we can
have Meissner, vortex liquid, and vortex lattice phases. Also a state that explicitly breaks the
symmetry between the two legs of the ladder, namely the biased-ladder phase is dynamically
stabilized.
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1. Introduction

The �eld of studying quantum phenomena within ultracold atoms systems has attracted ma-
jors e�orts since the realization of Bose-Einstein Condensation [1–3] and quantum degenerate
Fermi gases [4] 20 years ago. By loading the ultracold atoms into optical lattice potentials one
can e�ectively enhance the interaction between the atoms, realizing the strongly correlated
regimes. Thus the system of ultracold atoms in optical lattices provides a powerful framework
for the realization of the strongly correlated phases, due to the high controllability of parame-
ters [5]. The experimental realization of the super�uid to Mott-insulator transition of bosonic
atoms trapped in an optical lattice [6] represents a remarkable example. In this context, the
playground of theorists consists in various versions of the Bose-Hubbard model [7], in which
the interplay between quantum kinetic processes and, short and long-range interactions can be
studied. The Bose-Hubbard model is well-known from condensed matter physics, as the min-
imal model that captures the physics of interacting bosons in a lattice, its phase diagram has
been explored both analytical and numerical [8–20].

In recent years, ultracold atoms coupled to an optical cavity mode have proven to be an exciting
�eld of physics [21]. One can target the desired steady state by engineering the coupling to the
environment [22]. The steady state is realized as the attractor of the dissipative dynamics,
thus being protected from external perturbations. In recent experiments [23, 24], ultracold
bosonic atoms placed in an optical cavity have realized a Dicke phase transition [25–28]. In
the experiment from Ref. [23] a Bose-Einstein condensate has been placed inside an optical
cavity and coupled also to a standing-wave transverse pump beam. Above a critical value of
the intensity of the transverse pump beam the atoms self-organize into a checkerboard pattern
of the density and the cavity �eld has a �nite value.

In addition to the coupling to the optical cavity, one can con�ne the atomic gas with external op-
tical lattice potentials, to realize a modi�ed Bose-Hubbard model with long-range interactions
[29, 30]. This has been investigated theoretically [31, 32] and, in particular, the e�ect of the long-
range interactions on the super�uid to Mott insulator transition has been analyzed [33–39].
More complex combined cavity-atom systems have been proposed in which self-organization
can occur, as the organization of bosonic atoms in triangular or hexagonal lattices [40], or of
fermionic atoms into superradiant phases [41–44]. Disordered structures have been theoreti-
cally proposed in setups such as multimode cavities [45–52]. Phases for which the spin-orbit

1



CHAPTER 1. INTRODUCTION

coupling plays an important role have been discussed for standing-wave cavities [53–56], or
ring cavities [57, 58].

Essential phenomena arise in systems of charged quantum particles subjected to a magnetic
�eld, for instance, the quantum Hall e�ect [59, 60]. It describes the movement of quantum
particles under the action of a magnetic �eld in two dimensions. Even though the integer
quantum Hall e�ect is understood from the behavior of noninteracting electrons, other exotic
physics can be studied in interacting many-body systems in the presence of an Abelian gauge
�eld [61, 62], like the fractional quantum Hall e�ect.

In this context, a natural development is to realize gauge �elds in ultracold atomic systems [63–
65]. The generation of an arti�cial gauge �eld has been implemented in di�erent ways such as
Raman coupling [66, 67], lattice shaking [68], or laser-assisted hopping [69, 70]. These arti�cial
gauge �elds for neutral atoms have similar e�ects as magnetic �elds for charged particles. In
the mentioned setups a static arti�cial magnetic �eld is induced, thus no feedback of the atoms
on the arti�cial �eld exist. The Hofstadter model in two dimensions [70–73] or on a ladder
geometry [74] and the Haldane model [75] are realized.

The quasi-one-dimensional ladder structure is the minimal geometry in which the e�ects of
gauge �elds can lead to interesting e�ects. For weakly interacting ultracold bosons on a ladder
a Meissner and a vortex super�uid phase were observed by measuring the chiral current that
�ows along the legs of the ladder [74]. Furthermore, the rich phase diagram has been explored,
with other exciting phases such as vortex lattice and biased ladder super�uid phase, Meissner
and vortex Mott insulator theoretically predicted to occur [76–91].

Recently proposals have been put forward for the dynamic generation of gauge �elds by a
cavity-assisted tunneling. The arti�cial magnetic �eld emerges dynamically due to the feedback
mechanism between the cavity �eld and the motion of atoms [92–97]. The steady state diagram
and the dynamics has been determined in the case of noninteracting fermions including states
with chiral currents on a ladder geometry [92–94] or non-trivial topological properties in two
dimensions [95].

In the present work we consider interacting bosons on a ladder structure coupled to a cavity
mode and explore the steady state diagram for di�erent on-site interaction strengths, di�erent
magnetic �uxes and di�erent �llings. We characterize the self-organized phases that arise and
we investigate the stability of these phase in the coupled atomic cavity system. The thesis
is an extended version of the work we presented in Ref. [98] and similarities can exist in the
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overlapping parts.

The structure of the thesis is as follows. In Chap. 2 we describe the setup of the bosonic atoms
in the optical cavity in Sec. 2.1, and the theoretical model in Sec. 2.2. We derive an e�ective
model for the atomic degrees of freedom by performing the adiabatic elimination of the cavity
�eld in Sec. 2.3, and deduce a stability condition for the steady states in Sec. 2.4. In the next
chapter, Chap. 3, we discuss the properties of the e�ective Hamiltonian, by looking at the low-
energy physics in Sec. 3.1 and in Sec. 3.2, and we brie�y summarize the phases observed in
the rich phase diagram in Sec. 3.3. In Chap. 4 we discuss the density matrix renormalization
group method and certain technical details of its implementation and convergence. The stable
self-organized phases with a �nite cavity �eld and their properties are presented in Chap. 5.
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2. Bose-Hubbard ladder coupled to a cavity mode

2.1. Description of the setup

Figure 2.1.: Sketch of the setup involving one pump beam, adapted from Ref. [95]. The bosonic
atoms in an optical cavity are subjected to an optical super-lattice potential which
creates an array of ladders. The atoms tunnel along the legs with the amplitude
J‖, via the cavity-induced processes they tunnel along the rungs with an e�ective
amplitude J⊥ and have an on-site interaction of strength U . In the level scheme
of the cavity-induced tunneling, the energy o�set between two neighboring wells,
∆, strongly suppresses the tunneling along the rungs. This is restored by a Ra-
man processes involving the cavity mode with vacuum Rabi frequency g0 and a
transverse pump beam with Rabi frequency Ωp, respectively.

We study an ultracold bosonic gas placed in an optical cavity and additionally subjected to op-
tical lattice potentials (Fig. 2.1), we will follow our work from Ref. [98]. A similar setup has
been introduced and discussed in previous work in the context of fermionic atoms [93–95].
The optical super-lattice potentials con�ne the atoms to an array of decoupled ladders. The
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�rst step in obtaining this structure is to create two-dimensional decoupled layers by applying
a strong optical lattice potential along the z-direction. One applies an optical lattice of wave-
length λy along the y-direction, which induces a lattice spacing of d‖ = λy/2. A superposition
of two optical lattices with wavelengths λx and λx/2 is applied along the x-direction, such
that decoupled double wells are formed with an energy o�set ∆ between the two wells (see
Fig. 2.1). The lattice height along the y-direction is su�ciently low such that the atoms tunnel
with amplitude J‖ between neighboring sites. The potential o�set between the two wells along
x-direction strongly suppresses the tunneling along the rungs. The tunneling is restored by
a Raman transition involving a standing-wave cavity mode and the running-wave pump laser
(Fig. 2.1). The cavity mode has the frequencyωc, vacuum Rabi frequency g0 and the wave-vector
kc = kcex along the x-direction, where ei, with i = x, y, z, denote the unit vectors along the
three spatial directions. All other cavity modes are assumed to be far detuned from the pos-
sible transitions and are not considered. The pump laser beam has the frequency ωp and the
wave-vector kp = kpey. The pump and cavity modes are considered to be far detuned from the
internal atomic transition, i.e. ωe � ωc, ωp, thus the excited state population is negligible and it
can be adiabatically eliminated. The detuning between the cavity mode and the pumping beam
is chosen such that it is close to the potential o�set, ~(ωc−ωp) ≈ −∆. A cavity-induced Raman
tunneling along the rungs of the ladder is obtained via the feedback mechanism between the
motion of the atoms and the cavity mode. In the following we will use the rotating frame with
the frequency ωp.

During the Raman processes a spatially dependent phase factor e−i∆k · r is imprinted onto the
atomic wave-function, where ∆k = ±kcex+kpey. The cavity mode does not give a contribution
when the tunneling around a plaquette is considered. However, due to the running-wave nature
of the pump beam the atoms collect a phaseϕ(j+1) tunneling on the rung j+1 and a phase−ϕj
on the rung j, where ϕ ' πλy/λp, The accumulated phase ϕ is equivalent to the Aharonov-
Bohm phase for charged particles subjected to a magnetic �eld oriented orthogonal to the ladder
surface. Thus, the bosonic atoms experience an arti�cial magnetic �eld in the presence of a �nite
cavity �eld. In an experimental realization, the �ux ϕ can be varied by modifying the angle of
the pump beams with respect to the x-y-plane.

2.2. Derivation of the model

In this section we will perform an expansion in the Wannier basis of the atomic �eld opera-
tors, obtaining a model for the atomic-cavity system in the tight-binding description. Thus we
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2.2 Derivation of the model

reduce the original Hamiltonian in continuum space to a lattice Hamiltonian with only a few
e�ective parameters. We will �rst derive the Hamiltonian for the setup with only one transver-
sal pump beam, as presented in Fig. 2.1 and used in Ref. [95], and at the end of the section we
will generalize the result for the case with two pump beams, as depicted in Fig. 2.2. A bosonic
quantum gas placed in an optical cavity subjected to an optical lattice and a transversal pump
beam can be described in the rotating wave approximation by the Hamiltonian [21]

H = Hg +He +Hint +Hc +Hac +Hap, (2.1)

where the di�erent terms will be de�ned in the following. Only two internal electronic states
of the atoms are relevant for the atomic dynamics, the ground state (g) and the excited state (e)
in resonance with the considered transitions. Their dynamics is described by

Hg =

∫
d3r

(
ψ†g(r)

(
− ~2

2m
∇2 + Vg(r)

)
ψg(r)

)
,

He =

∫
d3r

(
ψ†e(r)

(
− ~2

2m
∇2 + ~δep + Ve(r)

)
ψe(r)

)
, (2.2)

with ψg(r) and ψe(r) the bosonic annihilation operators at position r in the ground state and in
excited state, respectively. The �eld operators ful�ll the usual bosonic commutation relations,[
ψ(r), ψ†(r′)

]
= δ(r − r′). The external potentials for the atom in the ground and the excited

state are represented by Vg(r) and Ve(r), andm is the mass of the bosonic atoms. In the rotating
frame of the pump beam with the frequency ωp, the detuning of the pump laser from the atomic
transition is given by δep = ωe−ωp, where the internal atomic transition has a frequency of ωe.
For a large detuning δep the excited state population is negligible, thus the interaction between
the atoms in the ground state and the excited state, and also between the atoms in the excited
state can be neglected. Thus the interaction part of the Hamiltonian reads

Hint =
g

2

∫
d3r
(
ψ†g(r)

2ψg(r)
2
)
, (2.3)

where the strength of the contact interactions is given by g = 4π~2as
m

, with as the s-wave scat-
tering length.

The next term in the Hamiltonian (2.1) gives the dynamics of the cavity �eld
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Hc = ~δcpa†a, (2.4)

The bosonic operators a and a† are the annihilation and creation operators for the cavity photon
mode, in the rotating frame at the pump frequency, with δcp = ωc − ωp.

Hac = ~g0

∫
d3r
(
ψ†g(r) cos(kcr)a

†ψe(r) + h.c.
)
, (2.5)

where g0 is the vacuum Rabi frequency and kc is the wave-vector of the cavity mode.

The last term corresponds to the coherent drive of the atoms by the pump laser beams

Hap = ~Ωp

∫
d3r
(
ψ†g(r)e

−ikprψe(r) + h.c.
)
, (2.6)

with Ωp the Rabi frequency and kp is the wave-vector of the pump beam.

In the following we will perform the adiabatic elimination of the excited state, obtaining an
e�ective Hamiltonian which governs the evolution of the atomic ground state coupled to a
mode of the cavity �eld. The equations of motion for the �eld operators of the excited and
ground state, without any external potentials, are

i~∂tψe(r) =

(
− ~2

2m
∇2 + ~δep

)
ψe(r)

+
(
~g0 cos(kcr)a+ ~Ωpe

ikpr
)
ψ†g(r),

i~∂tψg(r) =

(
− ~2

2m
∇2 + gψ†g(r)ψg(r)

)
ψg(r)

+
(
~g0 cos(kcr)a

† + ~Ωpe
−ikpr

)
ψ†e(r). (2.7)

Assuming that the internal time-scales are faster than the external (not electronic) ones, δep �
g0,Ωp, we can expand the stationary value of ψe(r) up to �rst order in Veff/δep, where Veff =

~g0 cos(kcr)a+~Ωpe
ikpr. Considering that at t = 0 the cavity is empty and we are not pumping

the system, Veff (t = 0) = 0, we obtain the following stationary value for the excited state �eld
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2.2 Derivation of the model

ψe(r) = − 1

δep

(
~g0 cos(kcr)a+ ~Ωpe

ikpr
)
ψg(r). (2.8)

By substituting the stationary value of the excited state �eld (2.8) into the equation of motion
for the ground state �eld (2.7), we will obtain an equation of motion formally identical to the
one generated by the following e�ective Hamiltonian, in which have been considered only the
two-photon resonant processes which involve one cavity photon and one pump photon

H = Hg +Hint +Hc +Hac, (2.9)

Hac = −~g0Ωp

δep

∫
d3r
(
eikpra† + e−ikpra

)
cos(kcr)ψ

†
g(r)ψg(r). (2.10)

In the case of a su�ciently deep optical lattice potential we can expand the bosonic �elds into
the corresponding Wannier basis of the lattice

ψg(r) =
∑

j,m=0,1

W (r−Rm,j)bm,j (2.11)

where Rm,j is the position vector corresponding to the lattice site j on the legm = 0, 1 and bm,j
is the bosonic annihilation operator of the atoms. The Wannier functions for a siteR are de�ned
as the Fourier transform of the Bloch functions uk(r), W (r−R) = 1

V0

∫
k∈FBZ d

3ke−ikRuk(r).
Substituting the expansion (2.11) into the Hamiltonian (2.9) and considering that we have hop-
ping only between the nearest neighbors the �rst two terms of the Hamiltonian (2.9) become

Hg = −J‖
∑

j,m=0,1

(b†m,jbm,j+1 + b†m,j+1bm,j),

Hint =
U

2

∑
j,m=0,1

nm,j(nm,j − 1). (2.12)

The operator nm,j = b†m,jbm,j is the number operator. The tunneling amplitude along the legs
of the ladder J‖ and the strength of the on-site interaction U are de�ned by
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J‖ = −
∫
d3r W ∗(r−Rm,j)

(
− ~2

2m
∇2 + Vg(r)

)
W (r−Rm,j),

U = g

∫
d3r

∣∣∣W (r−Rm,j)
∣∣∣4, (2.13)

where Vg(r) now represents the external potential without the lattice potential.

For the last term the expansion reads

Hac = −~g0Ωp

δep

∑
j,m=0,1
j′,m′=0,1

b†m,jbm′,j′

∫
d3r
(
eikpra† + e−ikpra

)
cos(kcr)W

∗(r−Rm,j)W (r−Rm′,j′).

(2.14)

In the considered setup we can evaluate the contributions to the integral from (2.14) for each
direction independently, since they are separable. The most important contribution for the
y-direction comes from the on-site overlap of the Wannier functions, as the hopping in the
y-direction is not pump-cavity assisted.

e±iϕjφ‖ = e±ikpd‖j
∫
dy W ∗(y)W (y)e∓ikpy, (2.15)

with the imprinted phase ϕ = kpd‖, collected by an atom while tunneling around a plaquette.

In the x-direction we have multiple contributions, from the overlap of the Wannier functions
between two adjacent sites

φ⊥,± =

∫
dx W ∗(x)W (x± d⊥) cos(kcx), (2.16)

where d⊥ is the lattice spacing along the rungs of the ladder. The other contributions come
from the on-site integrals, which have a di�erent value on each leg, thus we have an oscillating
energy o�set between the two sites on the same rung.
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2.2 Derivation of the model

φ⊥,m=0 =

∫
dx W ∗(x)W (x) cos(kcx),

φ⊥,m=1 =

∫
dx W ∗(x− d⊥)W (x− d⊥) cos(kcx). (2.17)

We assume that all contributions for the x-direction are included in an e�ective parameter φ⊥
and its value can be controlled by the geometry of the lattice [93]. Thus Hac is given by

Hac = −~Ω̃(aK⊥ + a†K†⊥), (2.18)

K⊥ =
∑
j

eiϕjb†0,jb1,j,

~Ω̃ =
~g0Ωp

δep
φ‖φ⊥.

In the tight-binding description the Hamiltonian describing the coupled system reads

H = Hc +H‖ +Hint +Hac (2.19)

Hc = ~δcpa†a

H‖ = −J‖
∑

j,m=0,1

(b†m,jbm,j+1 + b†m,j+1bm,j)

Hint =
U

2

∑
j,m=0,1

nm,j(nm,j − 1)

Hac = −~Ω̃(aK⊥ + a†K†⊥)

K⊥ =
∑
j

eiϕjb†0,jb1,j.

The setup involving just one pump beam, described by the Hamiltonian (2.19), has the following
shortcoming, for small photon numbers in the cavity the transition which involves the anni-
hilation of a pump photon and creation of a cavity photon is more favorable. Thus, over long
times we e�ectively pump the atoms from one leg to the other, in the direction of K⊥, creat-
ing a density imbalance. In order to prevent the privileged direction of tunneling, we couple
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Figure 2.2.: (a) Sketch of the setup involving two transverse pump beams, adapted from
Ref. [98]. The bosonic atoms in an optical cavity are subjected to an optical super-
lattice potential which creates an array of ladders. The atoms tunnel along the
legs with the amplitude J‖, via the cavity-induced processes they tunnel along the
rungs with an e�ective amplitude J⊥ and have an on-site interaction of strength
U . (b) Level scheme of the cavity-induced tunneling: |g〉, |e〉 denote the ground
and excited internal electronic states. The energy o�set between two neighboring
wells, ∆, strongly suppresses the tunneling along the rungs. This is restored by
two Raman processes each of which involve the cavity mode with vacuum Rabi
frequency g0 and a transverse pump beam with Rabi frequency Ω1,2, respectively.

the tunneling in each direction to both the creation and annihilation operators of the cavity
�eld, using two pump laser beams [26] (see Fig. 2.2). In this case, the tunneling is restored by
two balanced Raman transitions each of them involving a standing-wave cavity mode and a
running-wave pump laser. The pump laser beams have the frequencies ωp,i=1,2 and the wave-
vectors kp = kp,i=1,2ey. The di�erence between the two pump beam frequencies is chosen
such ~(ωp,2 − ωp,1) ≈ 2∆. In the following we will use the rotating frame with the frequency
ωp = (ωp,2 +ωp,1)/2 and λp = λp,1,(2) as the wavelengths of the pump beams are approximately
the same, i.e. λp,1 ≈ λp,2. The amplitude of the Raman process will be now ~Ω̃ = ~Ωp,1g0

ωe−ωp,1
φ‖φ⊥,

where Ωp,i=1 is the Rabi frequencies of the �rst Raman beam, and the e�ective parameters φ‖
and φ⊥ contain contributions of the overlap of the wavefunctions from neighboring sites. The
two Raman processes are balanced due to the choice of the Rabi frequency for the second pump
beam Ωp,2 = Ωp,1

ωe−ωp,2

ωe−ωp,1
. The modi�ed Hamiltonian is given by
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2.2 Derivation of the model

H = Hc +H‖ +Hint +Hac (2.20)

Hc = ~δcpa†a

H‖ = −J‖
∑

j,m=0,1

(b†m,jbm,j+1 + b†m,j+1bm,j)

Hint =
U

2

∑
j,m=0,1

nm,j(nm,j − 1)

Hac = −~Ω̃(a+ a†)(K⊥ +K†⊥)

K⊥ =
∑
j

eiϕjb†0,jb1,j.

As a short summary, the term Hc gives the dynamics of the cavity mode in the rotating frame.
H‖ describes the tunneling of the atoms along the legs of the ladder with the tunneling am-
plitude J‖. The term Hint represents the repulsive on-site interaction of strength U > 0. The
coupling between the atoms and the cavity �eld is described by Hac, where a tunneling event
along the rungs occurs by creation or annihilation of a cavity photon. The tunneling along the
rungs with the spatially dependent phase imprint is represented by the operatorK⊥, coupled to
both the creation and annihilation operators of the cavity �eld. L denotes the number of rungs
of the ladder and the total number of bosons isN . The �lling per site is de�ned as ρ = N/(2L).

