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CHAPTER 1

Introduction

The Standard Model (SM) of particle physics is a theory that was developed throughout the 20th
century. It is able to successfully describe three of the four fundamental forces, gravity being the
only one that cannot be explained by it yet. In doing so it manages to explain a wide variety of
fundamental phenomena of nature with high precision, such as the life of stars and nuclear power.
It can even give high precision theoretical values for effects that require a combined analysis of the
weak interaction, the strong interaction and the electromagnetic interaction. Some of its successful
predictions are the discovery of the Higgs boson, the properties of the weak neutral current, and the W
and Z boson. It is also able to combine the various theories of fundamental physics in an internally
consistent manner. Despite the significant accomplishments of the Standard Model, there are still a
growing number of subtle effects measured by experiments all over the world that leave questions
unanswered and demand theoretical explanations that it can not yet offer. These range from more
fundamental problems (e.g. how to create a unified theory of gravity and quantum mechanics [25],
baryon assymetry in the universe [34] and the origin of the neutrino mass [24]) to divergences between
theory and measurement (e.g. the anomalous magnetic dipole moment of the muon [18]). While there
are plenty of theoretical approaches to many of these outstanding issues, there is still a lack of proof of
these theories.

Many of these effects require very high precision measurements to be detected, which in turn
require very accurate experiments and rigorous analysis of the data. The Large Hadron Collider
(LHC) at the European Organization for Nuclear Research (CERN) is one complex where such
experiments can be conducted. It can accelerate particles to energies of up to 13.6 TeV [31]. Only
cosmic ray experiments are able to offer higher energies, but they have vastly lower luminosities at
those energies. The various experiments at the LHC can measure particle production cross sections
or branching ratios to infer the underlying coupling strengths and then compare them to theoretical
expectations. It can also measure the masses of known particles or find resonances in the data that
might be created by as of yet unknown particles. The greatest achievement of the LHC is the discovery
of the Higgs boson by the ATLAS and CMS experiment at the LHC. It was originally measured
with a mass of 𝑚𝐻 = 126.0 ± 0.4(stat.) ± 0.4(sys.) GeV [36] and is now measured to have a mass of
𝑚𝐻 = 125.10 ± 0.14 GeV [12].

In this thesis the problems arising from reconstructing H → 𝜏𝜏 events are discussed and different
methods of reconstructing ditau events are presented. The focus of this thesis are neural networks
trained to optimize the mass reconstruction of ditau events.
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Chapter 1 Introduction

Chapter 2 gives a brief introduction of the Standard Model. An overview of the particles of the
SM and their properties is presented. In addition, the properties of the fundamental forces described
by the SM are explained. The tau lepton, the Higgs boson and the Z boson are described in further
detail as they are the most relevant for this thesis, including their production cross sections and their
decay channels. In chapter 3 the LHC and the ATLAS detector are introduced. Their capabilities,
limitations and the way they function are explained. In chapter 4 the reconstruction methods and
capabilities of the ATLAS experiment for some particles are explained. First, the reconstruction of
jets is explained, since they are important for the tau lepton reconstruction. Then, an overview of the
tau lepton reconstruction is given.

In chapter 5 methods of reconstructing the mass of ditau events are introduced. The first method
only includes the visible reconstructed mass of the event. After that, the collinear approximation is
presented. Finally, the Missing Mass Calculator (MMC) is introduced. Chapter 6 introduces a final
approach for the ditau mass reconstruction. This approach is the focus of this thesis and works by
using regressional neural networks trained on Monte Carlo data. In this chapter the general concept of
how neural networks function and a more in depth description of the parameters and methods that are
relevant for this analysis are discussed.

Chapter 7 introduces the Monte Carlo datasets that are used in the training and evaluation of the
neural networks. The mass spectrum of these datasets, the cuts applied to the them, and the spin of the
ditau resonances of the datasets is discussed. In chapter 8 the neural network analysis is presented.
The performance of neural networks trained on different samples, targets, input variables and loss
functions are compared to each other and to the MMC reconstruction. Chapter 9 gives a conclusion
and outlook of this thesis.
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CHAPTER 2

The Standard Model

The Standard Model (SM) of particle physics combines and accurately explains three of the four
fundamental forces of nature in a mathematically coherent manner. It is able to give very accurate
predictions of most physical effects on a most fundamental level. Unless otherwise specified, the
source for this chapter is [92]

Figure 2.1: Particles of the Standard Model, showing their mass, charge and spin [74].

Fig. 2.1 shows the elementary particles that make up the SM. It also shows the mass, charge
and spin of each of the particles. They can be grouped into twelve fermions (left), characterized by
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Chapter 2 The Standard Model

Interaction Propagators Relative strength Range
EM-Interaction Photon 𝛼 = 1

137 [68] inf
Weak Interaction 𝑊

±
,Z 𝛼𝑊 ∼ 10−6 [75] ∼ 10−18

Strong Interaction Gluon 𝛼𝑆 ∼ 1 [47] ∼ 10−15

Gravity Graviton(?) 𝛼𝑔 ∼ 10−39 [75] inf

Table 2.1: The four fundamental forces of nature and some of their properties. As the graviton is not proven to
exist yet it is marked with a question mark.

their half-integer spin (in this case always 𝑠 = 1/2), and five bosons (right), characterized by their
full-integer spin (in this case either 𝑠 = 0 or 𝑠 = 1). The fermions are split into two groups: The
leptons (bottom) and the quarks (top). Quarks have color charge and can therefore interact with the
strong force, while leptons can not. The fermions are also split into three generations (from left to
right), each generation having two quarks and two leptons. The first generation consists of the up quark
(u), the down quark (d), the electron lepton (e) and the electron neutrino (𝜈𝑒). Most visible matter in
the universe is made up of the two quarks and the electron of the first generation. The neutrino is
by far the lightest and the quarks are the heaviest of the four particles. The up quark has a charge of
𝑞 = +2/3 e and the down quark has a charge of 𝑞 = −1/3 e. The electron has a charge of 𝑞 = −1 e and
the neutrino has no charge. This is a pattern that repeats for the other generations. Only the masses of
the particles increase with the generation. The particles of the second generation are the charm quark
(c), strange quark (s), muon (𝜇) and the muon neutrino (𝜈𝜇). In the third and heaviest generation are
the top quark (𝑡, the heaviest elementary particle discovered with a mass of 𝑚𝑡 = 173 GeV), bottom
quark (b), tau lepton (𝜏) and the tau neutrino (𝜈𝜏). In addition to those particles, every fermion (with
the possible exception of the neutrinos as further discussed in [16]) has a partner antiparticle, which
has the same mass and quantum numbers as the standard particles but have an opposite charge.

The bosons are split into a group of four spin 1 gauge bosons (W+/− , Z, 𝛾 (photon), and 𝑔 (gluon)),
which act as the force carriers of the fundamental forces, and the Higgs boson, which has 𝑠 = 0.
The W+/− and Z bosons are the force carriers of the weak force. The W+/−-bosons have a charge
of 𝑞 = ±1 e and a mass of 𝑚𝑊 = 80.38 GeV, while the Z boson has no charge and has a mass of
𝑚𝑍 = 91.19 GeV [12]. The photon is the force carrier of the electromagnetic force. It has no charge
and no mass. The gluon is the force carrier of the strong force and also has no mass but has color
charge.

2.1 Fundamental Interactions

The interactions that are described in the standard model are the electromagnetic interaction, the weak
interaction and the strong interaction. Gravity can not yet be explained by a coherent theory that
combines the four forces. Tab. 2.1 shows some characteristics of these interactions. Gravity is by
far the weakest force, which is why it is uniquely challenging to investigate it in high energy physics
experiments. The force carrier of gravity has not yet been discovered but it is named the graviton and
is expected to have a spin of 2 since it has to couple to the stress-energy tensor of order 2. It is also
assumed to be massless since we assume that gravity has infinite range [73].
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2.1 Fundamental Interactions

Figure 2.2: A Feynman diagram showing electron-positron scattering (Bhabha scattering). In this case, it is a
s-channel scattering.

Figure 2.3: A Feynman diagram showing electron-positron scattering (Bhabha scattering). In this case, it is a
t-channel scattering.

2.1.1 Feynman diagrams

A clear representation of fundamental interactions is provided by Feynman diagrams. In a Feynman
diagram, particles are depicted as lines which meet and interact in vertices. A vertex usually combines
three or sometimes four different lines. An example diagram is shown in fig. 2.2. This diagram shows
electron-positron scattering, also called Bhabha scattering. Fermions are typically depicted as straight
lines. Photons are shown as wavy lines, gluons as helices and other bosons are dashed lines. In this
thesis the time axis goes from left to right, indicating that the lines with open ends on the left of
the diagram depict initial particles and lines with open ends on the right of the diagram depict final
particles of the interaction. If an arrow on the line points in the same direction as the time axis then it
is a particle, while it is an antiparticle if it points in the opposite direction. The neutral bosons are
their own antiparticles and therefore are drawn without arrows on them.

Feynman diagrams help understand what happens in an interaction and they also tell us which
kinds of interactions are possible. One of the most important applications of feynman diagrams is
calculating the cross section of certain interactions. At each vertex quantum numbers (such as charge,
spin, color charge, etc.) have to be conserved. Energy and momentum do not have to be conserved
perfectly as the uncertainty principle allows for temporary energy and momentum violations. Particles
that are generated through such violations are called off-shell and can be marked with a star. These
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Chapter 2 The Standard Model

Figure 2.4: A NLO Bhabha scattering feynman diagram. The photon temporarily creates a positron-electron
pair that annihilates into a photon again.

particles can only be intermediate particles however, and as a whole the energy and momentum of the
initial and final particles of a Feynman diagram do need to be conserved.

To calculate the cross section of a Feynman diagram, it is necessary to integrate over the entire
possible phase space of the interaction. For this, every possible 4-momentum distribution in each
vertex is considered. When a propagator boson is created off-shell then the term in the integration
is modified by a factor 1

𝑝
2−𝑚2 where 𝑚 is the on-shell mass of the propagator and 𝑝 is the actual

4-momentum of the propagator. One can see that the off-shell contribution quickly falls off for large
discrepancies between the on-shell and off-shell mass of the particle.

In addition to the phase space, the matrix elements M𝑖 of all possible Feynman diagrams that have
the same initial and final states have to be calculated. Fig. 2.3 shows another valid Feynman diagram
that has the same initial and final states as the diagram in fig. 2.2. In a detector they cannot be told
apart, but the processes that generate the final state particles are different. The one on the right is
called a s-channel diagram and the one on the right is called a t-channel diagram. Each matrix element
M𝑖 first has to be calculated for each diagram separately before being added up. The square of this
quantity is proportional to the cross section:

𝜎 ∝ |M|2Φ (2.1)

where Φ is the phase space of the interaction.
Theoretically there are an infinite number of Feynman diagrams that can contribute because loops

can always be added to the diagram. However, each vertex has a coupling strength 𝛼 attached to it,
which is usually 𝛼 << 1. Therefore, for each additional vertex in the Feynman diagram (whereby each
loop adds at least two additional vertexes), the cross section contribution drops quickly with 𝛼

2. The
coupling strengths of the fundamental interactions are also given in tab. 2.1. The simplest Feynman
diagrams of a reaction are called the leading-order (LO) terms, the ones with an added loop are called
next-to-leading-order (NLO) terms, ones with yet another loop are called next-to-next-to-leading-order
(NNLO) terms, etc. One example of an NLO diagram for the 𝑒

+
𝑒
− → 𝑒

+
𝑒
− s-channel diagram is

shown in fig. 2.4. Here the propagator photon temporarily creates an electron positron pair out of the
vacuum, which then annihilates back into a photon.

One final effect discussed in this section is initial state and final state radiation. It is possible that
an additional particle gets created at the beginning or end of a reaction. These don’t loop back into
the diagram but radiate away. They are usually massless gluons or photons. An example of initial
state radiation is shown in fig. 2.5. Final and initial state radiation play an important role in detector
experiments and their effects are further discussed in [27].
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2.1 Fundamental Interactions

Figure 2.5: A Bhabha scattering Feynman diagram with initial state radiation. A photon is radiated by the
positron, which lowers the center of mass energy of the interaction.