Beside the unitary dynamics given by the Hamiltonian (2.20), dissipative processes are present
due to the imperfections of the cavity mirrors where losses of the cavity photons occur. The
dissipative dynamics is approximated by a Lindblad master equation, which gives the evolution
of the density matrix ρ

∂

∂t
ρ =

i

~
[H, ρ] +D(ρ), (2.21)

with the dissipator D(ρ) = κ
(
2aρa† − ρa†a− a†aρ

)
, which gives the loss of cavity photons,

via the imperfect mirrors [99]. In the derivation of the master equation one assumes the Markov
approximation, namely the reservoir does not have memory. In our ultracold atoms coupled to
the optical cavity system, the time scale of the dynamics, given by the cavity decay rate is much
larger than the correlation time of the �uctuations from the reservoir, represented by the vac-
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uum modes of the external electromagnetic �eld [99]. In this limit, the Markov approximation
is valid.

2.3. Adiabatic elimination of the cavity �eld

In this section we will derive an e�ective model for the bosonic atoms, obtained from the adi-
abatic elimination of the cavity �eld [21, 93, 95, 98]. We approximate the expectation value of
the cavity �eld with its steady state value, which ful�lls the condition ∂t〈a〉 = 0. The evolution
of an operator O is given by

∂

∂t
O =

i

~
[H,O] +D(O), (2.22)

with the dissipator D(O) = κ
(
2a†Oa−Oa†a− a†aO

)
.

Using Eq.(2.22) the condition for the cavity �eld is given by

i∂t〈a〉 = −Ω̃〈K⊥ +K†⊥〉+ (δcp − iκ)〈a〉 = 0. (2.23)

This condition relates the expectation value of the directed rung tunneling to the expectation
value of the cavity �eld by

α = 〈a〉 =
Ω̃

δcp − iκ
〈K⊥ +K†⊥〉. (2.24)

The Heisenberg equations of motion of the atomic operators read

i~∂t〈b0,j〉 = −J‖〈b0,j+1 + b0,j−1〉 − U〈b0,j(1− n0,j)〉

−~Ω̃〈a+ a†〉eiϕj〈b1,j〉

i~∂t〈b1,j〉 = −J‖〈b1,j+1 + b1,j−1〉 − U〈b1,j(1− n1,j)〉

−~Ω̃〈a+ a†〉e−iϕj〈b0,j〉. (2.25)

In the derivation of the equations for the expectation values of the bosonic operators we have

13



2.3 Adiabatic elimination of the cavity �eld

used a mean-�eld decoupling of the atomic and cavity degrees of freedom, 〈abm,j〉 ≈ 〈a〉〈bm,j〉.
The model exhibits a Z2 symmetry, associated with the inversion of the sign of both the cavity
�eld, a+ a†, and the rung tunneling, K⊥ +K†⊥. In an experiment this symmetry will be spon-
taneously broken, thus we choose without loss of generality 〈K⊥+K†⊥〉 > 0 and even �nd for
the considered phases that we can choose 〈K⊥〉 > 0.

We substitute the expectation value for the cavity �eld, Eq. (2.24), into the equations of motion
of the bosonic operators, Eq. (2.25) and obtain

i~∂t〈b0,j〉 = −J‖〈b0,j+1 + b0,j−1〉 − U〈b0,j(1− n0,j)〉

− 2~Ω̃δcp
δ2
cp + κ2

〈K⊥ +K†⊥〉e
iϕj〈b1,j〉

i~∂t〈b1,j〉 = −J‖〈b1,j+1 + b1,j−1〉 − U〈b1,j(1− n1,j)〉

− 2~Ω̃δcp
δ2
cp + κ2

〈K⊥ +K†⊥〉e
−iϕj〈b0,j〉. (2.26)

The dynamics given by the obtained Eqs. (2.26) can be described by an e�ective Hamiltonian
for the atoms. Here we neglect the dissipative term that would appear from substituting the
expectation value for the cavity �eld into the dissipator D(ρ).

H = H‖ +H⊥ +Hint (2.27)

H‖ = −J‖
∑

j,m=0,1

(b†m,jbm,j+1 + b†m,j+1bm,j)

H⊥ = −J⊥(K⊥ +K†⊥)

Hint =
U

2

∑
j,m=0,1

nm,j(nm,j − 1)

and typically the ground state is reached as a steady state of the coupled cavity-atomic system.
The parameter J⊥, which represents the rung tunneling amplitude, has to be determined self-
consistently as it depends on the expectation value of the rung directed tunneling, 〈K⊥〉, J⊥ =

A〈K⊥〉, with the pump strength A = 4~Ω̃2δcp
δ2cp+κ2

. Since 〈K⊥〉 and J⊥ have the same sign, a non-
trivial solution (α 6= 0) of the self-consistency condition requiresA > 0, which implies δcp > 0.
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2.4. Stability analysis

The non-trivial self-consistent solution(s) derived from the e�ective Hamiltonian, Eq. (2.27),
might not be stable. Thus, in this section we derive a stability condition for our model using
pertubations around the steady state [21]. We use the notations introduced in Ref. [100] and
follow the analysis we performed in Ref. [98].

Starting from the equation of motion for the cavity �eld, given by Eq. (2.23), we introduce
the expectation values of the coordinate and momentum quadratures of the cavity �eld, xa =

〈a+ a†〉 and pa = −i〈a− a†〉. Using Eq. (2.23) and its hermitain conjugate we have

∂

∂t
xa = −κxa + δcppa (2.28)

∂

∂t
pa = −δcpxa − κpa + 4Ω̃〈K⊥〉.

The stationary solutions of these equations, which satisfy the conditions ∂tx(s)
a = 0 and ∂tp(s)

a = 0

are

x(s)
a =

4δcpΩ̃〈K⊥〉(s)

δ2
cp + κ2

, (2.29)

p(s)
a = κδcpx

(s)
a ,

where the expectation value of the directed tunneling 〈K⊥〉 is computed in the ground state of
the e�ective model, Eq. (2.27), and can have a nonlinear dependence on the stationary coordi-
nate quadrature x(s)

a .

We will consider linear �uctuations around the stationary solutions, i.e., xa = x
(s)
a + x̃a and

pa = p
(s)
a + p̃a, and also linearize the expectation value of the directed tunneling in terms of the

�uctuations

〈K⊥〉 = 〈K⊥〉(s) +
d〈K⊥〉(s)

dx
(s)
a

x̃a , (2.30)

where 〈K⊥〉(s) is the value of the directed rung tunneling corresponding to the stationary so-
lution x

(s)
a . From Eqs. (2.28) and (2.30) we can derive a set of di�erential equations for the
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2.4 Stability analysis

�uctuations x̃a and p̃a

∂

∂t
x̃a = −κx̃a + δcpp̃a (2.31)

∂

∂t
p̃a =

(
−δcp + 4Ω̃

d〈K⊥〉(s)

dx
(s)
a

)
x̃a − κp̃a.

The eigenvalues of the Jacobian of this set of di�erential equations are given by

λ± = −κ±

√(
−δ2

cp + 4δcpΩ̃
d〈K⊥〉(s)

dx
(s)
a

)
. (2.32)

The stable stationary solutions are the ones for which the eigenvalues have a negative real part.
Thus the stability condition for the system with δcp > 0 is

δ2
cp + κ2

4δcpΩ̃
>
d〈K⊥〉(s)

dx
(s)
a

. (2.33)

We can rewrite this condition in a form that we can use in our model with ease, using the
relation J (s)

⊥ = ~Ω̃x
(s)
a

d〈K⊥〉(s)

dJ
(s)
⊥

<
1

A
. (2.34)

We can interpret the stability condition (Eq. (2.34)) by thinking about the e�ect of slightly in-
creasing the pump strength A → A + dA, with dA > 0. For a stable solution, which ful�lls
Eq. (2.34), the solution will shift to a point with a larger value of 〈K⊥〉 and J⊥. However if the
stability condition is not ful�lled the solution corresponds now to a point with a smaller value
of 〈K⊥〉 and J⊥. Thus if we increase the pump strength for a stable solution we increase the
rung hopping amplitude and for an unstable solution we decrease the rung hopping amplitude.
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3. Properties of the e�ective Hamiltonian

In this chapter we will investigate the properties of the e�ective Hamiltonian (Eq. 2.27) as a
stand-alone model describing bosonic two-leg ladders with repulsive contact interaction in the
presence of a uniform, external gauge �eld. In Sec. 3.1 we will look at the single-particle physics
described by the Hamiltonian (2.27). In Sec. 3.2 we will derive a Bogoliubov theory for the
weakly interacting bosons on the ladder under the magnetic �ux. And in Sec. 3.3 we will brie�y
summarize the phases observed in the rich phase diagram explored by previous studies and
introduce the observables used to identify these phases.

3.1. Non-interacting limit

In this section we will analyze the e�ective Hamiltonian (2.27) in the non-interacting limit,
U = 0, in order to gain a better intuition of the low-energy physics of the system. In this limit
the Hamiltonian becomes

H0 = −J‖
∑

j,m=0,1

(b†m,jbm,j+1 + b†m,j+1bm,j)− J⊥
∑
j

(e−iϕjb†1,jb0,j + eiϕjb†0,jb1,j). (3.1)

In the following we will diagonalize this Hamiltonian, by using a unitary transformation. But
the �rst step is to go to momentum space by performing a Fourier transformation along the
two legs of the ladder, which we de�ne as

bm,kd‖ =
1√
L

∑
j

eikd‖jbm,j, (3.2)

where L is the number of the rungs of the ladder, d‖ the lattice spacing along the legs of the lad-
der, and bm,k are the bosonic annihilation operators in momentum space, satisfying the bosonic
commutation relations

[
bm,kd‖ , b

†
m′,k′d‖

]
= δm,m′δk,k′ . In the Fourier space the Hamiltonian (3.1)

reads:

H0 = −2J‖
∑

k,m=0,1

cos
(
kd‖
)
b†m,kd‖bm,kd‖ − J⊥

∑
k

(b†1,kd‖−ϕ/2b0,kd‖+ϕ/2 + b†0,kd‖+ϕ/2b1,kd‖−ϕ/2).

(3.3)
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3.1 Non-interacting limit

We can observe that the parallel part of the Hamiltonian (3.3) is diagonal, but the perpendicular
part couples states with di�erent momenta. We diagonalize the Hamiltonian by performing the
following unitary transformation [77, 101–104]

γ+,k = vkb0,kd‖+ϕ/2 − ukb1,kd‖−ϕ/2, (3.4)

γ−,k = ukb0,kd‖+ϕ/2 + vkb1,kd‖−ϕ/2,

where γ+,k and γ−,k are the annihilation operator of the bosonic quasi-particles. From the
bosonic commutation relations

[
γi,k, γ

†
i′,k′

]
= δi,i′δk,k′ , with i, i′ = ±, and by imposing that the

non-diagonal terms of the Hamiltonian vanish, we obtain the coe�cients of the transformation

u2
k =

1

2

1 +
2 sin

(
kd‖
)

sin(ϕ/2)√
(J⊥/J‖)2 + 4 sin

(
kd‖
)2

sin(ϕ/2)2

, (3.5)

v2
k =

1

2

1−
2 sin

(
kd‖
)

sin(ϕ/2)√
(J⊥/J‖)2 + 4 sin

(
kd‖
)2

sin(ϕ/2)2

.
The diagonal form of the Hamiltonian is

H0 =
∑
k

(
E+(k)γ†+,kγ+,k + E−(k)γ†−,kγ−,k

)
. (3.6)

The energy spectrum of the quasi-particles consists in two bands given by

E±(k)

J‖
= −2 cos

(
kd‖
)

cos(ϕ/2)±
√

(J⊥/J‖)2 + 4 sin
(
kd‖
)2

sin(ϕ/2)2. (3.7)

We have plotted the two energy bands in Fig. 3.1 for di�erent values of the rung tunneling
amplitude J⊥ and the magnetic �ux ϕ.

We can observe from Fig. 3.1(a)-(c) that for J⊥, the legs of the ladder are not coupled, the two
bands are shaped like two cosine functions, shifted by the quasimomentum ± ϕ

2d‖
, which cross

at k = 0 and at the edges of the Brillouin zone. By increasing the value of the rung tunnel-
ing amplitude (see Fig. 3.1(d)-(i)), the curvature of the bands decreases and the two minima
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Figure 3.1.: The quasi-particle energy bands E+(k) (red line) and E−(k) (blue line) for three
values of the magnetic �ux ϕ = π

4 ,
π
2 ,

3π
4 , and several values of the rung tunneling

amplitude J⊥. As the energy bands re�ect only the single particle physics, they
are the same with the ones obtained in the fermionic case in Ref. [95]
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3.2 Weakly interacting bosons

move towards smaller values of the quasimomentum. Above a critical value of J⊥ the min-
ima merge into one minimum situated at k = 0 (Fig. 3.1(g)-(i)). Also, the increasing of the
value of J⊥ leads to a splitting of the energy band crossing into avoided crossings, thus for
J⊥/J‖ < 2| cos(ϕ/2)| the two bands overlap in energy, but for J⊥/J‖ > 2| cos(ϕ/2)| the two
energy bands are separated by an energy gap. If we look at the extrema of the lower bands we
see that for J⊥/J‖ < 2| sin(ϕ/2) tan(ϕ/2)| the band has two minima (e.g. Fig. 3.1(f)), which
are located at

k± = ± 1

d‖
arccos

(√
(J⊥/2J‖)2 cot(ϕ/2)2 + cos(ϕ/2)2

)
. (3.8)

In contrast, for J⊥/J‖ > 2| sin(ϕ/2) tan(ϕ/2)| only one minimum at the quasimomentum
k = 0 exists.

3.2. Weakly interacting bosons

In this section we will consider the full Hamiltonian (2.27), for small values of the interaction
strength U . We will describe the ground state of the system and the excitations on top of the
ground state, using the perturbation technique, known as Bogoliubov theory. We will start
by describing the general framework of a 3-dimensional Bose-Einstein condensate with weak
interactions [105] in Sec. 3.2.1, and then proceed to apply the Bogoliubov theory for the ladder,
system in Sec. 3.2.2 and Sec. 3.2.3.

3.2.1. General framework

The Hamiltonian for an interacting bosonic gas, without any external potentials, in momentum
space reads [105]

H =
∑
p

p2

2m
a†pap +

g

2V

∑
p1,p2,q

a†p1+qa
†
p2−qap1ap2 (3.9)

where ap is the annihilation operator for a particle with the momentum p. We considered
the interaction parameter of the form g = 4π~a

m
, with a is the s-wave scattering length, which

characterizes all the e�ects of the interaction in the gas. We neglect all the con�guration where
three or more particles are interacting simultaneously, by imposing a diluteness condition. In
order for a gas to be considered dilute, the gas parameter n|a3| should be very small, n|a3| � 1,
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3.2.1 General framework

where n = N/V is the density of the gas.

The Bogoliubov prescription for obtaining the ground state energy consists in, �rstly, ignoring
all contributions from momenta p 6= 0 and replacing the operator a0 with a complex number,
a0 =

√
N0. Where, N0 is the number of atoms in the condensate. In an non-interacting gas, at

T = 0, all the atoms would be in the condensate, N0 = N . In this approximation the ground
state energy is given by E0 = 1

2
Nng.

Furthermore, in order to obtain the excitation spectrum on top of the condensate, one needs
to consider higher-order terms. Thus, from the Hamiltonian (3.9) we retain only the quadratic
terms in the particle operators with p 6= 0, we do not have any linear terms due to momentum
conservation.

H =
g

2V
a†0a

†
0a0a0 +

∑
p

p2

2m
a†pap +

g

2V

∑
p6=0

(
4a†0a

†
pa0ap + a†pa

†
−pa0a0 + a†0a

†
0apa−p

)
(3.10)

Next, we will replace the operators a†0 and a0 with
√
N , but in the �rst term of Eq. (3.10), we need

to work with higher accuracy. Thus, by using the normalization condition a†0a0 +
∑

p6=0 a
†
pap =

N and neglecting higher-order terms we obtain

a†0a
†
0a0a0 = N2 −N

∑
p6=0

a†pap (3.11)

Substituting everything back into Eq. (3.10), we obtain the following quadratic Hamiltonian

H =
g

2V
N2 +

∑
p

p2

2m
a†pap +

1

2
gn
∑
p 6=0

(
2a†pap + a†pa

†
−p + apa−p

)
(3.12)

This Hamiltonian can be diagonalized by the means of a Bogoliubov transformation, which is
a linear transformation of the form

ap = upbp + v∗−pb
†
−p, (3.13)

a†p = u∗pb
†
p + v−pb−p.
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3.2 Weakly interacting bosons

This transformation introduces a new set of operators, bp and b†p, for quasi-particles represent-
ing the collective excitations. We impose for these operators the bosonic commutation relations,[
bp, b

†
p′

]
= δp,p′ . The commutation relations are satis�ed if

|up|2 − |v−p|2 = 1 (3.14)

If we perform the transformation (3.13) of the Hamiltonian (3.12) and we impose the non-
diagonal terms bpbp and b−pb−p to vanish, we obtain the following condition for the coe�cients
of the transformation

gn

2

(
|up|2 + |v−p|2

)
+

(
p2

2m
+ gn

)
upv−p = 0. (3.15)

We can solve the Eqs. (3.14) and (3.15) and obtain the expression of the coe�cients up and vp

up, v−p = ±

√
p2/2m+ gn

2ε(p)
± 1

2
, (3.16)

where ε(p) is de�ned by

ε(p) =

√
gn

m
p2 +

(
p2

2m

)2

. (3.17)

Knowing the form of the coe�cients, by performing the Bogoliubov transformation, the Hamil-
tonian (3.12) can be reduced to the diagonal form

H = E0 +
∑
p

ε(p)b†pbp, (3.18)

with the ground state energy

E0 =
g

2V
N2 +

1

2

∑
p6=0

(
ε(p)− gn− p2

2m

)
. (3.19)

Thus it has been shown [105] that the original system of weakly-interacting bosons can be
described in terms of independent quasi-particles with the energy spectrum ε(p).
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3.2.2 Bogoliubov spectra

3.2.2. Bogoliubov spectra

In this section we aim at performing the same type of excitations over a mean-�eld approxima-
tion as described in the previous section for the ladder system, described by the Hamiltonian
(2.27). We distinguish two cases, based on the shape of the lower energy band of the non-
interacting system, in the case with just one minimum the bosons will condense at k = 0 and
the expansion will resemble the one we have seen before in Sec. 3.2.1. In the case of two minima,
we will have to distinguish between the situation with two distinct condensates at each mini-
mum and only one condensate in one of the minima. But �rst, we make a gauge transformation
which simpli�es the further calculations

b0,j → b0,je
ijϕ/2, (3.20)

b1,j → b1,je
−ijϕ/2.

By making this transformation, the phase imprint will be realized while the atoms are hopping
on the y-direction and the Hamiltonian (2.27) becomes

H = H‖ +H⊥ +Hint (3.21)

H‖ = −J‖
∑
j

(
b†0,jb0,j+1e

iϕ/2 + b†1,jb1,j+1e
−iϕ/2 + h.c.

)
H⊥ = −J⊥

∑
j

(
b†1,jb0,j + h.c.

)
Hint =

U

2

∑
j,m=0,1

nm,j(nm,j − 1)

The unitary transformation (3.4) that we used in order to diagonalize the kinetic part, in Sec. 3.1,
will be slightly modi�ed under this gauge transformation and it becomes

γ+,k = vkb0,kd‖ − ukb1,kd‖ , (3.22)

γ−,k = ukb0,kd‖ + vkb1,kd‖ ,
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3.2 Weakly interacting bosons

where the coe�cients uk and vk are the same as before

u2
k =

1

2

1 +
2 sin

(
kd‖
)

sin(ϕ/2)√
(J⊥/J‖)2 + 4 sin

(
kd‖
)2

sin(ϕ/2)2

, (3.23)

v2
k =

1

2

1−
2 sin

(
kd‖
)

sin(ϕ/2)√
(J⊥/J‖)2 + 4 sin

(
kd‖
)2

sin(ϕ/2)2

.

In order to be able to perform the expansion around the minima, we need to rewrite the Hamilto-
nian (3.21) in the basis of quasi-particle operators {γ+, γ−}. The kinetic part becomes diagonal
under this transformation, but the interaction term, which is of the form

∑
k1,k2,q

b†k1+qb
†
k2−qbk1bk2

in momentum space, will be more intricate. As we are interested in the excitations near the con-
densate ground state, we neglect the terms which are more than quadratic in the operator γ+,
corresponding to the upper band. Thus the transformation of the Hamiltonian (3.21) yields

H =
∑
k

(
E+(k)γ†+,kγ+,k + E−(k)γ†−,kγ−,k

)
(3.24)

+
U

2L

∑
k1,k2,q

[(a) + (b) + (c) + (d) + (e) + (f) + (g) + (h)],

where the interaction terms are listed in the following
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3.2.2 Bogoliubov spectra

(a) ≡
(
γ†+,k1+qγ

†
+,k2−qγ−,k1γ−,k2 + γ†−,k1+qγ

†
−,k2−qγ+,k1γ+,k2

)
(3.25)

× (uk1+quk2−qvk1vk2 + vk1+qvk2−quk1uk2),

(b) ≡
(
γ†+,k1+qγ

†
−,k2−qγ+,k1γ−,k2 + γ†−,k1+qγ

†
+,k2−qγ−,k1γ+,k2

)
× (uk1+qvk2−quk1vk2 + vk1+quk2−qvk1uk2),

(c) ≡
(
γ†+,k1+qγ

†
−,k2−qγ−,k1γ+,k2 + γ†−,k1+qγ

†
+,k2−qγ+,k1γ−,k2

)
× (uk1+qvk2−qvk1uk2 + vk1+quk2−quk1vk2),

(d) ≡
(
γ†+,k1+qγ

†
−,k2−qγ−,k1γ−,k2

)
× (vk1+quk2−quk1uk2 − uk1+qvk2−qvk1vk2),

(e) ≡
(
γ†−,k1+qγ

†
+,k2−qγ−,k1γ−,k2

)
× (uk1+qvk2−quk1uk2 − vk1+quk2−qvk1vk2),

(f) ≡
(
γ†−,k1+qγ

†
−,k2−qγ+,k1γ−,k2

)
× (uk1+quk2−qvk1uk2 − vk1+qvk2−quk1vk2),

(g) ≡
(
γ†−,k1+qγ

†
−,k2−qγ−,k1γ+,k2

)
× (uk1+quk2−quk1vk2 − vk1+qvk2−qvk1uk2),

(h) ≡
(
γ†−,k1+qγ

†
−,k2−qγ−,k1γ−,k2

)
× (uk1+quk2−quk1uk2 − vk1+qvk2−qvk1vk2).