2.1.2 Electromagnetism

Electromagnetism (EM) is described by quantum electrodynamics (QED). The interaction is propagated
by the photon, a massless spin 1 boson that couples to the electric charge, i.e. to all elementary
fermions other than the neutrinos. The force is repulsive for same signed charges and attractive for
opposite charges. The photon itself has no charge and therefore doesn’t self-couple. The Lagrangian
of QED [79] is given by

LQED = −1
4
𝐹
𝜇𝜈
𝐹𝜇𝜈 + 𝜓̄(𝑖𝛾𝜇

𝐷𝜇 − 𝑚)𝜓 (2.2)

where 𝛾
𝜇 are the dirac matrices, 𝜓 is a spinor, the wave function of a fermion, and 𝜓̄ = 𝜓

†
𝛾

0 is
the adjoint spinor. 𝐷𝜇 = 𝛿𝜇 − 𝑖𝑞𝐴𝜇 is the gauge invariant derivative, where 𝐴 is the electromagnetic
four-potential. 𝐹𝜇𝜈 = 𝛿𝜇𝐴𝜈 − 𝛿𝜈𝐴𝜇 is the electromagnetic field tensor. Since the photon is massless,
the electromagnetic force is a long range force in the Standard Model. The coupling strength of EM is

𝛼𝐸𝑀 =
1

4𝜋𝜖0

𝑒
2

ℏ𝑐
≈ 1

137
. (2.3)

The strength of 𝛼𝐸𝑀 increases for higher energies due to the appearance of virtual particles. These
appear more and more for higher energies through the uncertainty relation. This dependence on the
energy scale of the interactions is called running coupling. Fig. 2.6 shows the coupling strength as a
function of the energy scale, though we do not expect it to follow this pattern for very high energies
and instead converge with all other coupling strengths into a unified force. At the mass of the Z boson,
the coupling strength is 𝛼𝐸𝑀 (𝑚𝑧 = 90 GeV) ≈ 1/127.

2.1.3 Weak Interaction

The weak interaction (WI) is the only force in the Standard Model that couples to all left-handed
elementary fermions. The lagrangian of the WI [79] is given by

7



Chapter 2 The Standard Model

Figure 2.6: A sketch showing the dependence of the coupling constant of the three fundamental interactions
described by the SM on the center of mass energy [10].

Lweak = −1
4
𝑊

𝑎
𝜇𝜈𝑊

𝜇𝜈
𝑎 − 1

4
𝐵𝜇𝜈𝐵

𝜇𝜈 + 𝜓̄𝑖𝛾
𝜇
𝐷𝜇𝜓 (2.4)

where 𝜓 describes the left-handed quark or lepton doublets or the right-handed quark or lepton singlets.
For the weak interaction, the covariant derivative is defined as

𝐷𝜇 = 𝛿𝑚𝑢 + 𝑖
𝑔
′

2
𝑌𝐵𝜇 − 𝑖

𝑔

2
𝑇𝑗𝑊

𝑗
𝜇 (2.5)

where 𝑌 is the weak hypercharge, 𝑔′ is the coupling strength to the weak hypercharge, 𝑇𝑗 are the
3-components of weak isospin, and 𝑔 is the coupling strength to the weak isospin. These are elaborated
on later in this section. 𝑊𝑎

𝜇𝜈 and 𝐵𝜇𝜈 describe the field strength tensors of the weak interaction [69].

The WI is propagated by the Z boson and by the W+/− bosons. The bosons of the WI are very
massive (𝑚𝑍 = 91.188 ± 0.002 GeV and 𝑚𝑊 = 80.38 ± 0.01 GeV) and have very short half-lives
(𝜏𝑍 = 2.637 · 10−25 s and 𝜏𝑊 = 3.16 · 10−25 s). The short half-life means that the range of the WI is
very short on the range of 0.01 − 0.1 fm. The WI is much weaker than the other two forces described

8



2.1 Fundamental Interactions

Figure 2.7: An electron-positron annihilation cross section measurement showing a peak in the cross section at
the mass of the Z boson (approximately 90 GeV) [60]

by the SM, having coupling strengths on the order of 10−6 to 10−7. This is because the propagator in
the corresponding Feynman diagrams have the factor 1

𝑞
2−𝑚2 where 𝑞 is the center of mass energy of

the event and 𝑚 is the mass of the propagator. For the very massive WI bosons, this factor becomes
very small. At center of mass energies around the heavy boson masses, the cross section reaches
significantly higher values. The cross section as a function of the center of mass energy is shown in fig.
2.7. Here two Feynman diagrams contribute to the cross section as the reactions 𝑒+𝑒− → 𝑍 → 𝜇

+
𝜇
−

and 𝑒
+
𝑒
− → 𝛾 → 𝜇

+
𝜇
− mix. For low energies the process with the photon dominates, but for masses

around 90 GeV the 𝑒
+
𝑒
− → 𝑍 → 𝜇

+
𝜇
− process dominates and creates a strong peak.

One special property of the weak force is that it breaks parity symmetry by coupling to left-handed
fermions stronger than to their right-handed partners. The WI equivalent of the electric charge that the
photon couples to are the weak isospin 𝑇3 and the weak charge 𝑌 . Just as with electric charge, the weak
isospin and the weak charge are additive quantum numbers that must be conserved in all reactions. A
table showing the weak isospin and hypercharge of all elementary fermions is shown in tab. 2.2. The
W bosons couple to the weak isospin. It has a magnitude of 𝑇3 = 1/2 for all left-handed fermions
and a magnitude of 𝑇3 = 0 for all right-handed fermions (and the opposite for the antiparticles). This
translates to a maximum parity violation in reactions with W bosons. The Z boson coupling to the
left- and right-handed chirality states are given by

𝑐𝐿 = 𝑇3 −𝑄 sin2
𝜃𝑊 (2.6)

𝑐𝑅 = −𝑄 sin2
𝜃𝑊 (2.7)

This also creates a parity violation for the Z boson, though it is not maximal for particles that have
electric charge. As neutrinos do not have electric charge, right-handed neutrinos and left-handed

9



Chapter 2 The Standard Model

fermion Q 𝑇3 𝑌𝐿 𝑌𝑅 𝑐𝐿 𝑐𝑅 𝑐𝑉 𝑐𝐴
𝜈𝑒,𝜈𝜇,𝜈𝜏 0 +1

2 −1 0 +1
2 0 +1

2 + 1
2

𝑒,𝜇,𝜏 −1 − 1
2 −1 −2 −0.27 +0.23 −0.04 − 1

2
u,c,t +2

3 +1
2 +1

3 +4
3 +0.35 −0.15 +0.19 + 1

2
d,s,b − 1

3 − 1
2 +1

3 − 2
3 −0.42 +0.08 −0.35 − 1

2

Table 2.2: Hypercharge, isospin and couplings of fermions in the Standard Model, with 𝜃𝑊 ≈ 29◦ [74]

antineutrinos do not interact weakly, effectively making them sterile.

Electroweak Force

For high energies, electromagnetism and the weak force can be combined into the electroweak force.
In the electroweak force there are initially four massless bosons, the W1, W2, W3 and B boson. The
three W bosons couple to the weak isospin and the B boson couples to the weak hypercharge. In
the SM, these four bosons mix and gain mass by spontaneous symmetry breaking through the Higgs
mechanism. The electric charge arises through a mixing of the weak hypercharge 𝑌 and the weak
isospin 𝑇3:

𝑄 = 𝑇3 +
1
2
𝑌 (2.8)

This quantity does not couple to the Higgs field, which is why the photon is massless. Any other
combination of these quantities must therefore couple to the Higgs field, which is why the realized Z
and W bosons are massive. The four realized bosons of the electroweak force are created by mixing:(

𝛾

𝑍
0

)
=

(
cos 𝜃𝑊 sin 𝜃𝑊
− sin 𝜃𝑊 cos 𝜃𝑊

) (
𝐵

0

𝑊
0

)
(2.9)

𝑊
±
=

1
√

2
(𝑊1 ∓ 𝑖𝑊2), (2.10)

where the mixing angle of the electroweak force 𝜃𝑊 is called the Weinberg angle and is experimentally
measured to be

sin2
𝜃𝑊 = 1 −

(
𝑚𝑊

𝑚𝑍

)2
= 0.22290(30). (2.11)

The mixing angle also determines the coupling strenghts (𝑒,𝑔,𝑔′) of the bosons. Fig. 2.8 shows this
relation.

2.1.4 Strong Interaction

The strong interaction is responsible for atoms being held together as well as for nucleus stability. It is
therefore, just like the electromagnetic interaction, a necessary feature of our world to exist as it does.
The strong interaction also describes the mechanism behind the alpha decay and nuclear power. It is
called strong force since it has the strongest coupling strength of all the forces by multiple orders of

10



2.1 Fundamental Interactions

Figure 2.8: A diagram showing the relation between the weinberg angle and the coupling constants of the
coupling constants of the electroweak interaction [72].

magnitude:
𝛼𝑆 ≈ 1 (2.12)

The Strong interaction is described by quantum chromodynamics (QCD). The Lagrangian of
QCD [79] is

LQCD = 𝜓̄

(
𝑖𝛾

𝜇
𝐷𝜇 − 𝑚

)
𝜓 − 1

4
𝐺

𝑎
𝜇𝜈𝐺

𝜇𝜈𝑎 (2.13)

where 𝜓 describes the spinor field of the quarks and 𝐷𝜇 = 𝛿𝜇 − 𝑖𝑔𝑇𝑎𝐴
𝑎
𝜇 is the gauge invariant

derivative. 𝑇𝑎 = 𝜆𝑎/2 describes the generators of the 𝑆𝑈 (3) group, which are explained in greater
detail later in this section. 𝐴

𝑎
𝜇 (𝑎 ∈ (1, ..., 8)) describes the gluon fields, which are the strong force

equivalent of the electromagnetic four-potential.

The propagator of the Strong Interaction is the massless gluon, which couples to all particles with
color charge. The only particles that carry color charge are the quarks and the gluon itself. Since
the gluon itself carries color charge it can couple to itself. Color charge is described using three
colors, chosen here as red (𝑟), green (𝑔) and blue (𝑏). Every quark carries one of these charges and
every antiquark carries an anticolor charge (𝑟 , 𝑔̄ or 𝑏̄). The gluon carries one color and one anticolor
charge. While this opens up nine possibilities for the gluon, in actuality there are only 8 possible
configurations of color charges for gluons since the strong interaction is described through the 𝑆𝑈 (3)
representation which gives an octet of states and a singlet state. The singlet would not be able to
couple to any particle and can therefore not be real. The eight generators of the 𝑆𝑈 (3) group can then
be described through the Gell-Mann matrices 𝜆𝑎. One representation of the Gell-Mann matrices in
color space is the following orthogonal superposition of the colors:
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Chapter 2 The Standard Model

𝜆1 = 𝑟𝑔̄ 𝜆2 = 𝑟 𝑏̄ 𝜆3 = 𝑔𝑏̄ (2.14)
𝜆4 = 𝑔𝑟 𝜆5 = 𝑏𝑟 𝜆6 = 𝑏𝑔̄ (2.15)

𝜆7 =
𝑟𝑟 − 𝑔̄𝑔
√

2
𝜆8 =

𝑟𝑟 + 𝑔̄𝑔 − 𝑏̄𝑏
√

6
(2.16)

The color singlet would then be

𝜆9 =
𝑏𝑔̄ + 𝑏̄𝑔
√

2
(2.17)

One effect of the gluon self-interaction is that isolated particles carrying color charge can never
exist. Only color neutral composite particles are observed in nature. To be color neutral a particle
has to either contain all three colors (or all three anticolors), or each color charge has to be cancelled
out by its corresponding anticolor charge. When three quarks (or three antiquarks) combine with
the appropriate colors, the first requirement is fulfilled. This composition is called a baryon (or
antibaryon). Some examples of baryons are the proton (uud) and the neutron (udd). Since baryons
are composed of three fermions, they are half integer spin particles (with 𝑠 = 1/2 or 𝑠 = 3/2, though
exited states can have higher spin states). A quark and antiquark can combine into a meson, which
fulfills the second requirement. Mesons are full integer spin particles (with either 𝑠 = 0 or 𝑠 = 1,
though excited states can have higher spin states here too) [64]. The most well known mesons are the
three pions (𝜋− (𝑢̄𝑑), 𝜋0 (𝑢̄𝑢/𝑑𝑑), or 𝜋+ (𝑑𝑢)). When an attempt is made to separate two connected
quarks to create isolated color charges energy is transferred into the bond between the two quarks. For
larger distances 𝑟 > 1 fm the energy of the bond grows at a linear rate to the distance 𝑟 . The potential
between two quarks can be described by

𝑉𝑞𝑞̄ (𝑟 ) = −4
3
𝛼𝑆

𝑟
+ 𝑘𝑟 (2.18)

Figure 2.9: A diagram showing the hadronization process. At first there are two quarks separating (top), but as
the potential energy in their bond increases, new quark pairs are formed [81].

Another consequence of of the gluon self-interaction is the behavior of coupling constant. Unlike
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2.2 Tau Lepton

the EM interaction, the coupling constant of the strong interaction grows for smaller center of mass
energies

√
𝑠 and shrinks for higher energies. The dependence of the energy can be mathematically

described through
𝛼𝑆 (𝑞

2) = 1
𝛽 ln(𝑞2/Λ2

𝑄𝐶𝐷)
(2.19)

with 𝛽 being defined as

𝛽 =
𝛼

2

𝜋

(
−11𝑁

6
+
𝑛 𝑓

3

)
. (2.20)

where 𝛼 is the fine structure constant as defined in eq. 2.3, 𝑛 𝑓 are the number of quark flavors that
can contribute at the energy scale by being pair-produced (so when 𝑞

2
> 2𝑚 𝑓 ), and Λ𝑄𝐶𝐷 is the

so-called QCD scale [58, 21]. For low energies 𝑞 < 1.275 GeV, the QCD scale is measured to be
Λ = 332±17 MeV [46]. It is clear that this value goes to infinity as 𝑞2 approaches Λ2. This asymptotic
freedom makes QCD impossible to calculate perturbatively at low energies as higher-order Feynman
diagrams become increasingly relevant. This is also visually depicted in fig. 2.9, as the depiction
eventually switches to a bubble labeled “Hadron Jet”, which symbolizes that we can not accurately
describe what happens in the bubble.

2.2 Tau Lepton

The tau lepton is the heaviest of the six leptons and acts as a heavier partner of the other charged
leptons with a mass of 𝑚𝜏 = 1776.9 ± 0.1 MeV (compared to 𝑚𝑒 = 0.511 MeV for the electron and
𝑚𝜇 = 105.7 MeV for the muon). It shares it’s charge of 𝑞 = +1 and spin of 𝑠 = 1/2 with the other
charged leptons. The much higher mass compared to the other leptons give it a much shorter lifetime
of 𝜏𝜏 = 2.903 ± 0.005 · 10−15s (compared to 𝜏𝜇 = 2.197 µs for the muon, the electron is stable) and
opens up many more decay channels [90]. The muon can only decay through 𝜇 → 𝑊

−
𝜈𝜇 → 𝑒

−
𝜈𝑒𝜈𝜇.

The decay of muons and taus is always propagated through a W boson.

The Feynman diagram of a tau decay is shown in fig. 2.10. The tau first always decays into a tau
neutrino and a W− boson, the latter of which quickly decays into one of three pairs: a lepton pair
(𝜇−

𝜈̄𝜇 or 𝑒−𝜈𝜇) or a quark pair (𝑑𝑢̄). Similarly, antitau leptons decay into an antitau neutrino and a
W− boson, which then also quickly decays into a 𝜇

+
𝜈𝜇 pair, a 𝑒

+
𝜈𝜇 pair, or a 𝑑𝑢 pair. A decay into a

𝑠𝑢̄ pair or 𝑠𝑢 respectively is also possible through the flavor-breaking weak current described by the
Cabibbo-Kobayashi-Maskawa matrix [84], but it is suppressed. Table 2.3 shows some of the possible
decays of the tau lepton. While the Feynman diagram only shows three possible decays, the quark
pair can decay into multiple particles depending on which specific meson resonance is created in
the tau decay. This can be measured in a detector experiment through the amount of particle jets
that get created through the tau decay. A nomenclature that gives the amount of charged jets as the
number before the 𝑝 and the number of neutral jets as the number before the 𝑛 that a hadronic decay
corresponds to, is also shown in the table. If a tau lepton decays into a neutrino and one or more
hadrons, then it is called a hadronic tau (𝜏ℎ𝑎𝑑). If it decays into two neutrinos and a lighter lepton, it is
called a leptonic tau (𝜏𝑙𝑒𝑝).
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Tau Decay Channel Branching Ratio / % XpXn notation
Leptonic 35.21% NaN

𝜏
− → 𝜈𝜏𝑒

−
𝜈̄𝑒 17.82% NaN

𝜏
− → 𝜈𝜏𝜇

−
𝜈̄𝜇 17.39% NaN

Hadronic 64.79% XpXn
𝜏
− → 𝜈𝜏𝜋

−
𝜋

0
𝜈𝜏 25.49% 1p1n

𝜏
− → 𝜈𝜏𝜋

−
𝜈𝜏 10.82% 1p0n

𝜏
− → 𝜈𝜏𝜋

−
𝜋

0
𝜋

0
𝜈𝜏 9.26% 1p2n

𝜏
− → 𝜈𝜏𝜋

−
𝜋
+
𝜋
−
𝜈𝜏 8.99% 3p0n

𝜏
− → 𝜈𝜏𝜋

−
𝜋
+
𝜋
−
𝜋

0
𝜈𝜏 2.74% 3p1n

𝜏
− → 𝜈𝜏𝜋

−
𝜋

0
𝜋

0
𝜋

0
𝜈𝜏 1.04% 1p3n

Table 2.3: Decay channels of the tau lepton. For hadronic decays the hadronic name classification is also
given [1].

Figure 2.10: Feynman diagram of a 𝜏-decay.

2.3 Higgs Boson

The Higgs boson was originally predicted to describe why the Z and W bosons have such high masses,
since their massiveness otherwise breaks the gauge invariance of the Weak Force. This theory has
expanded to now describe the masses of all massive elementary particles with the possible exception
of the neutrinos.

2.3.1 The Higgs Mechanism

In the SM the Higgs mechanism describes how the coupling of elementary particles to the Higgs field
gives those particles their rest mass through the Brout-Englert-Higgs mechanism [62]. The Higgs
particle itself is an excitement of the Higgs field. In the 𝑆𝑈 (2)𝐿 ×𝑈 (1)𝑌 gauge symmetry of the
electroweak theory, the potential of the Higgs field is

𝑉 (Φ) = 𝜇
2(Φ∗

Φ) + 𝜆(Φ∗
Φ)2 (2.21)

The breaking of the 𝑆𝑈 (2)𝐿 ×𝑈 (1)𝑌 gauge symmetry is achieved through a negative 𝜇
2 in eq.
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2.3 Higgs Boson

Figure 2.11: Characteristic “Mexican hat” potential of the Higgs boson [51].

2.21. This leads to the characteristic “Mexican hat” potential, which can be seen in fig. 2.11. Since
the potential does not have its minimum at zero for negative 𝜇

2, the vacuum expectation value is
nonzero at 246 GeV [13]. The Lagrangian that describes the interaction between the Higgs field and
the massive gauge bosons is

𝐿ℎ = (𝐷𝜇Φ)†(𝐷𝜇Φ) −𝑉 (Φ) (2.22)

The mass of the leptons arises through a Yukawa coupling between the Higgs field and massless
leptons, described though the a Yukawa Lagrangian:

𝐿𝑦 = −𝑦𝜓𝜖
𝑖 𝑗
ℎΨ̄𝜓 (2.23)

where Ψ describes a left-handed fermion doublet and 𝜓 describes a right-handed fermion singlet. 𝑦𝜓
are the matrices of the Yukawa couplings [58].

2.3.2 Higgs Boson Properties

The Higgs boson is the only scalar elementary particle (𝑠 = 0) in the SM and it is the second heaviest
elementary particle with a mass of 𝑚𝐻 = 125.10 ± 0.14 GeV and a half width constrained through
measurements to Γ𝐻 < 0.013 GeV (corresponding to a life time constraint of 𝜏𝐻 < 1.6 · 10−22s). The
half width is predicted to be around Γ𝐻 = 4 MeV but the reconstruction is not accurate enough to
measure it. The coupling strength to a massive particle is proportional to it’s mass. This means that a
Higgs boson is more likely to be produced in collisions of heavy particles and that it is more likely to
decay into more heavy particles. The theoretical branching ratios as a function of the Higgs mass are
shown in fig. 2.14. For masses 𝑚𝐻 < 120 GeV the H → 𝑏𝑏̄ branching ratio dominates because it
is the channel where the decay products have the highest mass without being higher than the mass
of the H boson itself. As the mass approaches 𝑚𝐻 = 2𝑚𝑊 ≈ 160 GeV the H → 𝑊𝑊 channel starts
to dominate. As the mass rises further the Z channel opens and therefore dominates. The predicted
branching ratios of the Higgs boson for a mass of 𝑚𝐻 = 125.2 GeV and the ratios of the predicted
to the measured branching ratio are listed in tab. 2.4. The channel that is of interest in this thesis is
the H → 𝜏𝜏 channel. For the actual Higgs mass it has a branching ratio of about 6.24%. This decay
channel can be split into three different categories: H → 𝜏ℎ𝑎𝑑𝜏ℎ𝑎𝑑 , H → 𝜏ℎ𝑎𝑑𝜏𝑙𝑒𝑝 and H → 𝜏𝑙𝑒𝑝𝜏𝑙𝑒𝑝,
corresponding to the possible decays of the resulting tau leptons. In this thesis only the H → 𝜏ℎ𝑎𝑑𝜏ℎ𝑎𝑑

15



Chapter 2 The Standard Model

channel is considered.

Decay channel 𝐵𝑅𝑡ℎ𝑒𝑜 / % 𝐵𝑅𝑡ℎ𝑒𝑜/𝐵𝑅𝑒𝑥𝑝

H → 𝑏𝑏̄ 57.9 0.98 ± 0.12
H → 𝜏𝜏 6.2 1.15+0.16

−0.15
H → 𝜇𝜇̄ 0.02 1.19 ± 0.34
H → 𝑐𝑐 2.9 37 ± 17+11

−9
H → 𝑔𝑔∗ 8.2 NaN
H → 𝛾𝛾∗ 0.2 1.10 ± 0.07
H → 𝑍𝛾 0.2 < 3.6
H → 𝑊𝑊∗ 21.7 1.19 ± 0.12
H → 𝑍𝑍∗ 2.7 1.01 ± 0.07

Table 2.4: Theoretical and measured branching rations for the Standard Model Higgs boson.

There are multiple production channels for the Higgs boson in proton antiproton collision. Their
Feynman diagrams are given in fig. 2.12. In the gluon fusion production channel (see fig. 2.12(a))
two gluons, one from each proton, fuse through intermediate particles. The intermediate particles are
usually top quarks since they are the most massive and therefore have the strongest coupling to the
Higgs boson [29]. In the vector boson fusion (see fig. 2.12(b)), a quark from each proton radiates a
heavy vector boson (W or Z bosons). They then fuse into a Higgs boson [35]. Vector boson radiation
(see fig. 2.12(c)) is characterized by two quarks fusing into a W boson, which then radiates a Higgs
boson through final state radiation [59]. The final of the four processes is tt-associated production (see
fig. 2.12(d)). Here, two gluons from the protons decay into tt-pairs and two of the top quarks fuse
into a Higgs boson [8]. Each of those four production processes has different kinematics and can be
detected through different signatures in the detector experiments. The theoretical cross sections of
the Standard Model Higgs boson production as a function of the center of mass energy

√
𝑠 for the

aforementioned channels are shown in fig. 2.13. gg-Fusion (labeled in the plot as 𝑝𝑝 → H) is by far
the most significant contributor to the entire Higgs production cross section [30].

2.4 Z Boson

The Z boson was discovered in 1983 at the UA1 and UA2 experiments at the super proton synchrotron
at CERN [48]. It is one of the bosons responsible for propagating the weak force and it has a mass of
91.188 ± 0.002 GeV and a half width of 2.495 ± 0.002 GeV. The Z boson is a vector boson (𝑠 = 1)
with no charge. The decay channels are listed in tab. 2.5. The Z → 𝜏𝜏 decay has a branching fraction
of 3.370 ± 0.008 % [12]. This decay channel can also be split into three categories corresponding to
the different decays of the tau leptons: Z → 𝜏ℎ𝑎𝑑𝜏ℎ𝑎𝑑 , Z → 𝜏ℎ𝑎𝑑𝜏𝑙𝑒𝑝 and Z → 𝜏𝑙𝑒𝑝𝜏𝑙𝑒𝑝.