3.2.2.1. One minimum case

Firstly, we will consider the case when the non-interacting lower energy band has only one
minimum at k = 0. In this case, the rung tunneling amplitude satis�es the following inequality
J⊥/J‖ > 2| sin(ϕ/2) tan(ϕ/2)|. We assume that at T = 0 only the mode γ−,k=0 is macroscop-
ically occupied, and we will retain the operators γ+,k and γ−,k 6=0 only up to second order in
the expansion of the Hamiltonian (3.24). Using the facts u2

0 = v2
0 = 1/2 and u−k = vk the

interaction terms (3.25) can be approximated by
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3.2 Weakly interacting bosons

∑
k1,k2,q

(a) ≈
∑
k

ukvk

(
γ†+,kγ

†
+,−kγ−,0γ−,0 + γ†−,0γ

†
−,0γ+,kγ+,−k

)
(3.26)∑

k1,k2,q

(b) ≈
∑
k

γ†+,kγ
†
−,0γ+,kγ−,0∑

k1,k2,q

(c) ≈
∑
k

γ†+,kγ
†
−,0γ+,kγ−,0

∑
k1,k2,q

(d) ≈ 1

2

∑
k 6=0

(
v2
k − u2

k

)
γ†+,kγ

†
−,−kγ−,0γ−,0∑

k1,k2,q

(e) ≈ 1

2

∑
k 6=0

(
v2
k − u2

k

)
γ†−,−kγ

†
+,kγ−,0γ−,0∑

k1,k2,q

(f) ≈ 1

2

∑
k 6=0

(
v2
k − u2

k

)
γ†−,0γ

†
−,0γ+,kγ−,−k

∑
k1,k2,q

(g) ≈ 1

2

∑
k 6=0

(
v2
k − u2

k

)
γ†−,0γ

†
−,0γ−,−kγ+,k

∑
k1,k2,q

(h) ≈ 1

2

∑
k 6=0

[
2γ†−,0γ

†
−,kγ−,0γ−,k + ukvk(γ

†
−,kγ

†
−,−kγ−,0γ−,0 + γ†−,0γ

†
−,0γ−,−kγ−,k)

]
+

1

2
γ†−,0γ

†
−,0γ−,0γ−,0

In this approximation the Hamiltonian (3.24) becomes

H =
∑
k

(
E+(k)γ†+,kγ+,k + E−(k)γ†−,kγ−,k

)
(3.27)

+
U

2L

∑
k

ukvk

(
γ†+,kγ

†
+,−kγ−,0γ−,0 + γ†−,0γ

†
−,0γ+,kγ+,−k

)
+
U

L

∑
k

(
γ†+,kγ

†
−,0γ+,kγ−,0 + γ†−,kγ

†
−,0γ−,kγ−,0

)
+

U

2L

∑
k

(
v2
k − u2

k

)(
γ†+,kγ

†
−,−kγ−,0γ−,0 + γ†−,0γ

†
−,0γ+,kγ−,−k

)
+

U

2L

∑
k 6=0

ukvk

(
γ†−,kγ

†
−,−kγ−,0γ−,0 + γ†−,0γ

†
−,0γ−,kγ−,−k

)
+

U

4L
γ†−,0γ

†
−,0γ−,0γ−,0
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3.2.2 Bogoliubov spectra

As described in Sec. 3.2.1, we will use the Bogoliubov prescription and replace the operators
γ†−,0 and γ−,0 with the complex number

√
N0 ≈

√
N . Again for the last term from Eq. 3.27

we will use the normalization condition γ†−,0γ−,0 +
∑

k 6=0 γ
†
−,kγ−,k +

∑
k γ
†
+,kγ+,k = N and by

neglecting higher-order terms we obtain

γ†−,0γ
†
−,0γ−,0γ−,0 = N2 − 2N

(∑
k 6=0

γ†−,kγ−,k +
∑
k

γ†+,kγ+,k

)
. (3.28)

After performing these substitutions and changing the summation interval from k ∈ (−π, π)

to k ∈ (0, π) the resulting quadratic Hamiltonian reads

H = H0 +
∑
k>0

(
E−(k) +

1

2
Un

)(
γ†−,kγ−,k + γ†−,−kγ−,−k

)
(3.29)

+
∑
k≥0

(
E+(k) +

1

2
Un

)(
γ†+,kγ+,k + γ†+,−kγ+,−k

)
+ Un

∑
k≥0

ukvk

(
γ†+,kγ

†
+,−k + γ+,kγ+,−k

)
+ Un

∑
k≥0

ukvk

(
γ†−,kγ

†
−,−k + γ−,kγ−,−k

)
+ Un

∑
k≥0

(
v2
k − u2

k

)(
γ†+,kγ

†
−,−k − γ

†
+,−kγ

†
−,k + γ+,kγ−,−k − γ+,−kγ−,k

)
,

where we have de�ned the one-dimensional density n = N/L.

Before proceeding with the diagonalization of the Hamiltonian (3.29), we must shift the non-
interacting spectrum such that the minimum coresponds to zero energy [106, 107]. This means
that we add a chemical potential term in the Hamiltonian

H ′ = H + µ
∑
k>0

(
γ†−,kγ−,k + γ†−,−kγ−,−k

)
+ µ

∑
k≥0

(
γ†+,kγ+,k + γ†+,−kγ+,−k

)
. (3.30)

with µ = −E−(0). Thus, we have E ′−(k = 0) = E−(k = 0) + µ = 0, and the shifted non-
interacting energy bands are
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3.2 Weakly interacting bosons

E ′±(k) = E±(k) + µ (3.31)

= −2J‖ cos
(
kd‖
)

cos(ϕ/2)±
√
J2
⊥ + 4J2

‖ sin
(
kd‖
)2

sin(ϕ/2)2 + 2J‖ cos(ϕ/2) + J⊥.

For simplicity, from now on we use E±(k) instead of the shifted energies E ′±(k).

In the following we will continue with the diagonalization of the quadratic Hamiltonian (3.29).
First, we rewrite the Hamiltonian as

H =
∑
k

[∑
i,j

Ak;i,ja
†
k;iak;j +

1

2

∑
i,j

(
Bk;i,ja

†
k;ia
†
k;j +Bk;i,jak;iak;j

)]
, (3.32)

where the constant term H0 is not considered for now. Ak and Bk are the following matrices

Ak =


E−(k) + 1

2
Un 0 0 0

0 E−(k) + 1
2
Un 0 0

0 0 E+(k) + 1
2
Un 0

0 0 0 E+(k) + 1
2
Un

 , (3.33)

Bk =


0 Unukvk 0 −1

2
Un(v2

k − u2
k)

Unukvk 0 1
2
Un(v2

k − u2
k) 0

0 1
2
Un(v2

k − u2
k) 0 Unukvk

−1
2
Un(v2

k − u2
k) 0 Unukvk 0

 ,

and the vector ak = (γ−,k, γ−,−k, γ+,k, γ+,−k)
t. Now we can rewrite the Hamiltonian into a

matrix notation

H =
∑
k>0

Hk, (3.34)

Hk =
1

2
α†kMkαk −

1

2
Tr(Ak),

with αk =
(
atk, a

†
k

)t
=
(
γ−,k, γ−,−k, γ+,k, γ+,−k, γ

†
−,k, γ

†
−,−k, γ

†
+,k, γ

†
+,−k

)t
and
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3.2.2 Bogoliubov spectra

Mk =

(
Ak Bk

Bk Ak

)
. (3.35)

The diagonalization of the Hamiltonian (3.34) consists in �nding the linear canonical transfor-
mation which de�nes the quasi-particles operators dk = Tkαk, such that the bosonic commuta-
tion relations are ful�lled by the new operators dk [108, 109]. In order to preserve the bosonic
commutation relations, one needs to diagonalize the matrix ηMk, where

η =

(
1 0

0 −1

)
, (3.36)

ηMk =

(
Ak Bk

−Bk −Ak

)
.

In terms of the quasi-particle operators the Hamiltonian reads

H =
1

2

∑
k>0

d†kηTkηMkT
−1
k dk −

1

2

∑
k>0

Tr(Ak). (3.37)

The transformation given by the matrix Tk brings the Hamiltonian into a diagonal form, such
that TkηMkT

−1
k = Ωk, where Ωk is the diagonal matrix

Ωk =

(
ωk 0

0 −ωk

)
, (3.38)

where ωk is a 4×4 diagonal matrix, with the eigenenergies of the Hamiltonian on the diagonal.
Due to the structure of the matrix ηMk, its eigenvalues appear in pairs of the form (ωk;i,−ωk;i)

[108, 109]. Thus we can write the Hamiltonian as in the case of non-interacting quasi-particles

H =
1

2

∑
k>0

d†kηΩkdk −
1

2

∑
k>0

Tr(Ak). (3.39)

Let d†k =
(
d†1,k, d

†
1,−k, d

†
2,k, d

†
2,−k, d1,k, d1,−k, d2,k, d2,−k

)
, then equation (3.39) becomes
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3.2 Weakly interacting bosons

H = H0 −
∑
k>0

(E−(k) + E+(k) + Un) +
∑
k>0

(E1(k) + E2(k)) (3.40)

+
∑
k 6=0

(
E1(k)d†1,kd1,k + E2(k)d†2,kd2,k

)
.

where the constant term H0 from Eq. (3.29) is included, and the ground state energy is given
by

E0 =
U

4L
N2 −

∑
k>0

(E−(k) + E+(k) + Un) +
∑
k>0

(E1(k) + E2(k)). (3.41)

The energy spectrum of the quasi-particles consists in two bands given by

E2
1,2 =

1

2

(
E2
− + E2

+ + (E− + E+)nU
)

(3.42)

± 1

2

√
(E− − E+)2((E− + E+)(E− + E+ + 2nU) + n2U2(1− (v2

k − u2
k)

2)).

The transformation between the γk basis and the dk basis reads



d1,k

d1,−k

d2,k

d2,−k

d†1,k
d†1,−k
d†2,k
d†2,−k


= Tk



γ−,k

γ−,−k

γ+,k

γ+,−k

γ†−,k
γ†−,−k
γ†+,k
γ†+,−k


, (3.43)

with Tk of the form
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3.2.2 Bogoliubov spectra

Tk =



x1,k 0 x2,k 0 0 −x3,k 0 −x4,k

0 x1,−k 0 x2,−k −x3,−k 0 −x4,−k 0

x5,k 0 x6,k 0 0 −x7,k 0 −x8,k

0 x5,−k 0 x6,−k −x7,−k 0 −x8,−k 0

0 −x3,k 0 −x4,k x1,k 0 x2,k 0

−x3,−k 0 −x4,−k 0 0 x1,−k 0 x2,−k

0 −x7,k 0 −x8,k x5,k 0 x6,k 0

−x7,−k 0 −x8,−k 0 0 x5,−k 0 x6,−k


. (3.44)

In order to have the bosonic commutation relations ful�lled,
[
di,k, d

†
j,k′

]
= δi,jδk,k′ , the coe�-

cients of the transformation Tk have to satisfy the following relations

x2
1,k + x2

2,k − x2
3,k − x2

4,k = 1, (3.45)

x2
5,k + x2

6,k − x2
7,k − x2

8,k = 1,

x1,kx5,k + x2,kx6,k − x3,kx7,k − x4,kx8,k = 0,

x1,kx3,−k − x1,−kx3,k + x2,kx4,−k − x2,−kx4,k = 0,

x1,kx7,−k + x2,kx8,−k − x3,kx5,−k − x4,kx6,−k = 0.

The full expressions of the coe�cients are given below

x1,k(ϕ, J⊥, nU) = A1
1

nU

(
v2
k − u2

k

)
(2E+ + nU + 2E1) (3.46)

+
4A1u

2
kv

2
k

nU(v2
k − u2

k)

(2E− + nU + 2E1)(E2
+ − E2

− + nU(E+ − E−) +B)

B − (E+ − E−)2 + 2E1(E+ − E−)
,

x2,k(ϕ, J⊥, nU) = A1
2(E+ − E−)nUu2

kv
2
k

B − (E+ − E−)2 + 2E1(E+ − E−)
,

x3,k(ϕ, J⊥, nU) =
2A1u

2
kv

2
k

(v2
k − u2

k)

E2
+ − E2

− + nU(E+ − E−) +B

B − (E+ − E−)2 + 2E1(E+ − E−)
,

x3,k(ϕ, J⊥, nU) = −A1,
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3.2 Weakly interacting bosons

x5,k(ϕ, J⊥, nU) = A2
1

nU

(
v2
k − u2

k

)
(2E+ + nU + 2E2) (3.47)

+
4A1u

2
kv

2
k

nU(v2
k − u2

k)

(2E− + nU + 2E2)(E2
− − E2

+ − nU(E+ − E−) +B)

B − (E+ − E−)2 − 2E2(E+ − E−)
,

x6,k(ϕ, J⊥, nU) = A2
2(E− − E+)nUu2

kv
2
k

B + (E+ − E−)2 − 2E2(E+ − E−)
,

x7,k(ϕ, J⊥, nU) =
2A2u

2
kv

2
k

(v2
k − u2

k)

E2
+ − E2

− + nU(E+ − E−)−B
B + (E+ − E−)2 − 2E1(E+ − E−)

,

x8,k(ϕ, J⊥, nU) = −A2.

With E± given by Eq. (3.31), u2
k and v2

k given by Eq. (3.23), and E1,2 given by Eq. (3.42). The
normalization constants A1 and A2 are obtained from Eqs. (3.45) and the term B reads

B =

√
(E− − E+)2

(
(E− + E+)(E− + E+ + 2nU) + n2U2

(
1− (v2

k − u2
k)

2
))
. (3.48)

Figure 3.2.: The energy bands E1(k) (blue line) and E2(k) (red line), compared with the non-
interacting energy bands E−(k) (orange line) and E+(k) (purple line), for the pa-
rameters (a) ϕ = π/2, J⊥ = 3J‖, U = 1J‖ and (b) ϕ = π/4, J⊥ = 1J‖, U =
0.5J‖. It can be observed that the interaction shifts the upper band to higher ener-
gies and in the lower band beside the shift for small quasi-momentum the quadratic
dispersion becomes linear.

In Fig. 3.2(a)-(b) the spectrum of the quasi-particles has been plotted together with the energies
of the non-interacting system for two parameter sets. We can observe that the interaction
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3.2.2 Bogoliubov spectra

Figure 3.3.: The energy bands E1(k) (blue line) and E2(k) (red line), for the parameters (a)-(c)
ϕ = π/4, J⊥ = 2J‖, U ∈ {0.1, 0.2, 0.3}J‖ and (d)-(f) ϕ = π/2, J⊥ = 5J‖, U ∈
{0.5, 1, 1.5}J‖. It can be observed that the extent of the linear dispersion is larger
as the interaction strength increases.
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3.2 Weakly interacting bosons

changes the physics in the lower band close to minimum k = 0, thus a quadratic dispersion
E−(k) ∼ k2, particle-like, in the non-interaction system becomes a linear dispersionE1(k) ∼ k,
phonon-like, in the interacting system. The emergence of the linear dependence close to k ≈ 0

can be observed in Fig. 3.3(a)-(f) where the eigenenergies have been represented for di�erent
values of the interaction, signal of the super�uid nature of this phase.

We will expand the energy of the lower band as a function of the quasi-momentum, in order
to compute the sound velocity of the excitations. For small momenta the lower band energy,
Eq. (3.42), is approximated by a phonon-like linear dispersion

E1(k) ≈ c|k|, (3.49)

c =

√
nU cos(ϕ/2) + 4

(
1− 2

nU + J⊥/J‖
nU + 2J⊥/J‖

)
sin(ϕ/2)2.

which signals the super�uid regime. Here c is the sound velocity of the long wavelength (small
momenta) excitations of the interacting Bose gas. Thus we can observe that for �nite inter-
actions we have a non-zero sound velocity and, via the Landau criterion, for �uid velocities
smaller than the sound velocity, v < c, a �ow without dissipation. In the case without mag-
netic �ux, the sound velocity reduces to the usual expression in a weakly-interacting super�uid,
c(ϕ = 0) =

√
nU [105]. However, for a non-zero magnetic �ux ϕ, the sound velocity increases

monotonically with both the interaction strength U and the rung tunneling amplitude J⊥.

3.2.2.2. Two minima case

In this subsection we will consider the case when the non-interacting lower energy band has
two minimum at positions k = k±, given by Eq. (3.8). In this case J⊥/J‖ < 2| sin(ϕ/2) tan(ϕ/2)|.

In the following we will restrict ourselves to the one-band version of the Hamiltonian (3.24)

H =
∑
k

E−(k)γ†−,kγ−,k (3.50)

+
U

2L

∑
k1,k2,q

(
γ†−,k1+qγ

†
−,k2−qγ−,k1γ−,k2

)
(uk1+quk2−quk1uk2 − vk1+qvk2−qvk1vk2).
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3.2.2 Bogoliubov spectra

In this case for the ground state we consider the following N -body variational wavefunction
as an ansatz, used in Refs. [83, 84]

|GS〉 =
1√
N !

(
cos(θ)γ†−,k+ + sin(θ)γ†−,k−

)
|0〉 , (3.51)

where 0 ≤ θ ≤ π/2 is the variational parameter and |0〉 is the vacuum state. This wavefunction
captures the condensation of the bosons in the two minima, k±, while keeping the proportion
of the total population in each minima as a free parameter. For U = 0 the ground state is
degenerate for any value of θ, but any �nite interaction can split this degeneracy [83].

The expectation value of the Hamiltonian (3.50) for the wavefunction (3.51) reads [83, 84]

E0

N
= E−(k±) +

Un

4

[(
3

2
ξ(k±)− 1

)
sin(2θ)2 − ξ(k±) + 2

]
(3.52)

where ξ(k±) = J2
⊥/
(
J2
⊥ + 4J2

‖ sin(k±)2 sin(ϕ/2)2
)

is a function which depends only on the
physical parameters of the non-interacting system. The minimization of the ground state en-
ergy is reduced to �nding the optimal value of the parameter θ.

Before performing the minimization, we can also look at the expectation values of the popula-
tions in each of the minima as a function of θ

〈n1〉 =
〈
γ†−,k−γ−,k−

〉
= n cos(θ)2, (3.53)

〈n2〉 =
〈
γ†−,k+γ−,k+

〉
= n sin(θ)2.

If 3
2
ξ(k±) < 1, the ground state energy is minimized by θ = π/4 [83, 84]. Thus the population,

at mean-�eld level, in each of the minima is the same 〈n1〉 = 〈n2〉 = n/2, and we expect two
independent condensates in the ground state. In the other case, for 3

2
ξ(k±) > 1, the ground

state energy is minimized by θ = 0 or θ = π/2 [83, 84], and the population of the two minima
are either (n1 = n, n2 = 0), or (n1 = 0, n2 = n). Thus there exists a condensate either at
k = k−, or at k = k+. The mean-�eld theory shows that the Z2 symmetry, which represents
the symmetry between the two legs of the ladder, is spontaneously broken in this regime. This
leads to a density imbalance between the two legs of the ladder and the phase which is called
the biased ladder phase (BLP) [83, 84].

The transition between these two phases will occur at 3
2
ξ(k±) = 1, and this condition can be

rewritten as [83, 84]
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3.2 Weakly interacting bosons

J⊥,c = 2

√
sin(ϕ/2)4

3/2− sin(ϕ/2)2J‖. (3.54)

We note that the critical value of J⊥,c does not depend on the interaction strengthU , thus in the
following, in order to obtain higher-order dependence, we will try to capture also the impact
of the excitations that occur on top of the condensates.

Following the same procedure as in Sec. 3.2.2.1, we derive a quadratic Hamiltonian from Eq. (3.50)
by replacing the condensate operators, γ−,k± and γ†−,k± , with complex numbers and neglecting
higher order terms. The Hamiltonian for the case with two di�erent condensates, neglecting
the constant term, reads

HII =
∑
p>0

[E−(k+ + p) + 2n1U(v2
k+
v2
k++p + u2

k+
u2
k++p) (3.55)

+ 2n2U(u2
k+
v2
k++p + v2

k+
u2
k++p)− n1U(v4

k+
+ u4

k+
)− 4n2Uv

2
k+
u2
k+

]γ†R,pγR,p

+
∑
p>0

[E−(k+ − p) + 2n1U(v2
k+
v2
k+−p + u2

k+
u2
k+−p)

+ 2n2U(u2
k+
v2
k+−p + v2

k+
u2
k+−p)− n1U(v4

k+
+ u4

k+
)− 4n2Uv

2
k+
u2
k+

]γ†R,−pγR,−p

+
∑
p>0

[E−(k+ − p) + 2n2U(v2
k+
v2
k+−p + u2

k+
u2
k+−p)

+ 2n1U(u2
k+
v2
k+−p + v2

k+
u2
k+−p)− n2U(v4

k+
+ u4

k+
)− 4n1Uv

2
k+
u2
k+

]γ†L,pγL,p

+
∑
p>0

[E−(k+ + p) + 2n2U(v2
k+
v2
k++p + u2

k+
u2
k++p)

+ 2n1U(u2
k+
v2
k++p + v2

k+
u2
k+−p)− n2U(v4

k+
+ u4

k+
)− 4n1Uv

2
k+
u2
k+

]γ†L,−pγL,−p

+
∑
p>0

2U
√
n1n2vk+uk+(vk++puk+−p + vk+−puk++p)(γ

†
R,pγL,p + γ†R,−pγL,−p + h.c.)