The Higgs and the Z boson share many decay channels and they have similar quantum numbers that
need to be conserved. The differences between the two bosons are their masses, their spins and the
different branching ratios. However due to the large inaccuracies on the ditau mass reconstruction for
both the Z → 𝜏𝜏 and H → 𝜏𝜏 decays it is not possible to definitively say if a specific reconstructed
ditau event is from a Higgs or a Z boson. This is one of the reasons why it is important to have a
good ditau mass reconstruction. In addition, the differing spins of the two bosons lead to different
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2.4 Z Boson

(a) Feynman diagram of gluon fusion. Two gluons fuse
through a top quark into a Higgs boson.

(b) Feynman diagram of vector boson fusion. Two quarks
radiate a vector boson each (Z or W boson), which fuse
into a Higgs boson.

(c) A Feynman diagram showing vector
boson radiation. Here two quarks fuse into
a W boson, which radiates a Higgs boson.

(d) Feynman diagram of tt-associated production.
Two gluons each decay into a tt-pair and two of the
top quarks fuse into a Higgs boson.

Figure 2.12: Feynman diagram of the four main Higgs production channels in proton-proton collider experiments.
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Figure 2.13: The production cross section of the Higgs boson in pp collisions as a function of the center of mass
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Figure 2.14: The theoretically predicted branching ratio of the Higgs boson as a function of the Higgs mass [30].

Decay channel 𝐵𝑅𝑡ℎ𝑒𝑜 / %
Z → 𝑒

+
𝑒
− 3.363 ± 0.004

Z → 𝜇
+
𝜇
− 3.366 ± 0.007

Z → 𝜏
+
𝜏
− 3.370 ± 0.008

Z → invisible 20.00 ± 0.06
Z → (𝑑𝑑 + 𝑠𝑠 + 𝑏𝑏̄)/3 15.6 ± 0.4
Z → (𝑢𝑢̄ + 𝑐𝑐)/2 11.6 ± 0.6
Z → 𝑏𝑏̄ 15.12 ± 0.05
Z → 𝑐𝑐 12.0 ± 0.2

Table 2.5: The decay channels and their branching ratios of the Z boson.

kinematic distributions of the tau decay products. Since tau leptons are spin-1/2 particles, there are
only a limited amount of possible helicity configurations for the taus that are created in Higgs or Z
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Figure 2.15: The possible tau spin-configurations for Higgs and Z decays [85].

Figure 2.16: Possible spin configurations for 1p1n tau decays [85].

boson decays. They can be seen in fig. 2.15. For the Higgs boson both tau leptons have the same
helicities, while for the Z boson the taus have opposite helicities. This is not a perfect relation because
it is only true in the rest frame of the boson but gluon jets can push the boson into a boosted frame.

2.5 Charged Energy Asymmetry 𝚼

One way in which the different spins of the Higgs and Z boson can manifest themselves in the
kinematics of ditau events is through the charged energy asymmetry Υ of a tau decay. It is defined as

Υ =
𝐸𝑐ℎ𝑎𝑟𝑔𝑒𝑑 − 𝐸𝑛𝑒𝑢𝑡𝑟𝑎𝑙

𝐸𝑐ℎ𝑎𝑟𝑔𝑒𝑑 + 𝐸𝑛𝑒𝑢𝑡𝑟𝑎𝑙

(2.24)

where 𝐸𝑐ℎ𝑎𝑟𝑔𝑒𝑑 is the energy from charged pions and 𝐸𝑛𝑒𝑢𝑡𝑟𝑎𝑙 is the energy from neutral pions in tau
decays. The following is a quantitative derivation of the distribution of this asymmetry for the 1p1n
decay.

In this decay there is a mediating spin-1 𝜌 meson resonance: 𝜏− → 𝜌𝜈𝜏 → 𝜋
+
𝜋

0
𝜈𝜏 . Due to spin

conservation and the parity violation of the weak interaction only some spin configurations for the
decay products are possible. They are shown in fig. 2.16 in the rest system of the tau. The thick
arrows indicate the spin and the thin arrows the momentum direction of the individual particles. When
the spin and momentum of a particle align then it has positive helicity and is said to be right-handed.
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Figure 2.17: The expected Υ distributions of a left-handed and right-handed tau lepton. The expected
distributions of an anti tau lepton the exact opposite [45].

If they oppose each other it has negative helicity and is said to be left-handed, where helicity is
mathematically described as

ℎ =
®𝑠 · ®𝑝
| ®𝑝 | . (2.25)

In the case of a boosted tau this means that the 𝜌 meson, which carries all of the visible energy
of the tau decay, carries a larger fraction of the energy for right-handed tau decays and a smaller
fraction for left-handed tau decays. Another effect of the kinematics of the tau decay is that the
𝜌 meson is more likely to be longitudinally polarized for right-handed taus and more likely to be
transversally polarized for left-handed taus. When the 𝜌 decays into two pions, the spin conservation
again constrains the phase-space of the possible decay configurations. Since pions are spin-0 mesons,
transversally polarized 𝜌 mesons are more likely to give both pions a similar amount of energy, while
a longitudinally polarized 𝜌 is more likely to have one of the pions shoot off into the boost direction
of 𝜌 and therefore carry more kinetic energy. This creates a charged enery asymmetry with helicity
dependence. The theoretically expected distribution for Υ can be seen in fig. 2.17. This quantity can
be used to verify the spin information of Monte-Carlo datasets and can also be used as a spin sensitive
quantity in event reconstruction techniques. For anti tau leptons the same argumentation can be used
for opposite spins [85].
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CHAPTER 3

The Experiment

This thesis is based on Monte Carlo (MC) simulated events at the ATLAS detector [7] at the Large
Hadron Collider (LHC) [32] in CERN. To understand the data and the problems with reconstructing
H → 𝜏𝜏 and Z → 𝜏𝜏 events better, this chapter explains how the LHC and the ATLAS detector
work. First, the actual collider complex and how the particles are accelerated to their high energies is
described. After that the ATLAS detector and its subdetectors are described.

3.1 the Large Hadron Collider

The LHC is the largest and most powerful man-made particle accelerator in the world. It is part of the
larger LHC complex which is located at CERN in Geneva. The largest part of the complex lies in
France and the rest is in Switzerland. Some parts of the LHC are over 110 meters underground and it
has a circumference of 27 km [49]. It is used to accelerate and then collide protons or sometimes lead
ions. Before being used for experiments in the LHC, the particles need to be accelerated in multiple
steps in circular and linear accelerators (see fig. 3.1). First, the protons (or lead) are accelerated in a
linear accelerator, from which they are led into three different synchrotrons (The Proton Synchrotron
Booster, the Proton Synchrotron and the Super Proton Synchrotron) where they are accelerated further.
After those steps they finally have enough energy to enter the LHC. There they reach energies of up to
6.5 TeV each for a total center of mass energy of 13 TeV (or 2.3 TeV and 4.6 TeV respectively for lead
nuclei) [33].

At the LHC there are four main detector experiments which all specialize in different aspects of
event detection and complement each other. The ALICE (A Large Ion Collider Experiment) detector
(seen on the left in fig. 3.1) aims to explore the quark-gluon plasma resulting from Pb-Pb nuclei
collisions. The CMS (Compact Muon Solenoid) has a very sophisticated muon detection system
and aims to explore TeV-scale physics and investigate the properties of the Higgs boson. The LHCb
(Large Hadron Collider beauty) experiment focuses on b-physics involving hadrons containing bottom
quarks. The last of the four main detectors is the ATLAS detector, which will be more thoroughly
described in the next section. In addition to these four there are also other experiments collecting data
at the LHC complex. They are listed in 3.1.
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Figure 3.1: A sketch of the CERN complex, showing the different accelerator systems and detectors within the
complex [28].

Experiment Full Name Type of Detector Mass / Tonnes
ALICE A Large Ion Collider Experiment lead ion collisions 10000
ATLAS A Toroidal LHC ApparatuS pp collisions 7000
CMS Compact Muon Solenoid pp collisions 14000
LHCb Large Hadron Collider beauty pp collisions 5600
TOTEM Total, elastic and diffractive cross section

measurement
pp collisions 3

LHCf Large Hadron Collider forward pp collisions 0.08
MoEDAL Monopole and Exotics Detector at the

LHC
pp collisions 1 [80]

FASER Forward Search Experiment pp collisions 1.1
SND@LHC Scattering and Neutrino Detector at the

LHC
pp collisions 0.83

Table 3.1: The experiments at the LHC [33].

3.2 The ATLAS detector

The ATLAS (A Toroidal LHC Apparatus) detector is the largest detector at the LHC. It is 46 meters
long, has a 25-meter diameter and weighs 7 000 tonnes. As with the other detectors, it is comprised of
multiple sub-detectors that work together to track the particles that are created when the beams collide
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at the collision point in the center of the detecter, as well as identify their particle type and measure their
energy and momentum. Fig. 3.2 shows a cross section view of how different particles interact with the
detector subcomponents. First, particles pass through the inner detector where charged particles leave
bent tracks. After the inner detector they pass to the electromagnetic and then the hadron calorimeters.
There most particles create particle showers and deposit all their energy for measurement. Only muons
and neutrinos remain. After the calorimeters comes the muon spectrometer, which is used to track
the momentum of muons. Both the muons and neutrinos leave the detector. Neutrinos can not be
measured in any way in the detector. Two superconducting magnet systems are used to bend charged
particles for charge and momentum measurements in multiple of the sub-detectors, one solenoid
magnet for the inner detector and a toroid magnet for the muon spectrometer system [7, 3].

Figure 3.2: A cross section view of how different particles interact with the subdetectors of the ATLAS
detector [78].

3.2.1 ATLAS coordinate system

The z-axis of the ATLAS coordinate system lies along the beam line, crossing through the center of
the cylindrical detector. The x-axis points from the interaction point towards the center of the LHC
and the y-axis points upwards. The plane formed by the x- and y-axis is called the transverse plane.
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The azimutal angle 𝜙 is measured around the beam axis and the polar angle 𝜃 is the angle from the
beam axis, although the so-called pseudorapidity 𝜂 is generally used instead of the polar angle. It is
defined as

𝜂 = − ln tan( 𝜃
2
) (3.26)

and it is the high energy or low mass approximation for the rapidity:

𝑦 =
1
2

ln
(
𝐸 + 𝑝𝑧

𝐸 − 𝑝𝑧

)
, (3.27)

where 𝑝𝑧 is the longitudinal momentum in z-direction. This high energy approximation 𝜂 ≈ 𝑦 can be
used with the high beam energies of the LHC. The advantage of using the pseudorapidity 𝜂 over the
polar angle 𝜃 is that the particle generation cross section is constant as a function of 𝑦 since differences
in rapidity Δ𝑦 are invariant under lorentz boosts along the z-axis.

Some variables such as the transverse energy are defined as the component of the vector that lies on
the transverse plane: 𝐸2

𝑇 = 𝐸
2
𝑥 + 𝐸

2
𝑦 . Angular distances are measured in relation to the azimutal angle

and the pseudorapidity: Δ𝑅2
= Δ𝜂

2 + Δ𝜙
2 [7].

When two protons collide in the center of the ATLAS detector, the high energies lead to deep
inelastic collisions. This means that the partons inside the protons interact directly with each other.
Since a parton only carries a fraction 𝑥 of the entire proton energy, the actual center-of-mass energy√
𝑠 of the event as well as the rest frame of the event are unknown. The only certain thing is that the

transverse momentum of the interaction is zero. This is why the actual measured energies themselves
are not relevant and the transverse quantities are often used instead [7, 71].