+
∑
p>0

4U
√
n1n2vk+uk+vk++puk++p(γ

†
R,pγ

†
L,−p + h.c.)

+
∑
p>0

4U
√
n1n2vk+uk+vk+−puk+−p(γ

†
R,−pγ

†
L,p + h.c.)

+
∑
p>0

Un1(v2
k+
vk++pvk+−p + u2

k+
uk++puk+−p)(γ

†
R,pγ

†
R,−p + h.c.)

+
∑
p>0

Un2(v2
k+
vk++pvk+−p + u2

k+
uk++puk+−p)(γ

†
L,pγ

†
L,−p + h.c.),
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3.2.2 Bogoliubov spectra

where we have de�ned γL,p ≡ γ−,k−+p and γR,p ≡ γ−,k++p. We note that in the derivation of the
Hamiltonian we neglected the umklapp processes, which become important in the situations
where the positions of the minima are commensurate with the magnetic �ux [84]. We can
particularize this Hamiltonian for the case with the condensate in one of the minima, thus we
choose, without loss of generality, n1 = n and n2 = 0. We obtain

HI =
∑
p>0

[E−(k+ + p) + 2nU(v2
k+
v2
k++p + u2

k+
u2
k++p)− nU(v4

k+
+ u4

k+
)]γ†R,pγR,p (3.56)

+
∑
p>0

[E−(k+ − p) + 2nU(v2
k+
v2
k+−p + u2

k+
u2
k+−p)− nU(v4

k+
+ u4

k+
)]γ†R,−pγR,−p

+
∑
p>0

Un(v2
k+
vk++pvk+−p + u2

k+
uk++puk+−p)(γ

†
R,pγ

†
R,−p + γR,pγR,−p)

Figure 3.4.: The Bogoliubov excitation spectrum given by the Hamiltonian (3.56) in the biased
ladder phase, for a magnetic �ux ϕ = π/2, rung hopping amplitude J⊥ = 1.2J‖
and three values of the interaction strength, U = 0.1J‖ (orange line), U = 0.2J‖
(blue line), U = 0.1J‖ (red line), compared with the non-interacting, U = 0,
dispersion relation (black line). One can observe the roton-like behavior which
develops for �nite interaction strengths.
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3.2 Weakly interacting bosons

We perform the same diagonalization procedure we used in Sec. 3.2.2.1. For the Hamiltonian
HI given by Eq. (3.56), which corresponds to the excitation spectrum in the biased ladder phase,
the lower energy band yields

E1(p) =
1

2
(ζ(−p)− ζ(p)) +

√
1

4
(ζ(−p)− ζ(p))2 − η(p)2 (3.57)

ζ(p) = E−(k− + p) + 2U
(
u2
k−u

2
k−+p + v2

k−v
2
k−+p

)
η(p) = U

(
u2
k−uk−+puk−−p + v2

k−vk−+pvk−−p
)

Figure 3.5.: The Bogoliubov excitation spectrum given by the Hamiltonian (3.56), for a mag-
netic �ux ϕ = π/2, rung hopping amplitude J⊥ = 1.05J‖ and two values of the
interaction strength, U = 0.25J‖ (orange line), U = 0.5J‖ (red line), compared
with the non-interacting, U = 0, dispersion relation (black line).

The Bogoliubov excitation spectrum is depicted in Fig. 3.4, for a magnetic �ux ϕ = π/2, rung
hopping amplitude J⊥ = 1.2J‖ and three values of the interaction strength. One can observe
that for k → 0 the dispersion is linear, as we found in the previous case where the band had
only one minimum. The linear dispersion signals the super�uid behavior of this phase. In
addition, we also �nd a local minimum close to the value k ≈ 2k+, corresponding to a roton-
like behavior. This can be interpreted as a massive excitation which comes from the breaking
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3.2.2 Bogoliubov spectra

of the Z2 symmetry [84]. In Fig. 3.5 we have represented the Bogoliubov spectrum for a rung
hopping amplitude of J⊥ = 1.05J‖, we observe that for a lower value of J⊥ the spectrum is
softened. Thus, above a critical interaction strength the energy of the roton-like local minimum
reaches negative values, this implies that the biased ladder phase becomes unstable. A more
detailed discussion about the stability of the Bogoliubov theory will be given in the next section.

Figure 3.6.: The Bogoliubov excitation spectrum given by the Hamiltonian (3.55) for two in-
dependent condensates, for a magnetic �ux ϕ = π/2, rung hopping amplitude
J⊥ = 0.7J‖ and two values of the interaction strength, U = 0.05J‖ (red line),
U = 0.2J‖ (dark blue line). We observe a linear dispersion close to the two min-
ima.

In the following, we will compute the excitation spectrum for the case of two condensates,
given by HII in Eq. 3.55. Due to the intricate form of the Hamiltonian one can not obtain with
ease an explicit expression for the dispersion relation, thus we will numerically diagonalize the
Hamiltonian. The excitation spectrum is plotted in Fig. 3.6, for ϕ = π/2, J⊥ = 0.7J‖ and two
values of the interaction strength U = 0.05J‖ and U = 0.2J‖. We can observe that around each
of the minima we have a linear behavior of the energy as a function of the quasi-momentum,
thus this phase is characterized by two independent phononic modes. One can also notice that
if we increase the interaction strength the extent of the linear regime becomes larger.

The Hamiltonian HII , Eq. (3.55), fails to describe the system for values of the rung tunneling
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3.2 Weakly interacting bosons

amplitude close to the critical value that gives the transition from one condensate to the two
condensates, Eq. (3.54), for �nite interaction strengths. As we can see in Fig. 3.7 the excitation
energy has a �nite imaginary part, which signals an instability in the model. In Fig. 3.7 the
magnetic �ux is ϕ = π/2 and the rung hopping amplitude is J⊥ = 0.99J‖. For this value of
the magnetic �ux the critical rung hopping amplitude is J⊥,c = 1J‖. The parameter region and
the reasons for which the quadratic Hamiltonians HI and HII (Eq. (3.55)-(3.56)) do not give
physical results will be presented in the next section.

Figure 3.7.: The imaginary part of the Bogoliubov excitation spectrum given by the Hamil-
tonian (3.55) for two independent condensates, for a magnetic �ux ϕ = π/2,
rung hopping amplitude J⊥ = 0.99J‖ and two values of the interaction strength,
U = 0.2J‖ (green line), U = 0.3J‖ (orange line). Close to the two minima the
energies acquire a �nite imaginary part.

3.2.3. Shortcomings of the Bogoliubov theory

We will �rst discuss the instabilities that appeared during the computation of the Bogoliubov
excitation spectrum given by the two quadratic HamiltoniansHI andHII , (Eq. (3.55)-(3.56)), for
the case of two minima. Fig. 3.8 shows di�erent regions in the parameter space (J⊥/J‖, U/J‖)

with stable and unstable results. The yellow region is where the two quadratic Hamiltonians
give physical results. The blue region is where one of the two instabilities appear, either nega-
tive roton minimum for the one condensate regime, or imaginary energies for the regime with
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0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2

0.1

0.2

0.3

0.4

J⊥ /J∥

U
/J

∥

Figure 3.8.: With yellow the region where the two quadratic Hamiltonians, Eq. (3.55)-(3.56),
give physical results, with blue the region where one of the two instabilities appear,
negative roton minimum for the one condensate regime, or imaginary energies for
the regime with two condensates, and the red line corresponds to the critical value
given by Eq. (3.54).
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3.2 Weakly interacting bosons

two condensates. The red line corresponds to the critical value given by Eq. (3.54). We can
observe that for interaction strengths close to zero, U/J‖ . 0.02, the transition from the biased
ladder phase to the regime with two independent condensates preempts the instability. But for
larger interaction strengths, we have a whole domain in the (J⊥/J‖, U/J‖) plane with unphysi-
cal results. A possible explanation for this is that in the derivation of the quadratic Hamiltonian
(3.55), via the Bogoliubov prescription, the terms that represented the umklapp processes have
been neglected. Thus between the biased ladder super�uid phase and the phase with two inde-
pendent gapless modes (later we will see that this corresponds to the vortex liquid super�uid),
it may exist a phase for which the commensurability of the magnetic �ux plays an important
role. In Chap. 5 we will �nd such a phase, namely the vortex lattice super�uid.

The second shortcoming is the presence of logarithmically divergences integrals in the compu-
tation of the expectation value of certain observables. We will exemplify this for the expectation
value of the directed rung tunneling, 〈K⊥〉, which we need for solving the self-consistency and
stability conditions, as we showed in Sec. 2.3 and Sec. 2.4. For simplicity, we will consider the
case of one minimum in the lower energy band, as considered in Sec. 3.2.2.1.

From expression of the directed rung tunneling given in Eq. (2.20) performing the gauge trans-
formation (3.20) and going to the momentum space, we obtain

K⊥ =
∑
k

b†0,kb1,k. (3.58)

Furthermore, performing the transformation used for diagonalization of the kinetic part, Eq. (3.22)-
(3.23) and taking the expectation value with the respect of the ground state we have

〈K⊥〉 = K0 +
∑
k 6=0

〈ukvk(γ†−,kγ−,k − γ
†
+,kγ+,k) + v2

kγ
†
+,kγ−,k − u

2
kγ
†
−,kγ+,k〉, (3.59)

K0 = u0v0〈γ†−,0γ−,0〉 =
1

2
N0,

where N0 = N is the condensate population. Next step consists in transforming to the basis
of the quasi-particles operators, given by Eqs. (3.43)-(3.44). We note that in the ground state
no excitations exist, thus the terms which contain the quasi-particle operators do not have any
contribution. We obtain
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〈K⊥〉 =
1

2
N +

∑
k 6=0

[
ukvk

(
x2

3,k + x2
4,k − x2

7,k − x2
8,k

)
+
(
v2
k − u2

k

)
(x3,kx4,k + x7,kx8,k)

]
, (3.60)

with the coe�cients xi,k given by Eqs. (3.46)-(3.47). In order to evaluate the expectation value
we will take the continuum limit of 〈K⊥〉/L and convert the sum into an integral

〈K⊥〉
L

=
1

2
n0 +

∫ π

0

dk

π

[
ukvk

(
x2

3,k + x2
4,k − x2

7,k − x2
8,k

)
+
(
v2
k − u2

k

)
(x3,kx4,k + x7,kx8,k)

]
.

(3.61)

Computing the integrand from Eq. (3.61) we obtain that its leading order behaves like ∼ 1/k,
thus the integral has a logarithmic divergence for small quasi-momenta, k → 0, for �nite
interaction strengths. We obtain the same behavior for the regime with two minima. This
is consistent with the results obtained in the literature for the condensate depletion for the
bosonic quasi-one-dimensional ladder in a magnetic �ux [110], or a two-dimensional lattice
in a magnetic �ux [111]. A solution to this problem can consist in the application of a small-
momentum cuto� k0 for the integral over k [111], with k0 ≈ L−1, as a real system is �nite. In
this case 〈K⊥〉 would be �nite, but it would have a logarithmic dependence on the cuto� k0.
In our system, this approach does not work, because both the self-consistency and the stability
conditions are highly sensitive on the value of 〈K⊥〉 and the e�ect of the cuto� is too large.
Thus, we cannot use the Bogoliubov theory in order to describe the coupled ladder and cavity
system.

3.3. Ground state phases

As we described in Ref. [98], the e�ective model, Eq. (2.27), has been studied as a stand-alone
model describing bosonic two-leg ladders with repulsive contact interaction in the presence of
a uniform, static gauge �eld. DMRG and bosonization studies have explored the phase diagram
beyond the weakly interacting regime [76–91], observing Meissner, vortex and vortex lattices
phases on top of the super�uid or Mott-insulating states.

The phase transitions that occur in this model take place in two sectors. These sectors cor-
respond, in the limit of weak coupling (i.e. J⊥/J‖ � 1), to the symmetric (b0,j + b1,j) and
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3.3 Ground state phases

Figure 3.9.: Current patterns and on-site density for some of the di�erent phases of the e�ective
model, (a) the Meissner phase (M-SF, M-MI), (b) the biased-ladder super�uid phase
(BLP-SF), (c) vortex liquid (V-SF) phase with a vortex density 1/3 < ρv < 2/5,
and (d)-(e) vortex lattices (VL1/2,1/3-SF) with (d) ρv = 1/2, and (e) ρv = 1/3. The
length of the arrows is proportional to the strength of the local currents and the
size of the red circles scales with the on-site density (DMRG data). The dashed
rectangles represent the unit cell for the vortex lattice phases. The de�nitions of
the observables that describe each phase can be found in the main text. Figure
adapted from Ref. [98].
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antisymmetric (b0,j − b1,j) combination of the operators on the two legs. The Mott insulator
to super�uid transition is located in the symmetric sector, while the Meissner to vortex phase
transitions occur in the antisymmetric sector.

In the following we will describe the observables that indicate the nature of the phases obtain
as ground states of the e�ective model, Eq. (2.27). One quantity which gives information on the
phases is the central charge c, which can be interpreted as the number of gapless modes. The
central charge can be extracted from the scaling of the von Neumann entanglement entropy
SvN(l) of an embedded subsystem of length l in a chain of length L. The scaling behaviour
for the di�erent phases will be exempli�ed using DMRG data in Chap. 5. For open boundary
conditions the entanglement entropy for the ground state of gapless phases scales as [112–114]

SvN =
c

6
log

(
L

π
sin

πl

L

)
+ s1, (3.62)

where s1 is a non-universal constant and we have neglected oscillatory terms [115] due to the
�nite size of the system, and logarithmic corrections [116].

The super�uid and Mott-insulating phases can be distinguished from the decay of the single par-
ticle correlation, here we will use 〈b†m,L/4bm,L/4+d+h.c.〉, with distance d. The correlations will
decay algebraically with distance in a super�uid state and exponentially in a Mott-insulating
state [117].

Other important characteristics of the quantum chiral phases (Meissner, vortex liquid, or vortex
lattice) can be inferred from the con�gurations of the local currents, which is experimentally
accessible in the bosonic ladder system [74, 118]. We de�ne the local currents on the leg j‖m,j
and the rung j⊥j , respectively, as

j
‖
m,j = −iJ‖(b†m,jbm,j+1 − h.c.),

j⊥j = −iJ⊥(eiϕjb†1,jb0,j − h.c.). (3.63)

In addition to the local currents, the chiral current Jc and the average rung current Jr are of
interest and de�ned as
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3.3 Ground state phases

Jc =
1

2L

∑
j

〈j‖0,j − j
‖
1,j〉,

Jr =
1

L

∑
j

|〈j⊥j 〉|. (3.64)

All non-trivial phases that we are presenting here have a �nite chiral current. The Meissner
phases are characterized by a vanishing average rung current, Jr = 0, and the vortex and
vortex lattice phases by �nite rung currents, Jr > 0. An additional quantity, the vortex density
is de�ned as the inverse of the vortex length, ρv = l−1

v . Where lv is the typical size of the
vortices and we extract it from the position of the peak of the Fourier transform of the local
rung current con�gurations 〈j⊥r 〉. From the value of ρv one identi�es the periodicity of the
vortex lattice phases.

For the rest of this section we will describe the phases that appear as steady states for the sets of
parameters that will be considered in Chap. 5. In Fig. 3.9 we brie�y explain the di�erent phases.
Fig. 3.9(a) shows a Meissner phase, which can be a Meissner super�uid (M-SF) or a Meissner
Mott insulator (M-MI). Both of these phases have vanishing currents on the rungs in the bulk
of the system and a �nite chiral current. The distinction between the two phases can be made
by calculating the central charge. The Meissner super�uid phase is gapless in the symmetric
sector with c = 1, while the Meissner Mott insulator is totally gapped, with c = 0.

The biased-ladder phase (BLP) [79, 80, 83–85], (see Fig. 3.9(b)), breaks the discrete Z2 symmetry
associated with the inversion of the two legs of the ladder and the sign of the �ux. The charac-
teristic signature of this phase is that the density is higher on one of the legs. The observable
that we will use to identify this phase is the density imbalance, ∆n. The imbalance is de�ned
as

∆n =
1

2L

∣∣∣∑
j

〈n0,j − n1,j〉
∣∣∣. (3.65)

The biased ladder phase has a gapless mode in the symmetric sector with c = 1, and a vanishing
rung current.

The vortex super�uid phase (V-SF), with the local current and density pattern depicted in
Fig. 3.9(c), has two gapless modes (symmetric and antisymmetric), thus it has a central charge
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c = 2. It is also characterized by a �nite vortex density, ρv, which is incommensurate with the
ladder.

The existence of vortex lattice phases has been demonstrated in bosonic ladders by Refs. [79–
82], for di�erent vortex densities. In Fig. 3.9(d)-(e) we have represented the current and density
pattern for the vortex lattice super�uid phases (VLρv-SF) with ρv = 1/2 and 1/3. In these phases
the vortices are commensurate with the ladder. Both of these two vortex lattices have a central
charge c = 1, since the symmetric mode is gapless and the antisymmetric mode is gapped. Due
to the spontaneous symmetry breaking of the translational symmetry in the vortex lattices, the
unit cell becomes q-fold enlarged, with q = 2 and 3 in these cases. This can lead to a change in
the sign of the chiral current, as described in Ref. [79].

The mentioned states do not represent an exhaustive list of the possible phases of the ground-
state of the bosonic ladder under an arti�cial magnetic �ux. We focused on the ones we can sta-
bilize dynamically in the cavity, for the parameters considered in Chap. 5. Beside the mentioned
phases there exists numerical evidence for vortex and vortex lattice Mott insulators [78, 79], vor-
tex lattice super�uid with ρv = 1/4 and charge density waves [80], also Laughlin states have
been proposed [86–88].
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4. Numerical methods

We probe our model (Eq. 2.27) numerically with a density matrix renormalization group (DMRG)
algorithm in the matrix product state form [119–122], using the ITensor Library [123]. In Sec. 4.1
we present brie�y the basic concepts of the DMRG algorithm in the MPS form, afterwards in
Sec. 4.2 we describe our implementation of the algorithm. At the end of this chapter in Sec. 4.3
and Sec. 4.4 we analyze the convergence of the method.

4.1. Introduction to the DMRG method in the matrix product states represen-
tation

The density matrix renormalization group (DMRG) is currently one of the most powerful meth-
ods in the study of one dimensional strongly correlated lattice systems. The method was in-
troduced by S. R. White in 1992 [119]. The biggest challenge that arises in the simulation of
quantum many-body systems is that the dimension of the Hilbert space of a system of size L
grows exponentially with its size. DMRG is an iterative variational method, which has the goal
to �nd the best approximate for a desired state of the system, by reducing and retaining only
the most important degrees of freedom at each iteration. In the following we make use of the
matrix product states formulation of the DMRG method [121].

One of the tools of linear algebra that is used extensively in the DMRG algorithm is the singular
value decomposition (SVD). The theorem states that any arbitrary rectangular matrix M of
dimensions (m× n) can be decomposed as

M = USV †, (4.1)

where U is a unitary matrix, UU † = 1, of dimensions (m×min(m,n)); S is a diagonal matrix
of dimensions (min(m,n) × min(m,n)), with non-negative entries

√
λi ≥ 0, called singular

values; V † is also a unitary matrix of dimensions (min(m,n)) × n). The (Schmidt) rank r of
matrix M is given by the number of non-zero singular values,

√
λi > 0.

As an application of the SVD, one can derive the Schimdt decomposition of an arbitrary quan-
tum state |Ψ〉. Let us consider a one-dimensional system, which can be divided into two sub-
systems A and B. The wavefunction |Ψ〉 describes the full system AB and it can be written
as
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|Ψ〉 =
∑
i,j

Ψi,j |i〉A |j〉B , (4.2)

where {|i〉A} and {|j〉B} are the orthonormal basis of the subsystem A, of dimension m, and
B, of dimension n, respectively. By the matrix Ψ we will understand a matrix with the entries
Ψi,j . We can now perform the singular value decomposition of the matrix Ψ, which gives

|Ψ〉 =
∑
i,j

min(m,n)∑
a=1

Ui,aSa,aV
∗
a,j |i〉A |j〉B (4.3)

=

min(m,n)∑
a=1

Sa,a

(∑
i

Ui,a |i〉A

)(∑
j

Va,j |j〉B

)

=
r∑

a=1

√
λa |a〉A |a〉B ,

where the sum runs only over the non-zero singular values
√
λa > 0, as we mentioned the

upper bound is given by the rank r ≤ min(m,n) of S. Due to the unitarity of the matrices
U and V , the sets {|a〉A} and {|a〉B} are the orthonormal basis on A and B respectively. The
Schmidt decomposition is important in our context, as it can be used to quantify the entangle-
ment between the two subsystems A and B. Thus for the value of the Schmidt rank r = 1, |Ψ〉
can be written as a product state, and the entanglement between A and B increases for larger
values of the rank r.