3.2.2 Inner detector

The inner detector of ATLAS is the closest sub-detector to the beam-line. It completely surrounds it
from a radius of 3.3 cm to 110.6 cm and has a length of 6.2m. The inner detector itself is made up of
three different parts. Their arrangement can be seen in fig. 3.3. The particles first pass through the
Pixel Detector (PD). It surrounds the beam line from 3.3 cm to 19 cm and has a length of 1.85 m. The
PD consists of 4 barrel layers radially surrounding the collision point and 3 disks at both ends of the
detector along the beam axis. The layers consist of a total of 92 million silicon pixels, each of which
has an electronic channel that can be read out. The size of the pixels is 50× 499 µm2 for the outermost
layer and 50 × 250 µm2 for the innermost layer. In total the silicon covers an area of 1.9 m2 and
consumes 15 kW of power. As the particles pass through the silicon they are bent by a magnetic field,
which ionizes the silicon, thus allowing for momentum reconstruction using the bending radius [26]:

1
𝜌
=
𝑒𝐵

𝑝
⇔ 1

𝜌
[𝑚−1] = 0.3

𝐵[𝑇]
𝑝 [𝐺𝑒𝑉/𝑐] . (3.28)

The PD is also used to reconstruct the primary and possible secondary vertices of the event.
After the Pixel Detector particles enter the semiconductor tracker (SCT). It consists of 4 088 modules

and a total of over 6 million micro-strip silicon sensors that are distributed over 4 cylindrical barrel
layers and 18 planar end-cap discs. The semiconductor tracker has a total area of 60 m2. Each particle
passes through at least four silicon layers of the semiconductor tracker. The SCT has readout strips
every 80 µm. The system allows for a reconstruction precision of up to 25 µs [44].
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The last part of the inner detector is the transition radiation tracker (TRT). The TRT is made up of
300 000 4-mm gas filled straws that have a 30 µm gold-plated tungston wire in their center. 50 000 of
the straws are in the barrel and are 144 cm long and the other 250 000 straws are 39 cm long are in
the end-caps of ATLAS. Charged particles passing through these straws ionize the gas, generating a
detectable signal on the wires in their center. The signal is read out through 350 000 read-out channels.
The total volume of the TRT is 12 m3. In addition to being able to reconstruct the flight path of the
particle, the TRT also gives information on the type of particle based on the transition radiation that is
generated when particles pass through fibers interleaved between the straws in the barrel region and
foil between the layers in the end-cap region [5, 42].

Figure 3.3: A schematic view of the inner detector of ATLAS [4].

3.2.3 Calorimeters

After passing through the inner detector, particles enter the calorimeters of ATLAS. The calorimeters
are designed to make all particles, except for neutrinos and muons, deposit their entire energy in them.
This makes it possible to reconstruct the particle energy and also gives us insight into the particle type.
The calorimeter system of ATLAS consists of a liquid argon (LAr) electromagnetic calorimeter and a
tile hadron calorimeter [39].

The LAr calorimeter is 6.4 m long and 53 cm thick. The end-caps of the LAr electromagnetic
calorimater are 2.08 m long and 63 cm thick [23]. It is designed to make electrons and photons
create electromagnetic showers and deposit their entire energy. Hadrons also interact with the LAr
calorimeter but generally do not deposit their entire energy in it. The calorimeter has layers of lead
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and liquid argon arranged in an accordion shape to maximize the amount of layer crossings that
particles go through. In the metal layers particles interact with the lead atoms, creating photons and
electrons, which then deposit some of their energy in the LAr gas through ionization. This creates a
measurable electric current that is read out through 110 000 channels and makes it possible to measure
the energyof the particle. To keep the argon in a liquid state, it is kept at -184◦ [6].

The tile hadron calorimeter is designed to make hadrons deposit their entire energy in them and it
consists of layers of steel and 420 000 scintillating plastic tiles. It is composed of 192 wedges, each of
which is 2.6 m − 5.6 m long. In the steel layers hadrons produce hadron showers which then create
photons as they pass through the scintillating tiles. The photons get converted into a measurable
electric current through 9 500 photomultiplier tubes. The hadron calorimeter itself weights 2 900
tonnes [54, 15].

3.2.4 Muon Spectrometer

The only particles that can pass through all sections of the calorimeter without decaying or depositing
their entire energy or decaying are muons and neutrinos. While neutrinos only interact weakly and
therefore can escape the detector without being measured in any way, muons leave tracks in all
the detector sub-components. Due to their weight, they do not deposit their entire energy in the
calorimeters. In order to get better momentum measurements of muons the muon spectrometer has a
stronger magnetic field covering a much larger area than the inner detector. Since the only particles
that leave tracks in the muon spectrometer are muons, it also leads to a higher muon identification
efficiency. The spectrometer consists of two parts, the precision detectors and the fast-response
detectors. The precision detectors consist of monitored drift tubes (MTDs), which are composed of
3 cm wide aluminum gas filled tubes with a thin wire in the center. These create electric signals when
muons pass through them and are able measure the position of muons with an accuracy of 100 µs.

The fast-response detectors consist of two parts, the resistive plate chambers (RPCs) and the thing
gap chambers (TGCs). The RPCs surround the central region of the ATLAS detector. They are pairs
of parallel plastic plates that are separated by a gas volume and have a potential difference between
them. When muons pass through the gas they generate an electric signal. The TGCs lay at the ends
of the ATLAS detector and consist of 30 µm wires in a gas mixture, which also generate electrical
signals through ionization when muons travel through them. The fast-response detectors allow for
rapid event selection and can discard events that aren’t relevant in 2.5 µs [41].

3.2.5 Magnet System

ATLAS uses two types of superconducting magnets. The inner detector is surrounded by a solenoid
magnet [94]. It is 5.6 m long, 2.56 m in diameter and creates a 2 T magnetic field in a 4.5 cm thick
region. In order to achieve the strong magnetic field, 9 km of niobium-titanium superconducting
wires are used. The wires are embedded in aluminum strips to minimize interactions between the
magnet and the event particles. The other magnets are toroid magnets that use eight coils to generate
a magnetic field up to 3.5 T in the muon spectrometer [91]. There are two at the end caps and one
massive one surrounding the central section [40].
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3.2.6 Trigger System

In addition to the detectors themselves, the data system is also of vital importance. Each event creates
approximately 1.6 MB, worth of data and the event frequency of beam crossings in the detector is
40 MHz. This creates a total of 64 TB of raw data per second. As this is too much for the detector to
read out and store, a trigger system is used to sort out most events. The Level 1 (L1) trigger is based
on custom hardware, making it possible to accept or reject events in less than 2.5 µs. This lowers
the frequency of read-outs to 100 kHz. The Level 2 (L2) is a software based selection system. It
uses a large computer system to decide which events to store in 200 µs. This step further reduces the
frequency of relevant events from 100 kHz to 1 kHz. In total this two step trigger process reduces
the data from 64 TB to 1.6 GB per second. After the raw data passes the triggers, it is turned into
physical objects such as jets or particles in offline reconstruction steps. After that the data can be used
in analysis [43, 77].
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CHAPTER 4

Event Reconstruction

Reconstructing events is a very complicated task involving multiple methods of combining raw data
from all relevant sub-detectors. Different particles show very different signals in the detector. A
𝜋0, for example, decays almost immediately and is only detected as two photons flying in opposite
directions with similar energies in a boosted frame of reference, while a muon is reconstructed by
pairing a track in the muon spectrometer to a track in the inner tracker. This chapter focuses on tau
reconstruction which also shows a lot of variety since hadronic tau decays often involve both 𝜋0 and
hadron jets while leptonic tau decays involve either a muon or an electron.

4.1 Jet reconstruction

Since gluons and quarks produced in LHC collisions cannot exist in isolation, they hadronize (as
described in chapter 2.1.4) and create a jet of collimated particles that deposit their energy in the
calorimeter systems. Jets themselves are only abstract concepts and are actually made up of many
particles. One significant factor in jet reconstruction is the choice of the opening angle 𝑅 of jets. Here
different choices lead to different interpretations of the same physical objects.

Jet reconstruction consists of three stages. The input to the process consists of TopoClusters, which
are noise-suppressed clusters of calorimeter cells. A TopoCluster is constructed around a cell which
has a 4𝜎 above noise energy value. The cluster then expands by recursively including all neighboring
cells with over 2𝜎 energy in them.

In the second step the jets are formed. For this step, the anti-𝑘𝑡 algorithm [22] is used. Two different
angular distances 𝑅 are used for the reconstruction of different types of jets. Quark and gluon jets, as
well as jets from hadronically decaying tau leptons, are typically more collimated and therefore use
𝑅 = 0.4. Jets forming through the decay of hadronically decaying massive particles are typically less
collimated [38] and therefore use 𝑅 = 1.0. The necessity for this can be seen in fig. 4.1. It shows the
angular distance between a pair of quarks that is created in a W boson decay as a function of the W
boson transverse momentum. An approximate relation for the angular distance of two particles that
are created through the decay of a massive particles 𝜒 with transverse momentum 𝑝

𝜒

𝑇
is

Δ𝑅 ≳
2𝑚𝜒

𝑝
𝜒

𝑇

. (4.29)
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Figure 4.1: The angular distance Δ𝑅 between a pair of quarks created in a W boson decay as a function of the
transverse momentum of the W boson [87].

In addition to the reconstruction the jets are also calibrated. This also happens in three steps. First
they are corrected for pile-up effects. Then they are calibrated to Monte-Carlo data. In the final step
the difference between MC and real data is corrected. The final jet reconstruction has a sub-1% energy
uncertainty for 100 GeV to 1 TeV [87].

4.2 Tau Reconstruction

Since tau leptons usually decay before reaching the ID, tau reconstruction is split into two categories
depending on their decaymode. Hadronic taus are reconstructed through jets. Their reconstruction is
further explained in this section. Leptonic taus are measured by matching them to a measured muon
or electron.

4.2.1 Hadronic Taus

Hadronic taus make up 65% of all tau decays. They are generally detected as one (1p) or three (3p)
tracks in the inner detector and as energy deposits in the electromagnetic and hadron calorimeters that
match the expected signals of charged or neutral hadrons. Most of the time tau leptons decay into
charged and neutral pions. The largest background contributions for hadronic tau leptons are quark
or gluonic jets, as they leave similar deposits in the calorimeters and have a large production cross
section. In the case of 3p tau decays, tau candidates can be differentiated from background jets by
using the measured secondary vertex of the tau, which can decay relatively far away from the primary
interaction point. The additional energy deposits in the EM calorimeter from 𝜋

0 decays, which appear
more often in tau decays than in gluonic jets, can also be used to differentiate hadronic tau jets from
the background. Other background sources are light lepton candidates, which might look like 1p
hadronic tau decays. If a tau candidate is also reconstructed as an electron or muon candidate, then it
is no longer considered a tau candidate [56].
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4.2 Tau Reconstruction

Figure 4.2: The efficiencies to select the correct tau production vertex and primare vertex as a function of the
visible transverse momentum 𝑝

ℎ𝑎𝑑−𝑣𝑖𝑠
𝑇 of the tau decay for truth 1p (left) and 3p (right) tau decays [83].

Tau Identification

Tau candidates are seeded by jets reconstructed through the anti-𝑘𝑡 algorithm using a distance parameter
𝑅 < 0.4. They are required to have 𝑝𝑇 > 5 GeV and |𝜂 | < 2.5. The primary vertex that is assigned to
the hadronic tau decay is defined as the vertex with the highest sum of the squared transverse momenta
of the tracks. The efficiencies of choosing the correct tau production vertex and the correct primary
vertex as a function of the visible transverse momentum 𝑝

ℎ𝑎𝑑−𝑣𝑖𝑠
𝑇 of the tau decay are shown in fig.

4.2. Tracks are assigned to the tau lepton if they have Δ𝑅 < 0.25 compared to the reconstructed jet
and also have at least 𝑝𝑇 > 1 GeV. The tracks are also required to have at least two associated hits in
the pixel layers of the inner detector and at least a combined seven hits in the pixel and SCT layers.
Requirements on the distance of closest approach to the tau production vertex are also used [83].

The final track association is done with a recurrent neural network. The variables used in the neural
network are related to the kinematics of the jet as well as of the associated assigned tracks. They are
listed in [83]. Four track categories are used. Tau Tracks (TT) originate from the tau lepton decay
products. Conversion Tracks (CT) originate from electrons and positrons that are created by photon
conversion in the detector. Isolation Tracks (IT) originate from quark and gluon jets of hard scattering
interactions. Fake Tracks (FK) are mostly misreconstructed and pile-up tracks. The probabilities
of reconstructing a given track as a certain track type is shown in fig. 4.3 for truth 1p and 3p tau
decays [83].

Tau Energy Calibration

For the energy calibration, the sum of the energies of all TopoClusters withΔ𝑅 < 0.2 to the hadronic tau
lepton candidate is used. The pile-up energy contribution of this sum is then subtracted. Furthermore,
the calorimeter deposits that can be assigned to a charged track are subtracted and give a measurement
for the charged component of the hadronic tau decay. The resulting energy scale is parametrised
in relation to the transverse momentum 𝑝𝑇 , the pseudorapidity 𝜂, and the five decaymodes of the
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Figure 4.3: The probabilites to reconstruct a given track as a certian track type for truth 1p (left) and 3p (right)
tau decays [83].

Figure 4.4: The energy 68%-quantile width of the energy resolution of the hadronic tau decay energy calibration
for 1p (left) and 3p (right) candidates [83].

hadronic tau lepton. In the final step, a Boosted Regression Tree (BRT) is used. The input variables of
the BRT are listed in [83]. The resulting energy resolutions as a function of 𝑝𝑇 for truth 1p and 3p
candidates are shown in fig. 4.4.
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CHAPTER 5

Ditau Mass Reconstruction

Since 𝐻 → 𝜏𝜏 and Z → 𝜏𝜏 events often look very similar in detector experiments and the Higgs mass
lies on the shoulder of the Z boson resonance, a good ditau mass reconstruction is necessary. Good
ditau mass reconstructions are also important for other analyses [2, 14, 37]. Currently the resolution is
not good enough to detect excesses in the ditau channel with high precision as it is, for example, in the
Z/𝐻 → 𝛾𝛾 channel. The goal of this thesis is to optimize the ditau mass reconstruction over a large
mass spectrum that encompasses the masses of the Higgs and Z bosons. In essence, it is a simple
problem where the energy of the ditau resonance is comprised of the energy of the two taus:

𝑚
2
𝜏𝜏 = (𝑝𝜏1

+ 𝑝𝜏2
)2
. (5.30)

However, the reconstruction also has to consider the neutrinos that elude the detector completely:

𝑚
2
𝜏𝜏 = (𝑝

𝜏
𝑣𝑖𝑠
1

+ 𝑝𝜏
𝜈
1
+ 𝑝

𝜏
𝑣𝑖𝑠
2

+ 𝑝𝜏
𝜈
2
)2
. (5.31)

Each ditau event typically contains two to four neutrinos. As mentioned in chapter 3.2.1, the only
information we have about them is the reconstructed missing transverse momentum which is very
sensitive to the detector resolution. There are multiple approaches to this problem, some of which will
be covered in this chapter [52].

5.1 Visible Mass

The simplest ditau mass reconstruction is to use the visible reconstructed mass of the event and to
ignore the neutrinos completely. In this approach, eq. 5.31 simplifies to

𝑚
2
𝜏𝜏,𝑣𝑖𝑠 ≈ (𝑝

𝜏
𝑣𝑖𝑠
1

+ 𝑝
𝜏
𝑣𝑖𝑠
2

)2
. (5.32)

This leads to a significant underestimation of the ditau mass and, since the fraction of the tau momenta
that is carried by the neutrino is randomly distributed, it also leads to a smearing of the reconstructed
mass distribution. Fig. 5.1 (left) shows a density plot of the visible reconstructed mass as well as the true
mass of a Z → 𝜏𝜏 and 𝐻 → 𝜏𝜏 samples. The samples used are introduced in chapter 7.5. As expected,
the mass is significantly underestimated (𝜇𝐻

𝑚 : 124.4 GeV → 83.9 GeV , 𝜇𝑍
𝑚 : 93.6 GeV → 66.2 GeV),

and the standard deviation of both distributions is much higher for the visible mass than it is for
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the true mass distributions (𝜎𝐻
𝑚 : 0.2 GeV → 16.3 GeV , 𝜎𝑍

𝑚 : 13.8 GeV → 14.2 GeV). Note that
for the Z sample, even though the standard deviation has only increased slightly, it is much more
significant since the mean value is about 30% lower. Fig. 5.1 (right) shows the relative resolution
of the reconstruction. Almost all events are reconstructed with a too low mass, which results in a
large bias. On average the reconstruction underestimates the mass by 32.5% for the Higgs sample and
29.0% for the Z sample. Only 0.38% of all Higgs events and 0.49% of all Z events are overestimated.
This can only happen in events where the neutrino carries almost no momentum and the detector
overestimates the visible part of the tau decay.
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Figure 5.1: The reconstructed visible mass of 𝐻 → 𝜏𝜏 and Z → 𝜏𝜏 events (left) and their relative mass
resolution (right).

5.2 Collinear Approximation

Figure 5.2: The angular assumption made in the collinear approach. It is assumed that the neutrino and the
visible part of the tau decay have no angular distance 𝜃 = 0.

The collinear approximation is another method of reconstructing the ditau mass.It assumes that the
neutrino’s four-vectors point in the same direction as the visible part of the tau decay (i.e. Δ𝑅 = 0), as
shown in fig. 5.2. This approximation can be very accurate under certain conditions and in principle
makes an analytic solution possible. This approximation does, however, make some assumptions.
It assumes that the entire missing transverse energy 𝐸

𝑚𝑖𝑠𝑠
𝑇 measured is produced by the neutrinos.

This is generally not true since hard jets and pile-up also contribute to the MET. If any particles fly
into the blind regions of the detector, they can also lead to misleading MET values. The collinear
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approximation also only holds up under the assumption that the mass of the mother particle is much
higher than the mass of the tau leptons that it decays into (𝑚 H/Z ≫ 𝑚𝜏). In addition, the detector
resolution is also neglected in this approach. Under these assumptions the problem can be solved
analytically with

𝐸
𝑚𝑖𝑠
𝑇,𝑥 = 𝑝𝑚𝑖𝑠,𝜏1

sin 𝜃𝑣𝑖𝑠,𝜏1
cos 𝜙𝑣𝑖𝑠,𝜏1

+ 𝑝𝑚𝑖𝑠,𝜏2
sin 𝜃𝑣𝑖𝑠,𝜏2

cos 𝜙𝑣𝑖𝑠,𝜏2
(5.33)

𝐸
𝑚𝑖𝑠
𝑇,𝑦 = 𝑝𝑚𝑖𝑠,𝜏1

sin 𝜃𝑣𝑖𝑠,𝜏1
sin 𝜙𝑣𝑖𝑠,𝜏1

+ 𝑝𝑚𝑖𝑠,𝜏2
sin 𝜃𝑣𝑖𝑠,𝜏2

sin 𝜙𝑣𝑖𝑠,𝜏2
(5.34)

𝑥𝑖 =
𝑝𝑣𝑖𝑠,𝑖

𝑝𝑣𝑖𝑠,𝑖 + 𝑝𝑚𝑖𝑠,𝑖

(5.35)

𝑚
𝑐𝑜𝑙𝑙
𝜏𝜏 =

𝑚
𝑣𝑖𝑠
𝜏𝜏√
𝑥1𝑥2

(5.36)

where 𝑥𝑖 is the visible fraction of the tau momentum.

If the transverse momentum of the resonance particle is low, then the two tau leptons fly in opposite
directions, which degenerates the possible solutions for the equations. Events where the resonance is
boosted significantly in the transverse plane by hadronic jets don’t have this problem.
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Figure 5.3: The collinear mass reconstruction of H → 𝜏𝜏 and Z → 𝜏𝜏 events (left) and their relative mass
resolutions (right).

Fig. 5.3 (left) shows the true mass and the collinear approximation. The reconstruction is already
significantly improved. The mean collinear mass for the Higgs sample is 128.3 GeV and for the Z
sample 98.9 GeV. The standard deviation is 22.3 GeV for the Higgs sample and 22.4 GeV for the Z
sample. The overestimation comes from the visible tail towards very high masses. This tail comes
from the aforementioned degeneration for events when the boson has low transverse momentum of the
boson. The relative resolution of the approximation is shown in fig. 5.3 (right). The mean relative
resolution for the Higgs sample is 0.032 and for the Z sample is 0.058. The distribution looks very
similar for both samples, though the Z sample has a slightly higher bias and width.
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5.3 Missing Mass Calculator

The missing mass calculator (MMC) [50] is the approach currently used in ATLAS. The principle
behind the MMC is to calculate kinematic probability density functions from simulations and then use
those to calculate the probability for all viable kinematic distributions of the event.

In order to reconstruct the ditau mass without using the collinear approximation, six to eight
variables need to be solved for. These are the three-momentum 𝑝𝑚𝑖𝑠,0 and 𝑝𝑚𝑖𝑠,1 of the neutrinos and,
if a tau decays leptonically, then the invariant mass of the two neutrino system as well. However, we
only have four equations available to solve for the variables:

𝐸
𝑚𝑖𝑠
𝑇,𝑥 = 𝑝𝑚𝑖𝑠,𝜏1

sin 𝜃𝑣𝑖𝑠,𝜏1
cos 𝜙𝑣𝑖𝑠,𝜏1

+ 𝑝𝑚𝑖𝑠,𝜏2
sin 𝜃𝑣𝑖𝑠,𝜏2

cos 𝜙𝑣𝑖𝑠,𝜏2
(5.37)

𝐸
𝑚𝑖𝑠
𝑇,𝑦 = 𝑝𝑚𝑖𝑠,𝜏1

sin 𝜃𝑣𝑖𝑠,𝜏1
sin 𝜙𝑣𝑖𝑠,𝜏1

+ 𝑝𝑚𝑖𝑠,𝜏2
sin 𝜃𝑣𝑖𝑠,𝜏2

sin 𝜙𝑣𝑖𝑠,𝜏2
(5.38)
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) (5.39)
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) (5.40)

𝑀
2
𝜏0/1

is the square of the invariant tau mass and corresponds to 1 776.86 GeV. Δ𝜃𝑣𝑚0/1
is the angular

difference between the visible and invisible decay products of the tau lepton. 𝑚𝑖𝑛𝑣 is the invariant mass
of the neutrino system and is set to zero for hadronically decaying taus. The two missing equations
needed to solve for the six variables in the case of hadronically decaying tau leptons are due to the fact
that it is impossible to reconstruct the pseudorapidity of the missing energy in hadronic colliders. As
there are infinite solutions to these equations, the MMC uses probability density functions to calculate
the probability with a Markov-Chain-Monte-Carlo process for a physically realistic subset of these
solutions. The probability density functions that are used in the MMC are Δ𝜃𝑣𝑚0/1

, the ratio of visible
to invisible momentum 𝑅0/1, and the resolution of the transverse missing energy Δ𝐸

𝑀𝐸𝑇
𝑥/𝑦 . They are

determined separately for 𝜏ℎ𝑎𝑑𝜏ℎ𝑎𝑑 , 𝜏ℎ𝑎𝑑𝜏𝑙𝑒𝑝 and 𝜏𝑙𝑒𝑝𝜏𝑙𝑒𝑝 events. The total probability for a certain
kinematic distribution is then computed by using the product of the probability density functions [63]:

𝑃𝑡𝑜𝑡 = 𝑃(Δ𝜃𝑣𝑚0
) · 𝑃(Δ𝜃𝑣𝑚1

) · 𝑃(𝑅0) · 𝑃(𝑅1) · 𝑃
(
Δ𝐸

𝑀𝐸𝑇
𝑥

)
· 𝑃

(
Δ𝐸

𝑀𝐸𝑇
𝑦

)
(5.41)

There are three different options for the output of the MMC:

• 1. MAXW: solution of the MMC with the highest probability.

• 2. MLM: the ditau-mass with the highest probability. This is the output used for the comparison
in this thesis.

• 3. MLNU3P: the most likely 3-momentum of neutrino.

The MMC output for the Z and Higgs sample are shown in fig. 5.4 (left). The mean MMC mass for
the Higgs sample is 120.2 GeV with a 16.0 GeV standard deviation. For the Z sample the mean is
92.8 GeV with a 17.4 GeV standard deviation. The MMC produces a better reconstruction than the
collinear approximation for both samples. It is noteworthy that the tail to large masses is no longer
present and the mean Z reconstruction is actually very close to the true Z mass. Fig. 5.4 (right) shows
the relative resolution of the MMC reconstruction. The mean relative resolution of the H sample is
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5.3 Missing Mass Calculator
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Figure 5.4: The MMC mass reconstruction of H → 𝜏𝜏 and Z → 𝜏𝜏 events (left) and their relative mass
resolutions (right).

−0.033 and of the Z sample it is −0.007. While the collinear approximation overestimates the masses
on average because of the tails, the MMC slightly underestimates the masses.