Now we want to construct a state
∣∣∣Ψ̃〉 of a maximal rank D < r,

∣∣∣Ψ̃〉 =
∑D

a=1

√
λa |a〉A |a〉B ,

which approximates the state |Ψ〉 the best. We perform this by minimizing the norm,

∥∥∥|Ψ〉 − ∣∣∣Ψ̃〉∥∥∥2

= 1−
r∑

a=D

λa. (4.4)

The singular values are ordered λ1 ≥ λ2 ≥ ..., such that we retain the biggest D singular
values. The approximation becomes better if λa decay quickly for increasing a, we note that
the approximation becomes exact if D ≥ r.

Now we have all the necessary tools in order to exemplify the construction and compression
of the matrix product states. We can write any quantum state for a lattice system with L sites
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4.1 Introduction to the DMRG method in the matrix product states representation

and the dimension of the local Hilbert space d for each site as

|Ψ〉 =
∑

σ1,...,σL

cσ1,...,σL |σ1, ..., σL〉 , (4.5)

where {|σj〉} is the local basis and |~σ〉 ≡ |σ1, ..., σL〉 ≡ {|σ1〉} ⊗ ... ⊗ {|σL〉}. We have expo-
nentially many coe�cients cσ1,...,σL , which contain the information of the state.

The matrix product state is a more convenient notation of |Ψ〉, which gives a more local notion
of the state [121]. From now on we assume that |Ψ〉 is normalized, and its matrix product state
notation reads

|Ψ〉 =
∑

σ1,...,σL

Mσ1Mσ2 ...MσL |σ1, ..., σL〉 , (4.6)

whereMσj , j = 1...L, are a collection of matrices. But the matrix product will result in a scalar,
namely cσ1,...,σL , as Mσ1 is a row vector and MσL is a column vector. The matrix product state
representation can be constructed by applying the singular value decomposition repeatedly,
starting from the left or from the right of the matrix product. This results in a so-called left-
canonical or right-canonical matrix product state. In the following we will exemplify this by
constructing the left-canonical matrix product state. We begin by reshaping the dL coe�cients
cσ1,...,σL into a matrix Ψσ1,(σ2...σL) of dimensions

(
d× dL−1

)
and performing the singular value

decomposition of this matrix

Ψσ1,(σ2...σL) =
∑
a1

Uσ1,a1Sa1,a1V
†
a1,(σ2...σL) ≡

∑
a1

Uσ1,a1ca1,σ2,...,σL , (4.7)

where in the last equality we performed the matrix multiplication and reshaped the result
back into a vector ca1,σ2,...,σL . From this vector we construct a new matrix Ψ(a1,σ2),(σ3...σL) ≡
ca1,σ2,...,σL . We also reshape the matrix U into a row vector Aσ1 , with Aσ1a1 = Uσ1,a1 . After these
operations we have

cσ1,...,σL =
∑
a1

Aσ1a1Ψ(a1σ2),(σ3...σL). (4.8)

If we successively apply these operations, the singular value decomposition and reshaping, we
obtain

50



cσ1,...,σL = ... (4.9)

=
∑
a1

∑
a2

Aσ1a1U(a1σ2),a2Sa2,a2V
†
a2,(σ3...σL)

=
∑
a1

∑
a2

Aσ1a1A
σ2
a1,a2

Ψ(a2σ3),(σ4...σL) = ...

=
∑

a1..aL−1

Aσ1a1A
σ2
a1,a2

...AσL−1
aL−2,aL−1

AσLaL−1

= Aσ1Aσ2 ...AσL ,

where Aσj is a matrix with the elements Aσjaj−1,aj = U(aj−1σj),aj and of dimensions (rj−1 ×
rj). The maximum dimensions that the collection of A-matrices can have are (1 × d), (d ×
d2), ..., (dL/2−1 × dL/2), (dL/2 × dL/2−1), ..., (d × 1). The maximum dimensions are reached if
all singular values are non-zero, in each of the singular value decompositions. Inserting this
result in Eq. (4.6), the new representation of the state reads

|Ψ〉 =
∑

σ1,...,σL

Aσ1Aσ2 ...AσL |σ1, ..., σL〉 , (4.10)

with ∑
σj

Aσj†Aσj = 1, (4.11)

these relations de�ne the left-canonical matrix product state. Analogously, one can de�ne a
right-canonical matrix product state, by starting the reshaping procedure from the right

cσ1,...,σL = Ψ(σ1...σL−1),σL, = ... (4.12)

=
∑
aL−1

U(σ1...σL−1),aL−1
SaL−1,aL−1

V †aL−1σL

=
∑
aL−1

Ψ(σ1...σL−2),(σL−1aL−1)B
σL
aL−1

= ...

=
∑

a1..aL−1

Bσ1
a1
Bσ2
a1,a2

...BσL−1
aL−2,aL−1

BσL
aL−1

= Bσ1Bσ2 ...BσL ,
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4.1 Introduction to the DMRG method in the matrix product states representation

where Bσj is a matrix with the elements Bσj
aj−1,aj = V †aj−1,(σjaj). In this case the state becomes

|Ψ〉 =
∑

σ1,...,σL

Bσ1Bσ2 ...BσL |σ1, ..., σL〉 , (4.13)

with ∑
σj

BσjBσj† = 1, (4.14)

these relations de�ne the right-canonical matrix product state.

We can also perform a mixed decomposition from both right and left, resulting in a mixed
canonical product state

|Ψ〉 =
∑

σ1,...,σL

Aσ1 ...AσlSBσl+1 ...BσL |σ1, ..., σL〉 , (4.15)

where the A matrices are left-normalized and the B matrices are right-normalized. The S
matrix has the components Sal,al =

√
λal , which represent the singular values on the link

(l, l + 1). The mixed canonical product state is equivalent to the Schmidt decomposition of a
system of length L divided into a subsystem A from site 1 to l and a subsystem B from site
l + 1 to L. The mixed canonical state becomes

|Ψ〉 =
∑
al

√
λal |al〉A |al〉B , (4.16)

where

|al〉A =
∑

σ1,...,σl

(
Aσ1 ...Aσ2l

)
(1, al) |σ1, ..., σl〉 , (4.17)

|al〉B =
∑

σl+1,...,σL

(Bσl+1 ...BσL)(al, 1) |σl+1, ..., σL〉 ,

with {|al〉A} an orthonormal basis for the subsystem A and {|al〉B} an orthonormal basis for
the subsystem B.

The matrices A and B involved in this representation can be, in principle, exponentially large,
as the maximal dimension scales as dL/2, thus their size has to be truncated in order to be
numerically feasible. If the singular values decay fast enough we can employ a cuto� D in the
sum from Eq. (4.17) and obtain a state that approximates |Ψ〉 the best, as in Eq. (4.4). This step
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can be applied iteratively for l = 1..L, the error accumulated at each truncation is given by
Eq. (4.4).

In order to act with an operator on a state represented as a matrix product state, it is useful to
construct matrix product operators, analogue to the procedure presented above.

Ô =
∑
~σ,~σ′

c(σ1,...,σL),(σ′1,...,σ
′
L) |~σ〉 〈~σ′| , (4.18)

=
∑
~σ,~σ′

W σ1,σ′1 ...W σL,σ
′
L |~σ〉 〈~σ′| ,

where the matrices W σ,σ′ are analogous to the matrices Mσ, but with two physical indices,
which represent the outgoing and ingoing states. If we act with a matrix product operator onto
a matrix product state we obtain

Ô |Ψ〉 =
∑
~σ,~σ′

W σ1,σ′1 ...W σL,σ
′
L |~σ〉 〈~σ′|

(∑
~σ′′

Mσ′′1 ...Mσ′′L |~σ′′〉

)
, (4.19)

=
∑
~σ,~σ′

W σ1,σ′1 ...W σL,σ
′
LMσ′1 ...Mσ′L |~σ〉 ,

=
∑
~σ

∑
σ′1

W σ1,σ′1Mσ′1

...
∑

σ′L

W σL,σ
′
LMσ′L

 |~σ〉 ,
=
∑
~σ

Nσ1 ...NσL |~σ〉 ,

with N
σj
(bj−1a′j−1),(bja′j) =

∑
σj
W

σj ,σ
′
j

bj−1,bj
M

σ′j
a′j−1,a

′
j

a matrix, such that the result is also a matrix
product state. Note that the dimensions of the new matrices N are larger than the dimensions
of the matrices M .

The matrix product state representation together with the approximation considering a cuto�D
in the dimension of the matrices, can be employed to iteratively and variationally compute the
ground state of a Hamiltonian, or to determine the time evolution of a system. In the following
we present the ground state calculation with matrix product states, for some Hamiltonian Ĥ .
Firstly we write the Hamiltonian Ĥ in a matrix product operator representation (Eq.(4.18)) and
the optimal approximation of the ground state will be given by a matrix product state |Ψ〉, with
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4.2 The implementation of the algorithm

maximal dimension D, that minimizes the energy as

E =
〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉

. (4.20)

We solve this problem by minimizing the following quantity

〈Ψ|Ĥ|Ψ〉 − λ 〈Ψ|Ψ〉 , (4.21)

where at the end of the minimization procedure, |Ψ〉will be the ground state wavefunction and
the Lagrange multiplier λwill be the ground state energy. We write the quantity from Eq. (4.21)
in the matrix product representation and we iteratively optimize two matrices MσjMσj+1 at
a time, while keeping all other Mσi , i 6= j, j + 1 �xed. Afterwards we shift the optimized
matrix pair MσjMσj+1 through the entire system. If the accuracy goal is not reached after
optimizing the matrices at the edge of the system, MσL−1MσL , i.e. after performing a sweep,
one performs another sweep optimizing all the matrices, until the error goal is reached. The
optimization is performed by constructing a generalized eigenvalue problem and solving for the
lowest eigenvector and eigenvalue, which will give us an estimate for the ground state energy.
Because the dimensions of the matrices in the eigenvalue problem are, typically, too large for
an exact diagonalization, an iterative eigensolver that aims for the lowest eigenvalue is used.
In this work we use the Jacobi-Davidson method for large sparse matrices. One can make use
of the symmetries of the Hamiltonian in order to restrict the DMRG search to the a certain
symmetry sector, reducing the dimension of the subspace in which the search is performed,
enhancing the e�ciency of the algorithm. For the full description of the ground state search
algorithm, the challenges that it involves and other applications of the matrix product states
within the DMRG method see Ref. [121].

4.2. The implementation of the algorithm

For the implementation of the �nite-size density matrix renormalization group (DMRG) we
wrote a C++ code, using the ITensor Library [123]. ITensor is a C++ library for implementing
tensor network calculations [123], developed by E. M. Stoudenmire and S.R. White. The code
that we wrote, complementary to what exists in the ITensor Library, is listed in the Appendix
and it consists in two header �les and a main routine �le. In the rest of the section we will
brie�y describe the structure of the code and the main features that we had to implement in
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order to obtain the desired results. We will not discuss the syntax of the library, as it is not in
the scope of this work and a complete documentation can be found in Ref. [123].

In the header �le bosehubbard.h (see Appendix A.1), using the SiteSet class for specifying the
local Hilbert space of each site of a lattice, we construct a class that contains the elements of
the Bose-Hubbard model. We use the local number of bosons as the local quantum number and
implement the possibility of de�ning a state by specifying the number of bosons on each site.
As our model is particle conserving, the total number of bosons is a good quantum number and
we restrict our ground-state search to a symmetry sector with a �xed number of bosons. We
de�ne the action of the creation and annihilation bosonic operators, and the number operator.
The cuto� for local dimension of the Hilbert space can be passed as an argument of the created
class.

In the DMRG routine one has to specify the number of sweeps as the stopping condition of
the routine. Since we are considering parameters for several di�erent phases in which the
convergence of the method can vary, we introduce an error goal as the stopping condition
in the DMRG routine. In the header �le dmrg_modi�ed.h (see Appendix A.2), if the energy
di�erence between the last two sweeps is smaller than 10−8J‖, the ground state search will stop
and the resulting wavefunction will be our estimate for the ground state. Other modi�cation is
the introduction of the possibility to realize measurements of the expectation value of certain
observables, e.g. H2, in between the sweeps.

In the main �le, BH_ladder.cc (see Appendix A.3), we start by reading the parameters of the
model and the DMRG method from the input �le. We continue by de�ning a series of states with
di�erent �llings and occupation patterns, that will be used as the initial states in the ground state
search. The Hamiltonian is constructed using the operators previously de�ned and transformed
in the matrix product operator representation using ITensor’s AutoMPO function. The next
step is to execute the DMRG sweeps and obtain the ground state estimate. In the following, we
perform measurements on this wavefunction, thus we compute the expectation values of the:
local and global density, the currents �owing on the rungs and legs of the ladder, the directed
rung tunneling 〈K⊥〉, the single particle correlations along the legs of the ladder, and the von
Neumann entanglement entropy.

4.3. Convergence tests

We simulate the presented model Eq. (2.27) typically for a ladder with L = 120 rungs and
with the bond dimension up to 1500 in the matrix product state representation. Since we are
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4.3 Convergence tests

Figure 4.1.: (a)-(c) The energy of the ground state as a function of the bond dimension m used
in the matrix product state representation compared to the energy, E0, for m =
1750, for three value of the rung tunneling amplitude J⊥ ∈ {1.2, 2.1, 3}J‖, which
correspond to di�erent phases. (d)-(f) The expectation value of the directed rung
tunneling 〈K⊥〉/L as a function of the bond dimension m, compared to the value
of the directed rung tunneling, 〈K⊥〉0/L, form = 1750, for three value of the rung
tunneling amplitude J⊥ ∈ {1.2, 2.1, 3}J‖. The set of parameters used is L = 240,
ϕ = 0.9, ρ = 0.5 and U = 1.5J‖.

56



4.3.1 Convergence of the method at ϕ = 0.9, ρ = 0.5 and U = 1.5J‖

dealing with �nite interactions the local Hilbert space of bosons is in�nite, thus a cuto� for its
dimension is needed. We use a maximal local dimension of �ve bosons per site.

Figure 4.2.: (a) The relative error in the single particle correlations, |(ξ(d)(m = 1750) −
ξ(d)(m = 1500))/ξ(d)(m = 1750)|, as a function of the distance, for (a)
J⊥ = 1.2J‖, (b) J⊥ = 2.1J‖. The set of parameters used is L = 240, ϕ = 0.9,
ρ = 0.5 and U = 1.5J‖.

In this section we present the convergence checks of the method for di�erent bond dimensions,
m, and bosonic cuto�s, Nb, for a part of the parameter sets used in Chap.5. We will check the
convergence with the aid of the following observable: the ground state energy, as the stopping
condition of the algorithm is based on an error goal in the energy; the expectation value of
the directed rung tunneling 〈K⊥〉/L, because it is involved in the self-consistency and stabil-
ity condition; the single particle correlations, ξ(d) = 〈b†m,L/4bm,L/4+d + h.c.〉, which exhibit,
typically, the slowest converge.

4.3.1. Convergence of the method at ϕ = 0.9, ρ = 0.5 and U = 1.5J‖

As the convergence of the algorithm can depend strongly on the nature of the ground state is,
we consider di�erent values of the rung tunneling amplitude J⊥ which correspond to di�erent
phases. Thus in this section we consider: J⊥ = 1.2J‖ when the state is a vortex super�uid;
J⊥ = 2.1J‖ when the state is a vortex lattice super�uid with a vortex density of ρv = 1/2;
J⊥ = 3J‖ when the state is a Meissner Mott-insulator (the full identi�cation of these phases
will be discussed in Chap.5).

In Fig. 4.1, we investigated the in�uence of the bond dimension used in the matrix product
state representation for three value of the rung tunneling amplitude J⊥ ∈ {1.2, 2.1, 3}J‖, on
the ground state energy and the directed rung tunneling 〈K⊥〉. The largest di�erence between
the energy for m = 1500 and m = 1750, appears of J⊥ = 1.2J‖ (see Fig. 4.1(a)), and it is of
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4.3 Convergence tests

Figure 4.3.: (a)-(c) The energy of the ground state as a function of the bosonic cuto� of the local
dimensionNb, compared to the energy, E0, forNb = 6, for three value of the rung
tunneling amplitude J⊥ ∈ {1.2, 2.1, 3}J‖, which correspond to di�erent phases.
The energy is measured in units of J‖. (d)-(f) The expectation value of the directed
rung tunneling 〈K⊥〉/L as a function of the bosonic cuto� of the local dimension
Nb, compared to the value of the directed rung tunneling, 〈K⊥〉0/L, for Nb = 6,
for three value of the rung tunneling amplitude J⊥ ∈ {1.2, 2.1, 3}J‖. The set of
parameters used is L = 240, ϕ = 0.9, ρ = 0.5 and U = 1.5J‖.
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4.3.2 Convergence of the method at ϕ = 0.8, ρ = 0.8 and U = 1J‖

the order of 10−6J‖. In the case of 〈K⊥〉/L, for the same value of J⊥ = 1.2J‖ (Fig. 4.1(d)),
the di�erence between the value at m = 1500 and the value at m = 1750 is of the order of
10−7. For the other two values of J⊥ depicted in Fig. 4.1, the error in the ground state energy
is under 10−8J‖, which is the error goal of the method. One should not give an interpretation
to the variations in the expectation values of the observable which are under the error goal of
the method, as the non-monotonic behavior of 〈K⊥〉/L in Fig. 4.1(e), as they are a�ected by
numerical noise.

In Fig. 4.2, we have represented the relative error in the single particle correlations, |(ξ(d)(m =

1750) − ξ(d)(m = 1500))/ξ(d)(m = 1750)|, we can see that the error does not exceed 0.1%.
Under these considerations we are con�dent that the choice of the bond dimension m = 1500

is appropriate for this system length and set of parameters. For J⊥ = 1.2J‖ the single par-
ticle correlations show an oscillating behavior, thus we can explain the peaks in the relative
error from Fig. 4.2(a) as due to the error in the period of the oscillations of the single particle
correlations.

The next step consists in looking at the in�uence of the bosonic cuto� of the local dimension,
Fig. 4.3. The di�erence of the ground state energy computed with a local dimension of �ve
bosons per site and ground state energy computed with a local dimension of six bosons per
site, is of the order of 10−6J‖ for J⊥ = 1.2J‖ and J⊥ = 2.1J‖, and of the order of 10−4J‖

for J⊥ = 3J‖. The change in the expectation value of the directed rung tunneling 〈K⊥〉/L
computed with a local dimension of �ve bosons per site and with a local dimension of six
bosons per site is smaller than 10−6, for all values of J⊥ represented in Fig. 4.3(d)-(f). Thus,
we can see that the results obtained for a local dimension of �ve and six bosons per site are
consistent.

4.3.2. Convergence of the method at ϕ = 0.8, ρ = 0.8 and U = 1J‖

In this section we consider the following phases: a vortex super�uid phase with J⊥ = 1J‖; a
biased ladder phase with J⊥ = 3.5J‖; a Meissner super�uid with J⊥ = 5J‖.

In Fig. 4.4, we investigated the in�uence of the bond dimension used in the matrix product
state representation for three value of the rung tunneling amplitude J⊥ ∈ {1, 3.5, 5}J‖, on the
ground state energy and the directed rung tunneling 〈K⊥〉. The di�erence between the energy
for m = 1500 and m = 1750 is of the order of 10−6J‖ for J⊥ = 1J‖ (see Fig. 4.4(a)), while for
the other two values of J⊥ is under the desired energy error goal of 10−8J‖, (see Fig. 4.4(b)-(c)).
The deviations from a monotonic behavior from Fig. 4.4(c) are due to numerical noise. In the
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4.3 Convergence tests

Figure 4.4.: (a)-(c) The energy of the ground state as a function of the bond dimension m used
in the matrix product state representation compared to the energy, E0, for m =
1750, for three value of the rung tunneling amplitude J⊥ ∈ {1, 3.5, 5}J‖, which
correspond to di�erent phases. The energy is measured in units of J‖. (d)-(f) The
expectation value of the directed rung tunneling 〈K⊥〉/L as a function of the bond
dimension m, compared to the value of the directed rung tunneling, 〈K⊥〉0/L, for
m = 1750, for three value of the rung tunneling amplitude J⊥ ∈ {1, 3.5, 5}J‖.
The set of parameters used is L = 240, ϕ = 0.8, ρ = 0.8 and U = 1J‖.
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4.3.2 Convergence of the method at ϕ = 0.8, ρ = 0.8 and U = 1J‖

Figure 4.5.: (a)-(c) The energy of the ground state as a function of the bosonic cuto� of the
local dimension Nb, compared to the energy, E0, for Nb = 6, for three value of
the rung tunneling amplitude J⊥ ∈ {1, 3.5, 5}J‖, which correspond to di�erent
phases. The energy is measured in units of J‖. (d)-(f) The expectation value of the
directed rung tunneling 〈K⊥〉/L as a function of the bosonic cuto� of the local
dimension Nb, compared to the value of the directed rung tunneling, 〈K⊥〉0/L,
for Nb = 6, for three value of the rung tunneling amplitude J⊥ ∈ {1, 3.5, 5}J‖.
The set of parameters used is L = 240, ϕ = 0.8, ρ = 0.8 and U = 1J‖.
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4.3 Convergence tests

case of 〈K⊥〉/L the di�erence between the value at m = 1500 and the value at m = 1750 is of
the order of 10−6, for J⊥ = 1J‖, of the order of 10−7, for J⊥ = 3.5J‖, and of the order of 10−8,
for J⊥ = 5J‖ (Fig. 4.4(d)-(f)). Thus, a bond dimension of m = 1500 is appropriate for capturing
the properties of the mentioned phases.

The e�ect of the bosonic cuto� of the local dimension is presentend in Fig. 4.5. The di�erence
of the ground state energy computed with a local dimension of �ve bosons per site and ground
state energy computed with a local dimension of six bosons per site, is of the order of 10−3J‖

for J⊥ = 1J‖ and J⊥ = 3J‖, and of the order of 10−4J‖ for J⊥ = 5J‖. The change in the
expectation value of the directed rung tunneling 〈K⊥〉/L computed with a local dimension of
�ve bosons per site and with a local dimension of six bosons per site is smaller than 10−5, for all
values of J⊥ represented in Fig. 4.5(d)-(f). Even though the error in the ground state energy due
to the cuto� of the local dimension is several order of magnitude larger than the other errors in
energy presented so far in this section, we are con�dent that it is still small enough such that
it does not have an e�ect on the nature of the phase.

In Fig. 4.6, we observe that the relative error in the single particle correlations is under 1% in
the biased ladder phase. Thus a cuto� of the local dimension of �ve bosons per site represents
an optimal trade-o� between computational costs and good results.

Figure 4.6.: The relative error in the single particle correlations, |(ξ(d)(Nb = 6)− ξ(d)(Nb =
5))/ξ(d)(Nb = 6)|, as a function of the distance, for J⊥ = 3.5J‖, L = 240,
ϕ = 0.8, ρ = 0.8 and U = 1J‖.
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4.4. The challenges of numerically stabilizing the biased ladder phase

In this section we will analyze the procedure we employ in order to numerically stabilize the
biased ladder phase, introduced in Ref. [98]. The biased ladder phase spontaneously breaks the
Z2 symmetry between the two legs of the ladder, thus the ground state is two-fold degenerate.
The DMRG ground state search can choose any state within this degenerate subspace, resulting
in an arbitrary value of the density imbalance between zero and the maximal value. In order
to unequivocally identify the extend of the biased ladder ladder we want to obtain the ground
state with maximal value of the imbalance ∆n, de�ned by Eq. (3.65). After numerically ob-
taining one of the ground states, |ψ1〉, we compute the orthogonal wavefunction, |ψ2〉, which is
degenerate in energy with |ψ1〉. For this, the second ground state search is performed enforcing
the orthogonality by the following Hamiltonian

H̃ = H + w |ψ1〉 〈ψ1| , (4.22)

where H is the Hamiltonian given in Eq. (2.27) and the weight w > 0 introduces an energy
penalty for any �nite overlap with |ψ1〉 and guarantees the orthogonality with it, to a good
accuracy. We use a typical value of w = 10J‖ and checked the consistency with higher values
up to w = 100J‖. As an initial state for the DMRG search we use a state with an inverse
density imbalance compared to the state |ψ1〉. Having obtained an orthonormal basis in the
ground state manifold, {|ψ1〉 , |ψ2〉}, we move on to construct the superposition of these two
states

|ψλ〉 = λ |ψ1〉+
√

1− λ2 |ψ2〉 , (4.23)

with λ ∈ [0, 1], and maximize the density imbalance ∆n as a function of the variational param-
eter λ

∆nmax = max
λ∈[0,1]

∣∣∣ 〈ψλ|∑
j

(n0,j − n1,j)|ψλ〉
∣∣∣. (4.24)

After calculating |ψ1〉 in the �rst DMRG search and |ψ2〉 in the second one, we need to check if
they have the same energy in order to con�rm the degeneracy of the ground state. In Fig. 4.7,
we represented the energy di�erence between |ψ1〉 and |ψ2〉 and we observe that for 2.7J‖ ≤
J⊥ ≤ 3.9J‖ the ground state is degenerate.

In Fig. 4.8(a), we computed the density imbalance between the two legs of the ladder for |ψλ〉
(Eq, (4.23)) as a function of the variational parameter λ, for the parameters L = 120, ϕ = 0.8,
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4.4 The challenges of numerically stabilizing the biased ladder phase

Figure 4.7.: (a) The energy di�erence between the energy of the ground state |ψ1〉, E1, and the
energy of the �rst orthogonal state |ψ2〉, E2, for the parameters L = 120, ϕ = 0.8,
ρ = 0.8 and U = 1J‖.

Figure 4.8.: (a) The density imbalance, (b) the central charge computed for the state |ψλ〉 as
a function of λ, for the parameters L = 120, ϕ = 0.8, ρ = 0.8, U = 1J‖, and
J⊥ = 3.5J‖.

64



ρ = 0.8, U = 1J‖ and J⊥ = 3.5J‖. The maximal value of the imbalance is ∆n = 0.3675. The
�nite density imbalance indicates that we are in the biased ladder phase, this is also con�rmed
by looking at the central charge as a function of λ (see Fig. 4.8(b)) which is close to 1 for all
values of λ. For J⊥ = 3.5J‖ we have a degenerate ground state, as the energy di�erence is
approximately 0, |E1 − E2| < 10−8J‖ (see Fig. 4.7).

In the following we will compare this method with a procedure that uses an induced symmetry
breaking by an externally applied potential [80]. In this case one performs the ground state
search with the following Hamiltonian

H̃ = H +
∑
m,j

(−1)mµjnm,j, (4.25)

with H given by Eq. (2.27) and µ the external potential that breaks the Z2 symmetry of the
model. One has to perform the ground state search for di�erent values of µ and compute the
density imbalance and use the data ∆n(µ) to extrapolate the value of the imbalance in the limit
of zero external potential, µ = 0.

Figure 4.9.: The density imbalance as a function of the external bias potential, µ, for the pa-
rameters L = 120, ϕ = 0.8, ρ = 0.8, U = 1J‖ and (a) J⊥ = 3.5J‖, (b) J⊥ = 4J‖.
We extrapolate the of the imbalance towards zero external potential, µ = 0

If we compare the previous result with the one obtained with the method of applying an external
potential, for J⊥ = 3.5J‖, the value of the imbalance agrees up to the fourth digit, ∆n = 0.3675.
The density imbalance as a function of the external potential and the extrapolation towards
µ = 0 can be seen in Fig. 4.9(a), for J⊥ = 3.5J‖.

Inside the biased ladder phase the two methods are matching really well. The di�erences arise
when you consider a point outside this phase, for example J⊥ = 4J‖ (that corresponds to the
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4.4 The challenges of numerically stabilizing the biased ladder phase

Figure 4.10.: The density imbalance as a function of the rung tunneling amplitude J⊥, for the
parameters L = 120, ϕ = 0.8, ρ = 0.8 and U = 1J‖. The density imbalance
has been computed using Eq. (4.24) if we have a degenerate ground state, i.e.
E1 − E2 = 0, and as the imbalance of the ground state |ψ1〉 otherwise.

Meissner super�uid phase, as we will see in Chap. 5). If we look in Fig. 4.7, we can see that the
energy di�erence between the two orthogonal states is �nite, |E1 − E2| > 0, which indicates
that |ψ2〉 is an excited state and we do not have a degenerate ground state. But for the method
with an external �eld the extrapolation towards zero external potential seems to show a �nite
value of the density imbalance, see Fig. 4.9(b). We see a di�erent behavior of ∆n as a function
of µ compared to the case J⊥ = 3.5J‖ (Fig. 4.9(a)), such that it is not clear that if one considers
smaller values of the external potential, the imbalance still has a �nite value.

In Fig. 4.10, we have plotted the density imbalance for the parametersL = 120, ϕ = 0.8, ρ = 0.8

and U = 1J‖. For the values of J⊥ for which the ground state is degenerate, i.e. E1 − E2 = 0

in Fig. 4.7, we employed the method described in the beginning to compute the imbalance,
Eq. (4.24), and as the imbalance of the ground state |ψ1〉 otherwise. We found this method to
more reliably identify the imbalanced phase, compared to the induced symmetry breaking by
an externally applied potential.
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5. Numerical Results

5.1. Self-consistent solutions

In the following sections we determine the stable steady states of the coupled cavity-atomic
model for di�erent parameter sets. In order to do this we use the three steps outlined in
Ref. [98], �rst we perform a ground-state search using the DMRG method for the e�ective
model Eq. (2.27), for �xed �ux ϕ, �lling ρ and on-site interaction U/J‖, while varying the rung
tunneling amplitude J⊥/J‖. We compute the expectation value 〈K⊥〉 obtaining its dependence
on J⊥/J‖. In the second step we �nd the solution of the self-consistent problem reformulated
as

〈K⊥〉
L

=
J‖
AL

J⊥
J‖
. (5.1)

The left-hand side contains the nonlinear behavior of 〈K⊥〉 given by the e�ective model and the
right-hand side is a linear function with slope J‖

AL
. In a graphical interpretation, the solutions

are determined as the crossings of the two curves. The last step is to work out which of these
solutions are stable. The stability condition, Eq. (2.34), tells us that we need to compare the
slope of the two curves at their intersection point(s). The solution is stable if the slope of
〈K⊥〉/L is smaller than the slope of the linear function. We evaluate the derivative numerically
by computing the left and right �nite derivatives with the help of the two adjacent points. We
consider a solution stable if both the left and right �nite derivatives satisfy the condition given
by Eq. (2.34).

In the next two sections we extend the results we presented in Ref. [98], for more values of the
interaction strength. For the parameter sets that overlap with the ones presented in Ref. [98],
the �gures are adapted from the mentioned work.

5.2. Steady state diagram at �ux ϕ = 0.9 and �lling ρ = 0.5

In this section, we will present which steady states can be dynamically organized for the param-
eters ϕ = 0.9 and ρ = 0.5, for three values of the interaction strength U ∈ {1.5J‖, 2J‖, 2.5J‖}.
We show that a dynamical stabilization of a vortex super�uid, a VL1/2-SF, and a Meissner Mott-
insulating state is possible. In Fig. 5.1 (a),(c),(e) the expectation value of the directed rung tun-
neling 〈K⊥〉/L has been plotted for L = 120 and L = 60. In all the three cases, for small J⊥,
corresponding to the vortex phases, 〈K⊥〉 increases rapidly with J⊥, whereas for large J⊥, in
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5.2 Steady state diagram at �ux ϕ = 0.9 and �lling ρ = 0.5

Figure 5.1.: On the left is graphical interpretation of the self-consistency condition for the pa-
rameters ϕ = 0.9, ρ = 0.5 with (a) U = 1.5J‖, (c) U = 2J‖, (e) U = 2.5J‖.
The directed rung tunneling 〈K⊥〉/L is represented for two system sizes, L = 120
and L = 60. The straight (purple) line represents the right-hand side of the self-
consistency condition, which is a linear function with slope J‖

AL . The crossings
of the two curves give the solutions of the self-consistency condition. On the
right are plotted the solutions J⊥/J‖ of the self-consistency equation which are
proportional to the cavity �eld Re(α) versus the pump strength AL/J‖, for (b)
U = 1.5J‖, (d) U = 2J‖, (f) U = 2.5J‖. The �lled colored areas represent the
extent of di�erent phases. In the grey area the stability of the solutions is not clear
for all system sizes.
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the Meissner phase, 〈K⊥〉 has a slow increase. In the regime where the two system sizes agree
(for J⊥ > 1.8J‖), 〈K⊥〉 is monotonic and concave, with small jumps near the phase transitions,
these jumps become more evident for higher interaction, U = 2J‖ and U = 2.5J‖. From the
intersection of this curve with a line with the slope J‖

AL
and checking the stability condition

(2.34), we compute the stable solutions plotted in Fig. 5.1 (b),(d),(f).

For U = 1.5J‖ and the size L = 120 a stable solution can be found in the entire parameter
regime shown, beside close to the phase transitions. For smaller systems for U = 1.5J‖ it is not
clear that a stable solution exists for J⊥ < 1.8J‖. For the other two values of the interaction
considered, the stability of the solutions cannot be decided from the available data for small
values of J⊥. Due to the shape of 〈K⊥〉, one can �nd non-trivial solutions above a certain value
of the pump strength A ≈ 4.6J‖/L (see Fig. 5.1(b)), where the cavity �eld takes a �nite value.
The coupling between a many-body system and an optical cavity can result in the presence
of bifurcation points in its phase diagram [100]. In the case of U = 1.5J‖ and L = 120 we
can see that around A ≈ 4.6J‖/L the steady state diagram shows a transition from a trivial
stable solution to one of the two nontrivial solutions, J⊥(A) or −J⊥(A). In the regions where
the phase transitions take place 5.3J‖/L . A . 5.4J‖/L and 6.07J‖/L . A . 6.1J‖/L,
for U = 1.5J‖; 5.7J‖/L . A . 5.8J‖/L, for U = 2J‖; and 5.4J‖/L . A . 5.55J‖/L, for
U = 2.5J‖ multiple solutions of the self-consistency condition can exist for the same value of
the pump strength. Due to the limited numerical resolution, we cannot decide which solutions
are stable.

In the following, we characterize the steady states which correspond to the stable solutions. As
the considered values of the interaction strength do not change the nature of the phases and
only change the phase transitions points, we will, �rstly, do the analysis for U = 1.5J‖ and,
afterwards, mention the changes that appear while increasing the interaction to U = 2J‖ and
U = 2.5J‖.

In Fig. 5.2(a), we can see that below A . 6.1J‖/L the rung currents take �nite values which
indicates a vortex state. A clear abrupt change of the rung current and other observables signals
another transition between states at approximately 5.3J‖/L . A . 5.4J‖/L. The vortex state
in between 5.4J‖/L . A . 6.1J‖/L is characterized by a stable vortex density ρv = 1/2

(Fig. 5.3(a)) which points towards a VL1/2-SF state. This state is con�rmed by the value of
the central charge c ≈ 1 (Fig. 5.2(b)) and the algebraic decay of the single particle correlation
functions (Fig. 5.4(a)). We observe that in the VL1/2-SF phase the chiral current changes its sign
due to the increase of the unit cell, as explained in Refs. [79, 80]. The VL1/2-SF state can be
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5.2 Steady state diagram at �ux ϕ = 0.9 and �lling ρ = 0.5

Figure 5.2.: The chiral current Jc and the average rung current Jr as a function of the pump
strength AL/J‖, for the parameters ϕ = 0.9, ρ = 0.5 with (a) U = 1.5J‖, (c)
U = 2J‖, (e) U = 2.5J‖. The central charge c, computed from the scaling of en-
tanglement entropy, for (b) U = 1.5J‖, (d) U = 2J‖, (f) U = 2.5J‖. The errorbars
represented the �t error. In the vortex super�uid region we represented the value
of the central charge for two system sizes, L = 120 and L = 60, which shows
a strong size dependent behavior. Dashed horizontal lines indicate the constant
value 0, 1 or 2, as a guide to the eye.
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Figure 5.3.: The vortex density ρv as a function of the pump strength AL/J‖, where the rung
current is �nite for the parameters ϕ = 0.9, ρ = 0.5, with (a) U = 1.5J‖, (b)
U = 2J‖. The vortex density has the value ρv = 1/2 for (a) 5.3J‖/L . A .
6.1J‖/L, (b) 5.21J‖/L . A . 5.7J‖/L, which represents the VL1/2-SF phase.
Dashed horizontal line indicates the constant value 1/2.

Figure 5.4.: The absolute value of the single particle correlations, |〈b†m,L/4bm,L/4+d + h.c.〉|,
(a) in a logarithmic plot, in the vortex lattice phase and (b) in a semi-logarithmic
plot, in the Meissner phase, for L = 240, ϕ = 0.9, ρ = 0.5 and U = 1.5J‖,
(a) A = 5.46J‖/L, (b) A = 6.7J‖/L. The correlations show an (a) algebraic, (b)
exponential decay, which signals the (a) super�uid, (b) Mott-insulating phase. The
red curve is the �t (a)∝ x−α1 , with the �t parameterα1 = 0.15±0.01, (b)∝ e−α2x,
with the �t parameter α2 = 0.11± 0.02.
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5.3 Steady state diagram at �ux ϕ = 0.8 and �lling ρ = 0.8

observed while increasing the interaction, but it moves towards lower pump strengths and has
a smaller extent, 5.24J‖/L . A . 5.7J‖/L for U = 2J‖ (Fig. 5.2(c)-(d)) and 5.2J‖/L . A .

5.5J‖/L for U = 2.5J‖ (Fig. 5.2(e)-(f)).

The incommensurate vortex density belowA . 5.4J‖/L suggests a vortex liquid state (Fig. 5.3(a)).
It would have a central charge of two. However, the value of the central charge extracted from
our numerical calculations still depends crucially on the system size as shown in Fig. 5.2(b) such
that a �nal conclusion is di�cult. As we mentioned, the stability of the vortex super�uid phase
for U = 2J‖ and U = 2.5J‖ is not clear.

For a pump strength above A & 6.1J‖/L the rung current is suppressed and the current �ows
only along the legs of the ladder (Fig. 5.2(a)). The central charge vanishes indicating a totally
gapped system. This is con�rmed by the exponential decay of the single-particle correlations
with distance as seen in Fig. 5.4(b). This state is a Meissner Mott-insulator.

Thus for the parameters ϕ = 0.9, ρ = 0.4 and U = 1.5J‖ the dynamical stabilization of a vortex
liquid super�uid, vortex lattice super�uid with ρv = 1/2 and a Meissner Mott-insulating states
is possible.

In Fig. 5.5, we are presenting the entanglement entropy of a subsystem of l rungs embed-
ded in the ladder with L = 240 rungs. The behavior of the entropy is given by Eq. (3.62):
SvN = c

6
log
(
L
π

sin πl
L

)
+s1, thus we use this formula the extract the central charge (see Fig. 5.2).

In Fig. 5.5(a), as we are in the vortex super�uid phase the entropy scaling presents additional
substructure due to the incommensurability characteristic to this phase, this behavior explains
the large error bars from Fig. 5.2(a). In Fig. 5.5(b), there is a high agreement between the nu-
merical data and the expected �t, obtaining a central charge close to the characteristic value
of the vortex lattice phase, c = 0.98 ≈ 1. As in the Meissner Mott-insulating state the central
charge is zero, we do not expect Eq. (3.62) to capture the behavior of the entanglement entropy
scaling, see Fig. 5.5(c).

5.3. Steady state diagram at �ux ϕ = 0.8 and �lling ρ = 0.8

In this subsection we solve the self-consistency condition and identify the steady states which
can be stabilized as we vary the pump strength A, for �ux ϕ = 0.8, �lling ρ = 0.8 and two
values of the on-site interaction U = 1J‖ and U = 2J‖. For this case the dynamic stabilization
of VL1/3-SF, biased ladder super�uid, and Meissner super�uid states is possible.

The expectation value of the directed rung tunneling 〈K⊥〉/L has a concave curvature, with
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Figure 5.5.: The scaling of the von Neumann entanglement entropy used for computing the
central charge presented in Fig. 5.2, in the (a) vortex super�uid (b) vortex lattice
super�uid phase and (c) Meissner Mott phase, for L = 240, ϕ = 0.9, ρ = 0.5
and U = 1.5J‖, (a) A = 4.88J‖/L, (b) A = 5.46J‖/L, (c) A = 6.7J‖/L. The
green curve is the �t of the expression from Eq. (3.62) with the �t parameters (a)
c = 1.62± 0.07, s1 = 1.23± 0.05, (b) c = 0.988± 0.001, s1 = 1.002± 0.001, (c)
c = −0.00065± 0.0006, s1 = 1.441± 0.00004.
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5.3 Steady state diagram at �ux ϕ = 0.8 and �lling ρ = 0.8

Figure 5.6.: Graphical interpretation of the self-consistency condition for the parameters ϕ =
0.8, ρ = 0.8 with (a) U = 1J‖, (c) U = 2J‖. The directed rung tunneling 〈K⊥〉/L
is represented for two system sizes, L = 120 and L = 60. The straight (purple)
line represents the right-hand side of the self-consistency condition, which is a
linear function with slope J‖

AL . The crossings of the two curves give the solutions
of the self-consistency condition. Solutions J⊥/J‖ of the self-consistency equation
which are proportional to the cavity �eldRe(α) versus the pump strengthAL/J‖,
for (b) U = 1J‖, (d) U = 2J‖. The �lled colored areas represent the extent of
di�erent phases. In the grey area the stability of the solutions is not clear for all
system sizes.
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some additional substructure especially close to the phase transitions. For small values of J⊥,
〈K⊥〉/L has a strong dependence on the size of the system for both U = 1J‖ and U = 2J‖,
as we observe from Fig. 5.6(a),(c) and thus the stability in this region depends crucially on the
size of the system. In the following we will concentrate on the states which are stable for all
considered system sizes. The non-trivial stable solutions are plotted in Fig. 5.6(b),(d), where we
have always chosen the solution J⊥ > 0. Not shown are the corresponding solutions at the
inverse of the value which exist due to the Z2 symmetry of the model.

One can observe from Fig. 5.6(b),(d) that we have (system size independent) non-trivial stable
solutions with a �nite occupation of the cavity �eld above the pump strength A ≈ 3.19J‖/L

for U = 1J‖, and A ≈ 3.25J‖/L for U = 2J‖.

As for the considered parameter set going from U = 1J‖ to U = 2J‖ does not change the
nature of the phases and the only change appears in the extent of the phase, we will, �rstly,
characterize the phases for U = 1J‖. We have to analyze the behavior of the observables
characterizing these states (Fig. 5.7), as explained in Seq. 3.3.