While the MMC does have advantages in comparison to the collinear approximation, a new
parametrisation for the MMC has to be applied every time it has to be retuned, which requires a lot of
work. The MMC reconstruction also takes a significant amount of time to calculate the probabilities
of events. In addition, it is also currently only trained on a Standard Model Monte-Carlo Z sample and
is therefore not calibrated for other mass ranges.
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CHAPTER 6

Artificial Neural Networks

Artificial neural networks (ANNs), usually simply referred to as neural networks (NNs), are a method
of machine learning that has a large range of applications like pattern recognition, data processing,
and solving non-linear problems. It is based on the idea of how biological neurons are connected in
the brain. The theory behind NNs started in 1943 when Warren McCulloch and Walter Pitts created
the first computational model for neural networks. A large step in advancing research into NNs was
taken in 1975 when Paul Werbos invented backpropagation used to train multi-layered NNs. This led
to a great advancement in research and applications. Unless otherwise specified, the source for this
chapter is [19].

6.1 Basic Structure

A neural network typically consists of multiple layers 𝐿𝑖 of artificial neurons 𝑣𝑛, also called nodes,
that are connected to each other. The first layer is called the input layer, in which each node represents
one of the input variables of the NN. The last layer is called the output layer. It can consist of multiple
nodes but for the purpose of this thesis there is only one output. The layers inbetween are called
hidden layers. An example diagram of a NN with four input variables and one hidden layer with five
nodes can be seen in fig. 6.1.

6.1.1 Nodes

The output of every node is connected to all nodes of the following layer. Each input of a node is
multiplied by a weight 𝑤𝑖 . The inputs are summed up and an additional bias 𝑏 is also included. This
value, labeled 𝑧, is then taken as input of an activation function 𝑓𝑎𝑐𝑡 to give the output of the node:

𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑓𝑎𝑐𝑡

(
𝑛∑︁
𝑖=1

𝑥𝑖𝑤𝑖 + 𝑏

)
= 𝑓𝑎𝑐𝑡 (𝑧). (6.42)

The weights 𝑤𝑖 and biases 𝑏 make up the variables 𝜃 that are varied during the training to optimize
the neural network. At first the weights and bias are all initialized pseudorandomly through a seed.

39
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Figure 6.1: Example neural network diagram with four input variables, one hidden layer, and one output [53].

6.1.2 Activation functions

The activation function is the final step in defining the output of a node, which is then sent to the next
layer. Activation functions are necessary to make NNs non-linear. Without them, NNs would not be
able to solve non-linear problems like the ditau mass reconstruction [57]. Some of the most common
activation functions are as followed [88]:
1. Sigmoid: 𝑓𝑎𝑐𝑡 (𝑥) = 1

1+𝑒−𝑥
2. Hyperbolic tangent: 𝑓𝑎𝑐𝑡 (𝑥) = tanh(𝑥)
3. Rectified linear unit (ReLU): 𝑓𝑎𝑐𝑡 (𝑥) = max(0, 𝑥)

4. Scaled Exponential Linear Unit (SELU): 𝑓𝑎𝑐𝑡 = 𝜆

{
𝑥 if 𝑥 > 0
𝛼𝑒

𝑥 − 𝛼 if 𝑥 ≤ 0

6.2 Training

In order to train NNs, first a training sample made up of 𝑚 events is needed. Each event must consist
of an input array ®𝑥 and a target 𝑦. NNs often aim to classify events into either 0 or 1, but the target
can also be a continuous variable. The NNs in the latter case are called Regression Neural Networks
(RNN). When feeding an event into the input layer of the neural network it produces an output 𝑦̂ at the
output layer. For the training, a loss function 𝐿 must be defined. A typical loss function is the squared
error loss:

𝐿 (𝑦; 𝜃) = 1
𝑚

𝑚∑︁
0
( 𝑦̂ − 𝑦)2

. (6.43)

The goal of the training process is to minimize this loss function. This is achieved through recursive
backpropagation from the output layer to the input layer [86]. The derivate of the loss function as a
function of each weight is computed as

𝛿𝐿

𝛿𝑤𝑖 𝑗

=
𝛿𝐿

𝛿𝑜 𝑗

𝛿𝑜 𝑗

𝛿𝑧 𝑗

𝛿𝑧 𝑗

𝛿𝑤𝑖 𝑗

=
𝛿𝐿

𝛿𝑜 𝑗

𝑓
′
𝑎𝑐𝑡 (𝑧 𝑗)

𝛿𝑧 𝑗

𝛿𝑤𝑖 𝑗

. (6.44)
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6.3 Further NN optimization

where 𝑤𝑖 𝑗 describes the weight of the connection between node 𝑖 to node 𝑗 , and 𝑜 𝑗 is the output of
the node 𝑗 as calculated in eq. 6.42. The backpropagation is relevant to calculate the 𝛿𝐿

𝛿𝑜 𝑗
part. The

partial derivative must be expanded to include every node 𝑛 that uses 𝑜 𝑗 as an input:

𝛿𝐿

𝛿𝑜 𝑗

=
∑︁
𝑛∈𝑁

(
𝛿𝐿

𝛿𝑜𝑛

𝛿𝑜𝑛

𝛿𝑧𝑛

𝛿𝑧𝑛

𝛿𝑜 𝑗

)
=

∑︁
𝑛∈𝑁

(
𝛿𝐿

𝛿𝑜𝑛
𝑓
′
𝑎𝑐𝑡 (𝑧𝑛)𝑤𝑧 𝑗𝑛

)
. (6.45)

This allows for the calculation of 𝛿𝐿
𝛿𝑤𝑖 𝑗

. The recursive term with the 𝑓
′
𝑎𝑐𝑡 term can be combined into a

computable variable:

𝛿 𝑗 =
𝛿𝐿

𝛿𝑜 𝑗

𝛿𝑜 𝑗

𝛿𝑧 𝑗
=

𝛿𝐿

𝛿𝑜 𝑗

𝑓𝑎𝑐𝑡 (𝑧 𝑗). (6.46)

The weights of the nodes can now be updated through the stochastic gradient descent (SGD) optimizer
with a learning rate 𝛼, where usually 𝛼 << 1 [70]:

𝑤𝑖 𝑗 = 𝑤𝑖 𝑗 − 𝛼
𝛿𝐿

𝛿𝑤𝑖 𝑗

. (6.47)

All weights are updated simultaneously. This process is not conducted on each event individually but
instead is done in batches. Both the learning rate 𝛼 and the batch size are variables that are set in the
neural network setup before the training starts.

6.3 Further NN optimization

While the above explanations are sufficient to create NNs, there are many more methods to improve
the performance of neural networks. They are mostly modifications to the training algorithm, usually
done by modifying the optimizer of the node weights.

To create a faster optimization, the input data is often normalized to a Gaussian distribution, with a
standard deviation which is equal for all input variables. This is visually depicted in fig. 6.2.

Figure 6.2: visual depiction of SGD before and after input data normalization [65].

During the SGD the gradient might be too large for the weights to fall into a minimum, and instead
oscillates around it. To circumvent this problem the learning rate 𝛼 can be decreased during the
learning process if the loss plateaus.
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Chapter 6 Artificial Neural Networks

A common alternative to the SGD algorithm is the Adam optimizer [67]. It creates individual
learning rates for each parameter. The learning rates are updated during the training process through
the inclusion of momentum terms:

𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝛼
(
𝛿𝐿

𝛿𝑤𝑖 𝑗

)
𝑡

(6.48)

𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2)𝛼
(
𝛿𝐿

𝛿𝑤𝑖 𝑗

)2

𝑡

. (6.49)

These variables represent the first and second momentum of the gradient. 𝛽1 and 𝛽2 are constants that
are set during the neural network initialization. An additional correction to 𝑚𝑡 and 𝑣𝑡 is applied to
avoid biases:

𝑚̂𝑡 =
𝑚𝑡

1 − 𝛽1
(6.50)

𝑣𝑡 =
𝑚𝑡

1 − 𝛽2
. (6.51)

The final update to the weights is then

𝜃𝑡 = 𝜃𝑡−1 −
𝛼√︁
𝑣𝑡 + 𝜖

𝑚̂𝑡 (6.52)

where 𝜖 is some very small number. The Adam optimizer can often increase the training speed since
it allows for faster optimization of the individual weights.
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CHAPTER 7

Monte Carlo Samples

7.1 Event Simulation

Simulated data is often used to calibrate detectors and verify experiment data. They are also used
to train neural networks since they require true level data. The data samples used in this thesis are
Monte-Carlo-generated samples based on pp collisions. For this, random events are generated which
follow probability density functions derived from theoretical calculations and experimental data.
During the event generation, multiple processes must be simulated in matrix calculations. First, hard
inelastic processes are generated. Initial state radiation and final state radiation are added on to these
processes. In additional, gluonic jets and hadronic fragmentation are generated. There are integrated
frameworks which simulate these effects. SHERPA [89, 20, 17] is used for parton showers and QED
radiation as well as for the generation of tau leptons. PYTHIA8 [9, 66] is used for hadronization
processes and also generates tau leptons. POWHEG [76, 11, 55] is used for NLO matrix element
generation. Tab. 7.1 lists the samples used in this thesis and some of their characteristics. The spin-0
samples are generated with POWHEG and are based on the PYTHIA8 event generator. The spin-1
samples are generated with SHERPA.

Sample Size Spin of ditau resonancetotal 60 GeV<m<220 GeV m<60 GeV
𝛾* 4 176 070 2 142 022 2 454 1
Tauspinner 941 026 384 731 130 1
Spin0hh 297 683 151 359 342 0
H-Sample 195 862 195 862 0 0
Z-Sample 873 241 873 241 0 1

Table 7.1: The used MC samples in this thesis.

7.2 𝜸* Sample

The first sample is a spin-1 𝛾
∗ sample based on proton-antiproton interactions that involve an off-shell

photon decaying into two hadronic taus. The mass spectrum of the 𝛾
∗ sample can be seen in fig. 7.1
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Chapter 7 Monte Carlo Samples

(left). There are a total of 4 176 070 events in the sample. The mass distribution is not flat. Instead,
there is a sharp decline for smaller masses and there are only 2 454 events (0.06% of all events in the
sample) under 60 GeV. This is because the tau reconstruction for lower energies becomes a lot more
difficult and the reconstruction steps cut deeply into the phase space of low energy 𝛾

∗ events. The
distribution reaches has a mean at 263.0 GeV. 2 142 022 events (51.29% of all events in the sample)
have a mass over 220 GeV. This sample is by far the largest out of all samples used, but it emulates
neither the spin of the Higgs boson nor the parity violation of the Z boson.

Since a RNN trained on this sample should not be biased to high energies, the sample is reweighted
to have a flat distribution for the mass range of 60 − 220 GeV. There are not sufficient statistics to
extend this range to lower masses and higher masses are not relevant for H → 𝜏𝜏 and Z → 𝜏𝜏 analysis.
The mass spectrum after reweighting can be seen in fig. 7.1 (right).
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Figure 7.1: Mass distribution of the 𝛾
∗ sample (left) and the reweighted sample (right)

The cuts that are applied during the creation of the sample in the derivation steps are listed in tab.
7.2. The relative and absolute efficiency of the cuts is also listed. DxAOD (Derived Analysis Object
Data) describes the derivation of the events. Only events with two reconstructed taus, which have to
have 𝑝𝑇 > 33 GeV and 𝑝𝑇 > 23 GeV, as well at least one tau lepton with a loose tau-ID, pass through
the derivation step. This is the biggest cut of the sample. The NTaus cut demands there to be exactly
two taus that are reconstructed in the event, and the Ditau common Vx cut demands that both tau
leptons are from approximately the same vertex, as reconstructed by the ATLAS detector. In total,
only 18.26% of all events get accepted into the sample. In addition to the cuts applied during the
creation of the sample, a tau identification cut is applied to make sure that the two reconstructed taus
in the event are actually tau leptons (a check on the PDGID = 15 or = −15 is done), and a final cut is
carried out to make sure there is a valid MMC reconstruction for the event.

Since the 𝛾
∗ sample is a spin-1 sample we expect both tau leptons in the decay to share similar Υ

distributions. Fig. 7.2 shows a 2D histogram of Υ0 and Υ1. The figure shows accumulations of events
in the corners, which is an indication for a spin-1 sample.