We �nd a vortex state, with �nite rung currents, for 3.19J‖/L . A . 3.59J‖/L. We extract the
central charge by �tting Eq. (3.62) to the numerically computed von Neumann entanglement
entropy. The central charge has a value of c ≈ 1 in this region, which points, together with the
�nite rung current, towards a lattice vortex super�uid state. The super�uid nature can also be
con�rmed by an algebraic decay of the single particle correlation function along the ladder (see
Fig. 5.9(a)). The algebraic decay is modulated by a periodic function, with the period of three
lattice sites. From the vortex density (Fig. 5.8(a)), we identify the VL1/3-SF state corresponding
to this modulation. We observe that by increasing the strength of the interactions, the extent
of the lattice vortex super�uid state shrinks to 3.25J‖/L . A . 3.45J‖/L, (Fig. 5.7(d)).

For U = 1J‖, in the region 3.66J‖/L . A . 5.01J‖/L, the density imbalance between the
two legs acquires �nite values with a sharp onset at the lower boundary (Fig. 5.7(c)). This
signals the biased ladder state. Our numerical data is not precise enough in order to identify
the transition between VL1/3-SF and the biased ladder states in the region 3.59J‖/L . A .

3.66J‖/L. Whereas our numerical data (Fig. 5.6(b)) suggests multiple solutions for the same
value of the pump strength, from our numerical resolution we cannot decide on their stability
condition. In the biased ladder state, the currents along the rungs of the ladder are suppressed,
which is consistent with the numerical data from Fig. 5.7(a). Additionally, the charge remains
constant around c ≈ 1 (Fig. 5.7(b)). The super�uid nature of the biased ladder state can be
inferred from the algebraic decay of the single particle correlation function along the ladder,
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5.3 Steady state diagram at �ux ϕ = 0.8 and �lling ρ = 0.8

Figure 5.7.: The chiral current Jc and the average rung current Jr as a function of the pump
strength AL/J‖, for the parameters ϕ = 0.8, ρ = 0.8 with (a) U = 1J‖, (d) U =
2J‖. The central charge c, computed from the scaling of entanglement entropy, for
(b) U = 1J‖, (e) U = 2J‖. The errorbars represented the �t error. The density
imbalance between the two legs of the ladder, for (c)U = 1J‖, (f)U = 2J‖. Dashed
horizontal lines indicate the constant value 0, or 1, as a guide to the eye.
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Figure 5.8.: The vortex density ρv as a function of the pump strength AL/J‖, where the rung
current is �nite for the parameters ϕ = 0.8, ρ = 0.8, with (a) U = 1J‖, (b)
U = 2J‖. The vortex density has the value ρv = 1/3 for (a) 3.19J‖/L . A .
3.59J‖/L, (b) 3.25J‖/L . A . 3.45J‖/L, which represents the VL1/3-SF phase.
Dashed horizontal line indicates the constant value 1/3.

which occurs on top of a periodic function (see Fig. 5.9(b)).

It is expected that for stronger on-site interaction [80, 84] the biased ladder phase is reduced and
will disappear above a critical value Uc. We can observe this in Fig. 5.7(f), where for U = 2J‖,
we see a density imbalance only in the region 3.5J‖/L . A . 4J‖/L and the magnitude of the
imbalance is smaller than the one plotted in Fig. 5.7(c).

For large values of the pump strength A & 5.01J‖/L, the density imbalance vanishes (see
Fig. 5.7(c)). The chiral current shows saturation, while the currents on the rungs are still sup-
pressed (see Fig. 5.7(a)). The single particle correlation function decays algebraically. Consider-
ing these previous �ndings together with the fact that the state has one gapless mode (c ≈ 1),
the state above A & 5.01J‖/L is a Meissner super�uid. For U = 2J‖, the Meissner super�uid
can be found also for lower values of the pump strength, the state starts above A & 4J‖/L.

Thus, for the parameters ϕ = 0.8, ρ = 0.8 and U = 1J‖ the dynamical stabilization of a vortex
lattice super�uid with ρv = 1/3, a biased ladder super�uid and a Meissner super�uid states is
possible.

In Fig. 5.10, we are presenting the entanglement entropy of a subsystem of l rungs embed-
ded in the ladder with L = 240 rungs. The behavior of the entropy is given by: SvN =
c
6

log
(
L
π

sin πl
L

)
+ s1, Eq. (3.62), we use this formula the extract the central charge (see Fig. 5.7).

In Fig. 5.5(a), we are in the VL1/3-SF phase the entropy scaling presents additional substructure
due to the periodicity this phase, in order to reduce the error of the �t one can make use of
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5.3 Steady state diagram at �ux ϕ = 0.8 and �lling ρ = 0.8

the periodicity and �t only the upper or the lower branch. In Figs. 5.5(b),(c), one can observe
a good agreement between the numerical data and the expected �t, obtaining a central charge
c = 0.98 ≈ 1 (as one expects in the biased ladder and the Meissner super�uid phases).

Figure 5.9.: The absolute value of the single particle correlations, |〈b†m,L/4bm,L/4+d + h.c.〉|,
(a) in a logarithmic plot, in the vortex lattice phase, (b) biased-ladder phase, and
(c) in a logarithmic plot, in the Meissner phase, for L = 240, ϕ = 0.8, ρ = 0.8
and U = 1J‖, (a) A = 3.44J‖/L, (b) A = 4.26J‖/L and (c) A = 6.26J‖/L. The
correlations show an algebraic decay, which signals the super�uid phase. The red
curve is the �t ∝ x−α (for (b) we modulated the algebraic decay with a cosine
function), where the �t parameter is (a) α = 0.098±0.001, (b) α = 0.182±0.001,
(c) α = 0.377± 0.001.

In the following, we look at the single particle correlations in the biased ladder phase. In
Fig. 5.9(b) we saw that the correlations show an algebraic decay modulated by a periodic func-
tion, signaling the super�uid nature. But in this phase the Z2 symmetry between the two legs of
the ladder is broken, thus we can ask ourselves if the single particle correlations along the legs
show a di�erent behavior on each leg. In Fig. 5.11, we represented the absolute value of the sin-
gle particle correlations along each leg. One can observe that for the leg with a higher density
the exponent of the algebraic decay, α = 0.162 ± 0.001, is smaller compared to the exponent
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of the algebraic decay of the correlations in the leg with a lower density, α = 0.191 ± 0.001.
This behavior is qualitatively consistent with what one observes in a Bose-Hubbard chain in
the super�uid phase. In Fig. 5.12, we represented the in�uence of the �lling on the exponent of
the algebraic decay in a Bose-Hubbard chain. We observe that in the Bose-Hubbard chain one
would expect that the exponent decreases for a higher density, as we see also in the ladder in
Fig. 5.11.

Figure 5.10.: The scaling of the von Neumann entanglement entropy used for computing the
central charge presented in Fig. 5.7, in the (a) vortex lattice super�uid phase, (b)
biased ladder phase and (c) Meissner super�uid phase, for L = 240, ϕ = 0.8,
ρ = 0.8 and U = 1J‖, (a) A = 3.44J‖/L, (b) A = 4.26J‖/L, (c) A = 6.26J‖/L.
The green curve is the �t of the expression from Eq. (3.62) with the �t parameters
(a) c = 1.00± 0.23, s1 = 1.22± 0.16, (b) c = 0.989± 0.002, s1 = 1.131± 0.001,
(c) c = 0.988± 0.0004, s1 = 0.951± 0.0003.
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5.3 Steady state diagram at �ux ϕ = 0.8 and �lling ρ = 0.8

Figure 5.11.: The absolute value of the single particle correlations, |〈b†m,L/4bm,L/4+d + h.c.〉|
in the biased-ladder phase along each leg, for L = 60, ϕ = 0.8, ρ = 0.8, U = 1J‖
and A = 4.26J‖/L. The green curve corresponds to the leg with higher density
n1 ≈ 1.01 and the orange curve corresponds to the leg with a lower density
n2 ≈ 0.59. The correlations show an algebraic decay, which signals the super�uid
phase. We �t the data with∝ x−α (modulated with a cosine function), where the
�t parameter is α = 0.162± 0.001 (green curve) and α = 0.191± 0.001 (orange
curve).

Figure 5.12.: The exponent, α, of the algebraic decay, ∝ x−α, for the single particle correla-
tions, |〈b†L/4bL/4+d + h.c.〉| in a Bose-Hubbard chain as a function of the �lling,
for L = 60 sites and on-site interaction U = 1J‖.
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6. Summary and Conclusions

In this work we investigated the steady state diagram of bosonic atoms coupled to an optical
cavity. The bosonic atoms are con�ned to quasi-one-dimensional ladder structures formed by
optical lattices. The optical lattice geometry is chosen that a large potential o�set between the
legs exists, which suppresses the tunneling along the rungs of the ladder. Due to the chosen
coupling of the atoms and the cavity �eld, the tunneling on the rungs is restored via the creation
or annihilation of a cavity photon and has a spatial dependent phase imprint, which breaks
the time reversal symmetry. Above a critical value of the pump strength, due to the feedback
between the atoms and the cavity �eld, a �nite occupation of the cavity �eld mode arises and the
bosonic atoms feel an arti�cial gauge �eld. This corresponds to a spontaneous self-organization
of the system above a critical pump value. In the steady state the bosonic atoms acquire a
chiral current due to the arti�cial magnetic �eld. We consider an e�ective Hamiltonian for
the bosonic atoms, obtained by the adiabatic elimination of the cavity �eld. This introduces a
self-consistency condition that needs to be solved together with the e�ective Hamiltonian.

We analyzed low-energy properties of the e�ective Hamiltonian for the atomic degrees of free-
dom. The single particle energy bands can exhibit one minimum at k = 0, or two distinct
minima at �nite quasi-momentum, as a function on the value of the rung tunneling amplitude.
We performed a Bogoliubov theory for the weakly interacting case and we obtained a linear
dispersion relation around k = 0 for the case with one minimum (which would correspond
to the Meissner super�uid). In the case with 2 minima, we have the situation where only one
minimum is populated and a density imbalance exists (biased ladder phase), or the situation
with two independent condensates and two phononic modes (corresponding to the vortex su-
per�uid). But the Bogoliubov theory cannot be used to describe the coupled ladder and cavity
system, as one cannot solve the self-consistency condition in this framework.

Employing the state of the art density matrix renormalization group method for the e�ective
Hamiltonian and considering the self-consistency condition, we demonstrated the stabilization
of Meissner phases both in the super�uid (M-SF) and in the Mott insulator (M-MI) regimes.
Additionally, we found vortex super�uid phases which can be incommensurate (V-SF), or com-
mensurate with the ladder (VLρv-SF), the vortex lattice states. Finally, a biased-ladder super�uid
phase with imbalanced density on the two legs of the ladder can be stabilized. We analyzed the
stability of the mentioned phases for di�erent on-site interaction strengths. One of the advan-
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CHAPTER 6. SUMMARY AND CONCLUSIONS

tages of the dynamic stabilization of the states is their stability and robustness. The evolution
towards the steady states is characterized by a dissipative attractor dynamics which means that
many external perturbations decay exponentially towards the steady state.

Experimentally, the proposed setup can be implemented in di�erent ways. We derived our
model for the case of the ladder structures created using superlattice potentials. However, an
alternative method is to use the synthetic lattice dimension. In this implementation the atoms
are con�ned to one-dimensional structures and the second direction is implemented by internal
states of the atoms [118, 124, 125]. The transitions between the two states are implemented
via Raman transitions employing the cavity mode and an external pump beam. In this case,
our model needs to be extended such that it takes into account the interaction of the di�erent
internal atomic states, which translates into the interaction of the atoms on the same rung.

As an outlook, one can extend the presented scheme to a two-dimensional geometry. The
ground state of the two-dimensional Bose-Hubbard model in an arti�cial magnetic �eld can
exhibit exciting phases like vortex lattice super�uid phases with di�erent vortex con�gura-
tions, that are breaking the spatial symmetry, [111, 126, 127], or bosonic integer and fractional
quantum Hall states [128]. The e�ect of the magnetic �eld on the phase transitions in the two-
dimensional Bose-Hubbard model has also been studied [129]. Thus, the question of which
states can be stabilized in the coupled cavity-atomic system is of interest.
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A. Appendix

A.1. Header �le bosehubbard.h
#ifndef __ITENSOR_BOSEHUBBARD_H
#define __ITENSOR_BOSEHUBBARD_H
#include "itensor/mps/siteset.h"
#include "math.h"

namespace itensor {
class BoseHubbardSite;
using BoseHubbard = BasicSiteSet<BoseHubbardSite>;
class BoseHubbardSite

{
IQIndex s;

int Nc_;
public:
BoseHubbardSite() { }
BoseHubbardSite(IQIndex I) : s(I) { }
BoseHubbardSite(int n, Args const& args = Args::global())

{
Nc_=args.getInt("Nc");

std::vector<IndexQN> inds;
for (int i=0; i<=Nc_;i++)
{

inds.push_back(IndexQN(Index(nameint("n"+std::to_string(i)+" ",n),1,Site),QN("Nb=",i)));
}
s=IQIndex(nameint("site=",n),std::move(inds));

}
IQIndex
index() const { return s; }
IQIndexVal
state(std::string const& state)
{

int er=0;
if(state == "0" || state == "Emp" || state == "n0")

{
return s(1);
er=1;

}
else

for(int j=1;j<=Nc_;j++)
{

if(state == std::to_string(j) || state=="n"+std::to_string(j))
{

return s(j+1);
er=1;

}
}
if(er==0)

{
Error("State " + state + " not recognized");

}
return IQIndexVal{};
}

IQTensor
op(std::string const& opname,

Args const& args) const
{
auto sP = prime(s);
IQTensor Op(dag(s),sP);
if(opname == "Nb")
{

for(int j=1;j<=(Nc_+1);j++)
{

Op.set(s(j),sP(j),j-1);
}

}
else

if(opname == "Nbsquare")
{

for(int j=1;j<=(Nc_+1);j++)
{

Op.set(s(j),sP(j),(j-1)*(j-1));
}

}
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else
if(opname == "B")
{

for(int j=2;j<=(Nc_+1);j++)
{

Op.set(s(j),sP(j-1),std::sqrt(j*1.-1));
}

}
else
if(opname == "Bdag")
{

for(int j=1;j<=Nc_;j++)
{

Op.set(s(j),sP(j+1),std::sqrt(j*1.));
}

}
else

{
Error("Operator " + opname + " name not recognized");

}

return Op;
}

};
} //namespace itensor
#endif

A.2. Header �le dmrg_modi�ed.h
// DMRG without a fixed number of sweeps
// We present just the part we modified

template <class Tensor, class LocalOpT>
Real inline
DMRGWorker2(MPSt<Tensor>& psi,

LocalOpT& PH,
const Sweeps& sweeps,
const Args& args = Global::args())

{
DMRGObserver<Tensor> obs(psi,args);
Real energy = DMRGWorker2(psi,PH,sweeps,obs,args);
return energy;
}

template <class Tensor, class LocalOpT>
Real
DMRGWorker2(MPSt<Tensor>& psi,

LocalOpT& PH,
const Sweeps& sweeps,
DMRGObserver<Tensor>& obs,
Args args = Global::args())

{
const bool quiet = args.getBool("Quiet",false);
const int debug_level = args.getInt("DebugLevel",(quiet ? 0 : 1));

const int maxsw=args.getInt("maxsw",30);
const Real engoal=args.getReal("engoal",1E-8);

const int N = psi.N();
Real energy = NAN;

Real energylast=NAN;
psi.position(1);
args.add("DebugLevel",debug_level);
args.add("DoNormalize",true);

int sw=1;
Real enerror=1;

while(sw<=maxsw && enerror>engoal)
{
cpu_time sw_time;

if(sw<=sweeps.nsweep())
{

args.add("Sweep",sw);
args.add("Cutoff",sweeps.cutoff(sw));
args.add("Minm",sweeps.minm(sw));
args.add("Maxm",sweeps.maxm(sw));
args.add("Noise",sweeps.noise(sw));
args.add("MaxIter",sweeps.niter(sw));

}
else
{

args.add("Sweep",sweeps.nsweep());
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args.add("Cutoff",sweeps.cutoff(sweeps.nsweep()));
args.add("Minm",sweeps.minm(sweeps.nsweep()));
args.add("Maxm",sweeps.maxm(sweeps.nsweep()));
args.add("Noise",sweeps.noise(sweeps.nsweep()));
args.add("MaxIter",sweeps.niter(sweeps.nsweep()));

}

if(!PH.doWrite()
&& args.defined("WriteM")
&& sweeps.maxm(sw) >= args.getInt("WriteM"))
{
if(!quiet)

{
println("\nTurning on write to disk, write_dir = ",

args.getString("WriteDir","./"));
}

PH.doWrite(true);
}

printfln("\n Sweep number: %d",sw);
for(int b = 1, ha = 1; ha <= 2; sweepnext(b,ha,N))

{
if(!quiet)

{
printfln("Sweep=%d, HS=%d, Bond=(%d,%d)",sw,ha,b,(b+1));
}

PH.position(b,psi);
auto phi = psi.A(b)*psi.A(b+1);
energy = davidson(PH,phi,args);
auto spec = psi.svdBond(b,phi,(ha==1?Fromleft:Fromright),PH,args);
if(!quiet)

{
printfln(" Truncated to Cutoff=%.1E, Min_m=%d, Max_m=%d",

sweeps.cutoff(sw),
sweeps.minm(sw),
sweeps.maxm(sw) );

printfln(" Trunc. err=%.1E, States kept: %s",
spec.truncerr(),
showm(linkInd(psi,b)) );

}
obs.lastSpectrum(spec);
args.add("AtBond",b);
args.add("HalfSweep",ha);
args.add("Energy",energy);
obs.measure(args);
}

if(sw>1)
{

enerror=std::abs(energylast-energy);
}
energylast=energy;

auto sm = sw_time.sincemark();
printfln(" Sweep %d CPU time = %s (Wall time = %s)",

sw,showtime(sm.time),showtime(sm.wall));
if(obs.checkDone(args)) break;

printfln(" energy error: %0.10f",enerror);
sw=sw+1;

}
psi.normalize();
return energy;
}

A.3. File BH_ladder.cc
#include "itensor/all.h"
#include "bosehubbard.h"
#include "dmrg2.h"
#include "math.h"
#include "string.h"
#include "stdio.h"
#include <iomanip>
#include <sstream>
using namespace std;
using namespace itensor;

int
main(int argc, char* argv[])

{
//Parse the input file

if(argc < 2) { printfln("Usage: %s inputfile_dmrg_table",argv[0]); return 0; }
auto input = InputGroup(argv[1],"input");
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//Read in individual parameters from the input file
auto N = input.getInt("N"); //needs to be even

auto U=input.getReal("U",0.0);
auto Jper=input.getReal("Jper",1.0);
auto phi=input.getReal("phi",0.0);
auto bpot=input.getReal("boundpot",0.0);
auto bnol=input.getInt("bornol",3);
auto bnor=input.getInt("bornor",3);
auto Jpar=input.getReal("Jpar",1.0);;//always 1
auto factp=cos(phi/2*Pi)+sin(phi/2*Pi)*1_i; //Exp(i*phi/2)
auto factm=cos(phi/2*Pi)-sin(phi/2*Pi)*1_i; //Exp(-i*phi/2)

auto nsweeps = input.getInt("nsweeps");
auto quiet = input.getYesNo("quiet",true);

auto initialstate=input.getInt("initialstate",0);
//initial state: 0 - 1 boson; 1 - 1 boson/site;
//2-0.5 boson/site (00 11) 3-0.5 boson/site (01 10)
//4-0.5 bosons/site (alternate)
auto mydmrg=input.getYesNo("mydmrg",false); //use my dmrg code or the itensor routine
auto dmrgfixedsw=input.getYesNo("dmrgfixedsw", true); //fixed number of sweeps
auto meassw=input.getYesNo("meas_in_sweeps",false);
auto FileNameOutput=input.getString("outfilename","BHout");
//create name for output files
stringstream streamU, streamJper, streamphi;
streamU << fixed << setprecision(2) << U;
streamJper << fixed << setprecision(2) << Jper;
streamphi << fixed << setprecision(2) << phi;
FileNameOutput=FileNameOutput+"_N"+to_string(N)+"_U"+streamU.str()+"_Jper"+streamJper.str()+"_phi"+streamphi.str();
//output file for energy
string outputfilename1=FileNameOutput;

outputfilename1.append("_en.out");
ofstream outputfile1;
outputfile1.open (outputfilename1);
// Read the sweeps parameters from a table.
//
//Read in the sweeps table itself
auto table = InputGroup(input,"sweeps");
//Create the sweeps class & print
auto sweeps = Sweeps(nsweeps,table);
println(sweeps);

//local bosonic dimension
auto Nc=input.getInt("bosoncut",3);
auto sites=BoseHubbard(N,{"Nc",Nc});
auto init=InitState(sites);
if(initialstate==1)
{

for(int i=1;i<=N;i++)
{

init.set(i,"1");
}

}
else
if(initialstate==2)
{

for(int i=1;i<=N;i++)
{

if(i%2==0)
init.set(i,"1");

else
init.set(i,"0");

}
}
else
if(initialstate==3)
{

for(int i=1;i<=N/2;i++)
{

if(i%2==0)
init.set(i,"1");

else
init.set(i,"0");

}
for(int i=N/2+1;i<=N;i++)
{

if(i%2==0)
init.set(i,"0");

else
init.set(i,"1");

}
}
else
if(initialstate==4)
{
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for(int i=1;i<=N;i++)
{

if(i%4==1)
init.set(i,"1");

else
if(i%4==2)

init.set(i,"0");
else
if(i%4==3)

init.set(i,"0");
else

init.set(i,"1");
}

}

IQMPS psi;
psi=IQMPS(init);
//definition of the MPO Hamiltonian
auto ampo=AutoMPO(sites);
for(int j=1; j<=N; j++)
{

ampo+=(U/2),"Nbsquare",j;
ampo+=(-U/2),"Nb",j;

}
for(int j=1; j<N; j++)
{

if(j%2==1)
{

ampo+=(-Jper),"Bdag",j+1,"B",j;
ampo+=(-Jper),"Bdag",j,"B",j+1;

}
}
for(int j=1; j<N-1; j++)
{

if(j%2==1)
{

ampo+=(-Jpar*factp),"Bdag",j,"B",j+2;
ampo+=(-Jpar*factm),"Bdag",j+2,"B",j;

}
else
{

ampo+=(-Jpar*factm),"Bdag",j,"B",j+2;
ampo+=(-Jpar*factp),"Bdag",j+2,"B",j;

}
}
for(int j=1; j<2*bnol+1;j++)
{

if(j%2==1)
{

ampo+=(-bpot),"Nb",j;
}
else
{

ampo+=(bpot),"Nb",j;
}

}
for(int j=N; j>N-(2*bnor);j--)
{

if(j%2==1)
{

ampo+=(-bpot),"Nb",j;
}
else
{

ampo+=(bpot),"Nb",j;
}

}
auto H=IQMPO(ampo);
if(mydmrg)
{
auto Heff=LocalMPO<IQTensor>(H);
Real energy=0;
//output file for truncation error
string outputfilename2=FileNameOutput;

outputfilename2.append("_truncerr.out");
ofstream outputfile2;
outputfile2.open (outputfilename2);

//output file for number of eigenvalues kept
string outputfilename3=FileNameOutput;

outputfilename3.append("_m.out");
ofstream outputfile3;
outputfile3.open (outputfilename3);
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//output file for measurement of the chiral current during the sweeps
string outputfilename8=FileNameOutput;
outputfilename8.append("_SWchcur.out");
ofstream outputfile8;
outputfile8.open (outputfilename8);
//output file for measurement of Kper during the sweeps
string outputfilename9=FileNameOutput;
outputfilename9.append("_SWkper.out");
ofstream outputfile9;
outputfile9.open (outputfilename9);
//sweeps
for(int sw=1; sw<=sweeps.nsweep();++sw)
{

if(sw>1)
{

printfln("Energy=%.20f \n",energy);
}
printfln("Sweep=%d",sw);
//loop over bonds
for(int b=1, dir=1; dir!=3; sweepnext(b,dir,N))
{

//regauge and construct Heff
psi.position(b);
Heff.position(b,psi);
//eigenvalues problem
IQTensor phi=psi.A(b)*psi.A(b+1);
energy=davidson(Heff,phi);
outputfile1 <<sw<<" "<<b<<" "<<setprecision(16)<<energy<<"\n";
//accuracy parameters for svd
auto args=Args("Cutoff",sweeps.cutoff(sw),"Maxm",sweeps.maxm(sw),"Minm",sweeps.minm(sw));
//tensors for svd results
auto& A=psi.Anc(b);
auto& B=psi.Anc(b+1);
IQTensor D;
Spectrum spec=svd(phi,A,D,B,args);
outputfile2 <<sw<<" "<<b<<" "<<setprecision(16)<<spec.truncerr()<<"\n";
outputfile3 <<sw<<" "<<b<<" "<<spec.numEigsKept()<<"\n";
if(dir==1) //sweeping right
{

B=D*B;
}
else

if(dir==2) //sweeping left
{

A=A*D;
}

}
}
printfln("Energy=%.20f \n",energy);
outputfile2.close();
outputfile3.close();
outputfile8.close();
outputfile9.close();
}
else
if(dmrgfixedsw==true)
{

auto energy2 = dmrg(psi,H,sweeps,{"Quiet",true});
printfln("Energy=%.20f \n",energy2);
outputfile1 <<setprecision(16)<<energy2<<"\n";

}
else
{

auto maxsw=input.getInt("maxsw", 30); //max number of sweeps in case the precision is not met
auto engoal=input.getReal("engoal",1E-8); //energy error goal between the sweeps
auto energy2 = dmrg2(psi,H,sweeps,{"Quiet",true,"maxsw",maxsw,"engoal",engoal});

printfln("\n Energy=%.20f \n",energy2);
outputfile1 <<setprecision(16)<<energy2<<"\n";

}
outputfile1.close();
//mps to file
auto mps_file = input.getYesNo("mps_file",false);
if(mps_file==true)
{

//output file for truncation error
string outputfilenamemps=FileNameOutput;
outputfilenamemps.append("_mps");
writeToFile(outputfilenamemps,psi);

}
//operators & measurements
//density measurement
auto no_meas = input.getYesNo("no_meas",false); //boson number measurement
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if(no_meas==true)
{

auto no_all= input.getYesNo("no_all",false); //measure all sites
//output file for density
string outputfilename4=FileNameOutput;
outputfilename4.append("_dens.out");
ofstream outputfile4;
outputfile4.open (outputfilename4);
if(no_all==true)
{

Real Ntot=0;
for(int i=1;i<=N;i++)
{

IQTensor Ni= sites.op("Nb",i);
psi.position(i);
IQTensor ket = psi.A(i);
IQTensor bra = dag(prime(ket,Site));
auto nav = (bra*Ni*ket).real();
printf("at site %u <n>=%0.10f \n",i,nav);
outputfile4 <<i<<" "<<setprecision(16)<<nav<<"\n";
Ntot+=nav;

}
printf("\n<N_total>=%0.5f \n",Ntot);
outputfile4 <<"\n"<<setprecision(16)<<Ntot<<"\n";

}
outputfile4.close();

}

//rung current measurement
auto rcur_meas = input.getYesNo("rcur_meas",false);
if(rcur_meas==true)
{

auto rcur_all= input.getYesNo("rcur_all",false); //measure all rungs
//output file for rung currents
string outputfilename5=FileNameOutput;
outputfilename5.append("_rcur.out");
ofstream outputfile5;
outputfile5.open (outputfilename5);
if(rcur_all==true)
{

for(int i=1;i<=N;i+=2)
{

IQTensor bdag1= sites.op("Bdag",i);
IQTensor b1= sites.op("B",i);
IQTensor bdag2= sites.op("Bdag",i+1);
IQTensor b2= sites.op("B",i+1);
psi.position(i);
IQTensor ket = psi.A(i)*psi.A(i+1);
IQTensor bra = dag(prime(ket,Site));
auto c1 = (bra*bdag1*b2*ket).cplx();
auto c2 = (bra*bdag2*b1*ket).cplx();
printf("between site %u and site %u <j_r>=-iJ_per(%0.5f - %0.5f) = %0.5f \n",i,i+1,c1,c2,imag(

Jper*(c1-c2)));

outputfile5 <<i<<" "<<i+1<<" "<<setprecision(16)<<imag(Jper*(c1-c2))<<"\n";
}

}
outputfile5.close();

}
//leg current measurement
auto lcur_meas = input.getYesNo("lcur_meas",false);
if(lcur_meas==true)
{

auto lcur_all= input.getYesNo("lcur_all",false); //measure all leg currents

string outputfilename6=FileNameOutput;
outputfilename6.append("_lcur.out");
ofstream outputfile6;
outputfile6.open (outputfilename6);
if(lcur_all==true)
{

Real jch=0;
Real jch_part=0;

for(int i=1;i<N-1;i++)
{

IQTensor bdag1= sites.op("Bdag",i);
IQTensor b1= sites.op("B",i);
IQTensor bdag2= sites.op("Bdag",i+2);
IQTensor b2= sites.op("B",i+2);
psi.position(i);
IQTensor ket = psi.A(i)*psi.A(i+1)*psi.A(i+2);
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IQTensor bra=dag(ket);
IQTensor ket1=bdag1*b2*ket;
ket1=noprime(ket1);
IQTensor ket2=bdag2*b1*ket;
ket2=noprime(ket2);
auto c1 = (bra*ket1).cplx();
auto c2 =(bra*ket2).cplx();
if(i%2==1)
{

auto jloc1=factp*c1;
auto jloc2=factm*c2;
printf("between site %u and site %u <j_l>=-i(%0.5f - %0.5f) = %0.5f \n",i,i+2,jloc1,

jloc2,imag(jloc1-jloc2));
outputfile6 <<i<<" "<<i+2<<" "<<setprecision(16)<<imag(jloc1-jloc2)<<"\n";
jch+=imag(jloc1-jloc2);
if(i>=N/4 && i<3*N/4)
{

jch_part+=imag(jloc1-jloc2);
}

}
else
{

auto jloc1=factm*c1;
auto jloc2=factp*c2;
printf("between site %u and site %u <j_l>=-i(%0.5f - %0.5f) = %0.5f \n",i,i+2,jloc1,

jloc2,imag(jloc1-jloc2));
outputfile6 <<i<<" "<<i+2<<" "<<setprecision(16)<<imag(jloc1-jloc2)<<"\n";
jch+=imag(jloc2-jloc1);
if(i>=N/4 && i<3*N/4)
{

jch_part+=imag(jloc2-jloc1);
}

}
}
jch=jch/N;
jch_part=jch_part/N*2;
printf("\nJ_ch=%0.5f ",jch);
printf("\nJ_ch_part=%0.5f %u\n",jch_part);
outputfile6 <<"\n"<<setprecision(16)<<jch<<"\n";
outputfile6 <<setprecision(16)<<jch_part<<"\n";

}
outputfile6.close();

}
//K_per measurement
auto kper_meas = input.getYesNo("kper_meas",false); //Kper measurement
if(kper_meas==true)
{

auto kper_all= input.getYesNo("kper_all",false); //measure all sites
string outputfilename7=FileNameOutput;
outputfilename7.append("_Kper.out");
ofstream outputfile7;
outputfile7.open (outputfilename7);
if(kper_all==true)
{

Real kpertotr=0, kpertoti=0;
Real kpertotr_part=0, kpertoti_part=0;
for(int i=1;i<N;i=i+2)
{

IQTensor bdagi= sites.op("Bdag",i);
IQTensor bi1= sites.op("B",i+1);
psi.position(i);
IQTensor ket = psi.A(i)*psi.A(i+1);
IQTensor bra = dag(prime(ket,Site));
auto kper = (bra*bdagi*bi1*ket).cplx();
printf("between site %u and site %u <K_per>=%0.10f \n",i,i+1,kper);
outputfile7 <<i<<" "<<i+1<<" "<<setprecision(16)<<kper<<"\n";
kpertotr+=real(kper);
kpertoti+=imag(kper);
if(i>=N/4 && i<3*N/4)

{
kpertotr_part+=real(kper);
kpertoti_part+=imag(kper);

}
}
printf("\n<Kper_total>=%0.10f %0.10f \n",kpertotr,kpertoti);
outputfile7 <<"\n"<<setprecision(16)<<kpertotr<<" "<<kpertoti<<"\n";
kpertotr=kpertotr/N*2;
kpertoti=kpertoti/N*2;
outputfile7 <<setprecision(16)<<kpertotr<<" "<<kpertoti<<"\n";
kpertotr_part=kpertotr_part/N*4;
kpertoti_part=kpertoti_part/N*4;
outputfile7 <<setprecision(16)<<kpertotr_part<<" "<<kpertoti_part;
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}
outputfile7.close();

}
auto corr_meas = input.getYesNo("corr_meas",false); //correlations
if(corr_meas==true)
{

string outputfilename8=FileNameOutput;
outputfilename8.append("_corr_densR.out");
ofstream outputfile8;
outputfile8.open (outputfilename8);
string outputfilename9=FileNameOutput;
outputfilename9.append("_corr_densL.out");
ofstream outputfile9;
outputfile9.open (outputfilename9);
string outputfilename10=FileNameOutput;
outputfilename10.append("_corr_longrange.out");
ofstream outputfile10;
outputfile10.open (outputfilename10);
for(int i=N/4;i<3*N/4;i++)

{
if(i%2==1)
{

IQTensor N1= sites.op("Nb",i);
IQTensor N2= sites.op("Nb",i+1);
IQTensor N3= sites.op("Nb",i+2);
psi.position(i);
IQTensor ket = psi.A(i)*psi.A(i+1)*psi.A(i+2);
IQTensor bra=dag(ket);
IQTensor ket1=N1*N2*ket;
ket1=noprime(ket1);
IQTensor ket21=N1*ket;
ket21=noprime(ket21);
IQTensor ket22=N2*ket;
ket22=noprime(ket22);
auto nnav=(bra*ket1).real();
auto nav1=(bra*ket21).real();
auto nav2=(bra*ket22).real();
printf("between site %u and site %u <n1n2>-<n1><n2>=%0.10f-%0.10f=%0.10f \n",i,i+1,nnav

,(nav1*nav2),(nnav-nav1*nav2));
outputfile8 <<i<<" "<<i+1<<" "<<setprecision(16)<<nnav<<" "<<(nnav-nav1*nav2)<<"\n";
ket1=N1*N3*ket;
ket1=noprime(ket1);
IQTensor ket23=N3*ket;
ket23=noprime(ket23);
nnav=(bra*ket1).real();
auto nav3=(bra*ket23).real();
printf("between site %u and site %u <n1n2>-<n1><n2>=%0.10f-%0.10f=%0.10f \n",i,i+2,nnav

,(nav1*nav3),(nnav-nav1*nav3));
outputfile9 <<i<<" "<<i+2<<" "<<setprecision(16)<<nnav<<" "<<(nnav-nav1*nav3)<<"\n";

}
else
{

IQTensor N1= sites.op("Nb",i);
IQTensor N3= sites.op("Nb",i+2);
psi.position(i);
IQTensor ket = psi.A(i)*psi.A(i+1)*psi.A(i+2);
IQTensor bra=dag(ket);
IQTensor ket1=N1*N3*ket;
ket1=noprime(ket1);
IQTensor ket21=N1*ket;
ket21=noprime(ket21);
IQTensor ket23=N3*ket;
ket23=noprime(ket23);
auto nnav=(bra*ket1).real();
auto nav1=(bra*ket21).real();
auto nav3=(bra*ket23).real();
printf("between site %u and site %u <n1n2>-<n1><n2>=%0.10f-%0.10f=%0.10f \n",i,i+2,nnav

,(nav1*nav3),(nnav-nav1*nav3));
outputfile9 <<i<<" "<<i+2<<" "<<setprecision(16)<<nnav<<" "<<(nnav-nav1*nav3)<<"\n";

}
}
int poz=N/4;
if(poz%2==0)

poz=poz+1;
IQTensor bdag1= sites.op("Bdag",poz);
psi.position(poz);
IQTensor braket = psi.A(poz);
braket=bdag1*braket;
auto ir = commonIndex(psi.A(poz),psi.A(poz+1),Link);
braket=braket*dag(prime(prime(psi.A(poz),Site),ir));
braket=braket*psi.A(poz+1);
braket=braket*dag(prime(psi.A(poz+1),Link));
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for(int i=2;i<N/2;i=i+2)
{

IQTensor bi1= sites.op("B",poz+i);
braket=braket*psi.A(poz+i);
IQTensor braket_fin=braket*bi1;
auto il = commonIndex(psi.A(poz+i),psi.A(poz+i-1),Link);
braket_fin=braket_fin*dag(prime(prime(psi.A(poz+i),Site),il));
auto corr=braket_fin.cplx();
printf("between site %u and site %u corr=%0.10f \n",poz,poz+i,corr);
outputfile10 <<poz<<" "<<poz+i<<" "<<setprecision(16)<<real(corr)<<" "<<imag(corr)<<"\n";
braket=braket*dag(prime(psi.A(poz+i),Link));
braket=braket*psi.A(poz+i+1);
braket=braket*dag(prime(psi.A(poz+i+1),Link));

}
outputfile8.close();
outputfile9.close();
outputfile10.close();

}

auto entropy_meas = input.getYesNo("entropy_meas",false); //entropy
if(entropy_meas==true)
{

string outputfilename11=FileNameOutput;
outputfilename11.append("_entropy.out");
ofstream outputfile11;
outputfile11.open (outputfilename11);
for(int i=N/4;i<3*N/4;i++)

{
psi.position(i);
IQTensor wf = psi.A(i)*psi.A(i+1);
auto U = psi.A(i);
IQTensor S,V;
auto spectrum = svd(wf,U,S,V);
Real SvN = 0.;
for(auto p : spectrum.eigs())

{
if(p > 1E-12) SvN += -p*log(p);
}

printf("entropy at site %u =%0.10f \n",i,SvN);
outputfile11 <<i<<" "<<setprecision(16)<<SvN<<"\n";

}
outputfile11.close();
}

return 0;
}
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List of Figures

2.1. Sketch of the setup involving one pump beam, adapted from Ref. [95]. The
bosonic atoms in an optical cavity are subjected to an optical super-lattice po-
tential which creates an array of ladders. The atoms tunnel along the legs with
the amplitude J‖, via the cavity-induced processes they tunnel along the rungs
with an e�ective amplitude J⊥ and have an on-site interaction of strength U . In
the level scheme of the cavity-induced tunneling, the energy o�set between two
neighboring wells, ∆, strongly suppresses the tunneling along the rungs. This
is restored by a Raman processes involving the cavity mode with vacuum Rabi
frequency g0 and a transverse pump beam with Rabi frequency Ωp, respectively. 4

2.2. (a) Sketch of the setup involving two transverse pump beams, adapted from
Ref. [98]. The bosonic atoms in an optical cavity are subjected to an optical
super-lattice potential which creates an array of ladders. The atoms tunnel
along the legs with the amplitude J‖, via the cavity-induced processes they
tunnel along the rungs with an e�ective amplitude J⊥ and have an on-site in-
teraction of strength U . (b) Level scheme of the cavity-induced tunneling: |g〉,
|e〉 denote the ground and excited internal electronic states. The energy o�-
set between two neighboring wells, ∆, strongly suppresses the tunneling along
the rungs. This is restored by two Raman processes each of which involve the
cavity mode with vacuum Rabi frequency g0 and a transverse pump beam with
Rabi frequency Ω1,2, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1. The quasi-particle energy bandsE+(k) (red line) andE−(k) (blue line) for three
values of the magnetic �ux ϕ = π

4
, π
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, 3π

4
, and several values of the rung tunnel-

ing amplitude J⊥. As the energy bands re�ect only the single particle physics,
they are the same with the ones obtained in the fermionic case in Ref. [95] . . . 19

3.2. The energy bandsE1(k) (blue line) andE2(k) (red line), compared with the non-
interacting energy bands E−(k) (orange line) and E+(k) (purple line), for the
parameters (a) ϕ = π/2, J⊥ = 3J‖, U = 1J‖ and (b) ϕ = π/4, J⊥ = 1J‖, U =

0.5J‖. It can be observed that the interaction shifts the upper band to higher
energies and in the lower band beside the shift for small quasi-momentum the
quadratic dispersion becomes linear. . . . . . . . . . . . . . . . . . . . . . . . . . 32
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3.3. The energy bands E1(k) (blue line) and E2(k) (red line), for the parameters
(a)-(c) ϕ = π/4, J⊥ = 2J‖, U ∈ {0.1, 0.2, 0.3}J‖ and (d)-(f) ϕ = π/2, J⊥ =

5J‖, U ∈ {0.5, 1, 1.5}J‖. It can be observed that the extent of the linear disper-
sion is larger as the interaction strength increases. . . . . . . . . . . . . . . . . . 33

3.4. The Bogoliubov excitation spectrum given by the Hamiltonian (3.56) in the
biased ladder phase, for a magnetic �ux ϕ = π/2, rung hopping amplitude
J⊥ = 1.2J‖ and three values of the interaction strength, U = 0.1J‖ (orange
line), U = 0.2J‖ (blue line), U = 0.1J‖ (red line), compared with the non-
interacting, U = 0, dispersion relation (black line). One can observe the roton-
like behavior which develops for �nite interaction strengths. . . . . . . . . . . 37

3.5. The Bogoliubov excitation spectrum given by the Hamiltonian (3.56), for a mag-
netic �ux ϕ = π/2, rung hopping amplitude J⊥ = 1.05J‖ and two values of the
interaction strength, U = 0.25J‖ (orange line), U = 0.5J‖ (red line), compared
with the non-interacting, U = 0, dispersion relation (black line). . . . . . . . . 38

3.6. The Bogoliubov excitation spectrum given by the Hamiltonian (3.55) for two
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U = 0.2J‖ (dark blue line). We observe a linear dispersion close to the two
minima. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.7. The imaginary part of the Bogoliubov excitation spectrum given by the Hamil-
tonian (3.55) for two independent condensates, for a magnetic �ux ϕ = π/2,
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3.8. With yellow the region where the two quadratic Hamiltonians, Eq. (3.55)-(3.56),
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3.9. Current patterns and on-site density for some of the di�erent phases of the
e�ective model, (a) the Meissner phase (M-SF, M-MI), (b) the biased-ladder su-
per�uid phase (BLP-SF), (c) vortex liquid (V-SF) phase with a vortex density
1/3 < ρv < 2/5, and (d)-(e) vortex lattices (VL1/2,1/3-SF) with (d) ρv = 1/2,
and (e) ρv = 1/3. The length of the arrows is proportional to the strength of
the local currents and the size of the red circles scales with the on-site density
(DMRG data). The dashed rectangles represent the unit cell for the vortex lat-
tice phases. The de�nitions of the observables that describe each phase can be
found in the main text. Figure adapted from Ref. [98]. . . . . . . . . . . . . . . 44
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