The distribution of the input variables used in the neural network training are shown in the appendix
A.
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7.3 Tauspinner Sample

Cut N Efficiency Total Efficiency
All events 29 781 000 100% 100%
DxAOD 9 501 676 31.91% 31.91%
Processed events 9 501 676 100% 31.91%
NTaus 6 352 713 66.86% 21.33%
Ditau common Vx cut 5 436 998 85.59% 18.26%

Table 7.2: Cut efficiencies of the derivation of the 𝛾
∗ sample. Both the individual efficiencies and the total

efficiency after each step are listed.
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Figure 7.2: 2D histogram showing the relation between Υ0 and Υ1 for the 𝛾
∗ sample

7.3 Tauspinner Sample

The goal of the tauspinner sample is to imitate the parity violation effects of the Z decay. For this,
the TauSpinner [82] program is used on a 𝛾

∗ sample to generate weights that simulate the parity
violation of the Z boson on each event. The mass spectrum of this sample can be seen in fig. 7.3 (left).
The mass distribution here is also not flat and drops off sharply for low energies. Only 130 events
(0.01% of all events in the sample) have a mass below 60 GeV. As with the 𝛾∗ sample, the distribution
drops off slowly again for higher masses. The mean of the distribution is 286.6 GeV. For this sample
556 165 events (59.10% of all events in the sample) have a mass above 220 GeV. This sample is also
reweighted to a flat distribution for neural network training. The results of the reweighting is shown
in fig. 7.3 (right). Due to the lower statistics, the reweighting is not able to create a perfectly flat
distribution (especially for low masses).

The derivation cuts that are applied to this sample and their relative and absolute efficiencies are
listed in tab. 7.3. This sample has some addition cuts applied during its creation that are not present in
the 𝛾∗ sample. The lepton veto cut removes all events in which a lighter lepton is reconstructed and the
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Figure 7.3: Mass distribution of the tauspinner sample (left) and the reweighted sample (right)

MET cut is only accepts events where MET > 20 GeV. As with the 𝛾
∗ sample, the only cuts that are

applied after the creation of the sample are the PDGID and MMC cuts. The LooseBad EventCleaning
filter removes events which are marked as having a bad jet in their reconstruction and the dEta cut
removes events where |Δ𝜂 | < 1.5.

Cut N Efficiency Total Efficiency
All events 27 459 000 100% 100%
DxAOD 9 059 046 32.99% 32.99%
Lepton veto 2 767 096 30.55% 10.08%
LooseBad EventCleaning 2 752 715 99.48% 10.02%
Tau pT cut 2 457 835 89.29% 8.95%
Ditau common Vx cut 2 294 569 93.36% 8.36%
MET cut 1 649 848 71.90% 6.01%
Ditau dEta cut 1 429 324 86.63% 5.21%

Table 7.3: Cut efficiencies of the derivation of the tauspinner sample. Both the individual efficiencies and the
total efficiency after each step are listed.

The Υ0,1 distribution of this sample is shown in fig. 7.4. As with the 𝛾
∗ sample, the figure shows

accumulations of events in the corners, which is indicative of a spin-1 sample.
The distribution of the variables used in the neural network training are shown in the appendix A.
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Figure 7.4: 2D histogram showing the relation between Υ0 and Υ1 for the tauspinner sample

7.4 Spin0hh Sample

Since the RNN should be optimized in both Z → 𝜏𝜏 and H → 𝜏𝜏 events an additional sample is
used for the training. For this, a spin-0 sample is used to emulate the kinematics of Higgs boson
decays across a large mass range. The sample consists of multiple beyond the Standard Model (BSM)
Higgs samples with different masses and broad widths which are combined to create a large mass
distribution. The mass distribution of the sample is shown in fig. 7.5 (left). The only cuts applied to
this sample are shown in tab. 7.4. As with the other samples, additional PDGID and MMC cuts are
also applied to the sample.

The distribution of the spin0hh sample is even more biased to higher masses than the other two
training samples. It has only 463 950 events, making it the smallest out of the three training samples.
Only 0.11% of all events are under 60 GeV. The mean of the distribution lies at 228.4 GeV and
51% of the events have masses over 220 GeV. The reweighting to a flat mass distribution for the
60 GeV < 𝑚𝑡𝑟𝑢𝑒 < 220 GeV events is shown in 7.5 (right). Similarly to the tauspinner sample, it
shows indications of low statistics for low masses.

The derivation cuts that are applied to this sample and their relative and absolute efficiencies are
listed in tab. 7.4.

A 2D-histogram showing the correlation between Υ0 and Υ1 is shown in fig. 7.6. When the energy
asymmetry Υ of one tau is near zero, the Υ of the other tau is more likely to have a higher absolute
value. This leads to the ring structure that can be seen in the figure, and therefore confirms that the
spin0hh sample is a spin-0 sample.

The distribution of the variables used in the neural network training are shown in the appendix A.
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Figure 7.5: Mass distribution of the spin0hh sample (left) and the reweighted sample (right)

Cut N Efficiency Total Efficiency
All events 2 366 000 100% 100%
DxAOD 1 136 291 48.03% 48.03%
Passed through channel events 680 659 59.90% 28.77%
LooseBad EventCleaning 676 645 99.41% 28.60%
Tau pT cut 491 562 72.65% 20.78%
Ditau common Vx cut 463 950 94.38% 19.61%

Table 7.4: Cut efficiencies of the derivation of the spin0hh sample. Both the individual efficiencies and the total
efficiency after each step are listed.
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Figure 7.6: 2D histogram showing the relation between Υ0 and Υ1 for the spin0hh sample
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7.5 H Sample and Z Sample

The H and Z samples are also Monte-Carlo generated samples. They are not used for the training but
instead for the evaluation of RNNs. The H sample has a total of 197 240 events and the Z sample has
a total of 878 838 events. Their respective ditau mass distributions are shown in fig. 7.7. The tail to
lower masses is from final state radiation. The H sample has a mean mass of 𝑚𝐻 = 124.9 GeV. The
mean mass of the Z sample is 𝑚𝑍 = 92.0 GeV. This is approximately 1% higher than the theoretical
value, because the cuts to the sample primarily remove low-mass events.
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Figure 7.7: Mass distribution of the true ditau mass including FSR effects of the H sample (left) and the Z
sample (right).

The derivation cuts that are applied to this sample and their relative as well as their absolute
efficiencies are listed in tab. 7.5. The cuts that are applied to these samples are stricter than for the three
training samples, since these samples should be closer to the conditions of an analysis which uses the
ditau reconstruction. To ensure that the tau leptons reconstructed during the online trigger level and the
offline tau reconstruction match, a trigger matching cut is applied. The tau 𝑝𝑇 cuts are 𝑝𝜏0

> 40 GeV
and 𝑝𝜏1

> 30 GeV. A Leading jet cut of 𝑝𝑇 > 70 GeV with an additional pseudorapidity cut of
|𝜂 | < 3.2 is applied. The angular cuts between the two tau leptons are 0.6 < Δ𝑅 < 2.5 and |Δ𝜂 | < 1.5.
To ensure the ditau resonance is sufficiently boosted for the reconstruction, a MET > 20 GeV selection
is also used. In addition, a collinear approximation cut of 0.1 < 𝑥 < 1.4 is applied on both tau leptons,
where 𝑥 stands for the visible fraction of the tau decay as defined in eq. 5.35. The listed cuts primarily
serve to increase the background rejection in analysis and filter out tau leptons for which a ditau mass
reconstruction becomes more difficult. Only 3.22% of the H sample and 2.04% of the Z sample passes
all cuts.

The 2D histograms of the charged energy asymmetries for the H and Z samples are shown in fig.
7.8. The H sample shows the distinct ring structure while the Z sample has an X structure with
accumulations of events in the corners. This verifies the spins of the samples and also shows that the
energy asymmetry contains information that can be used to reconstruct the spin of the resonance.
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Cut H-sample Z-sample
N Eff. Tot. eff. N Eff. Tot. eff.

All events 6 129 000 100% 100% 42 980 400 100% 100%
DxAOD 5 042 028 82.27% 82.27% 31 703 877 73.76% 73.76%
Passed through channel 954 410 18.93% 15.57% 4 446 256 14.02% 10.34%
EventCleaning 947 936 99.32% 15.47% 4 415 750 99.31% 10.27%
Trigger matching 947 901 >99.99% 15.47% 4 415 555 >99.99% 10.27%
Tau pT cut 715 802 75.51% 11.68% 2 666 447 60.39% 6.20%
common Vx cut 710 725 99.29% 11.60% 2 647 764 99.30% 6.20%
Leading jet cut 322 081 45.32% 5.26% 1 519 770 57.40% 3.54%
MET cut 273 943 85.05% 4.47% 1 211 731 79.73% 2.82%
Ditau dR cut 252 407 92.14% 4.12% 1 154 237 95.25% 2.69%
Ditau dEta cut 240 761 95.39% 3.93% 1 133 797 98.22% 2.64%
Coll approx cut 197 240 81.92% 3.22% 878 838 77.51% 2.04%

Table 7.5: Cut efficiencies of the derivation of the H sample and Z sample. Both the individual efficiencies and
the total efficiency after each step are listed.
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Figure 7.8: 2D histogram showing the relation between Υ0 and Υ1 for the H sample (left) and the Z sample
(right).
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CHAPTER 8

Neural Network Analysis

This section discusses the setups and performances of multiple neural networks. The neural networks
are trained on the samples introuced in chapter 7. First, the general architecture of the neural networks
used in this thesis are presented. Then, the methods of evaluating the neural networks are introduced.
In the next section, the performance of neural networks trained on the different Monte Carlo samples
are discussed and compared to the MMC performance. Some modifications to the neural network are
in the next sections. The final section includes a summary of all neural networks presented in this
chapter.

8.1 Architecture

The general architecture of the RNN used in this thesis is optimized as determined in [93]. Unless
otherwise stated, all neural networks in this thesis use this architecture. Four layers are used with 16
nodes each. TensorFlow is used for the neural network creation and training. Using fewer layers or
nodes leads to a sharp decline in NN performance, while adding more does not significantly alter
the performance for this use case and leads to a large increase in training time. The SELU activation
function is used for all layers. The batch size is 32 and a learning rate of 𝛼0 = 0.001 is used. Every
time there is no improvement in the loss detected for 15 epochs, the learning rate is halved. No dropout
or regularization is used. The loss function is the mean square error loss as defined in 6.43 and the
Adam optimizer is used with a first momentum of 𝛽1 = 0.9 and a second momentum of 𝛽2 = 0.99.
The NN always runs for 200 epochs unless there is a NaN in the loss calculation, in which case the
training terminates. The output of the neural network is defined as the reconstructed 𝑚𝑟𝑒𝑐𝑜.

The standard input variables that are used in the RNN are listed in tab. 8.1. They include the
transverse momentum 𝑝𝑇 , the azimuthal angle 𝜙 and the pseudorapidity 𝜂 of the leading tau 𝜏0 as well
as that of the subleading tau 𝜏1. With these quantities the visible mass of the event can be reconstructed.
Some information on the neutrino momentum can be extracted from the missing transverse energy
vector, from which the resulting transverse momentum 𝑝

MET
𝑇 and the pseudorapity 𝜙

MET are used. As
discussed chapter 3.2.1, the pseudorapidity of the MET can not be determined. In addition to those
four-vector quantities, the number of reconstructed charged tracks 𝑛

𝑐ℎ𝑎𝑟𝑔𝑒𝑑

𝜏0 and 𝑛
𝑐ℎ𝑎𝑟𝑔𝑒𝑑

𝜏1 that are
assigned to the two taus are included. They are relevant since the kinematics of the tau decay depend
on the decaymode of the tau lepton. In total, there are 10 variables in the input variable set. The
distributions of the input variables are shown in the appendix A for the five samples.
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𝜏0 𝜏1 MET
𝜏
𝑝𝑇
0 𝜏

𝜂

0 𝜏
𝜙

0 𝑛𝜏0
𝜏
𝑝𝑇
1 𝜏

𝜂

1 𝜏
𝜙

1 𝑛𝜏1
MET 𝜙MET

Table 8.1: Input variables of the RNN.

8.2 Sample Splitting

The three samples used for the training of the NNs are split into three parts: the training set, the testing
set and the validation set, all of which cover the entire mass range of the sample. The 160 GeV range
of the samples is split into 1600 slices, each with a size of 0.1 GeV. The slice with the fewest events
𝑛𝑚𝑖𝑛 is used as a bottleneck for the splitting. The first 0.1 × 𝑛𝑚𝑖𝑛 (rounded down) events of each slice
are assigned to the testing set. The following 0.1 × 𝑛𝑚𝑖𝑛 events are assigned to the validation set and
all other events are part of the training sample. This method has a flat mass distribution for the testing
and validation sets, so they don’t have to be reweighted. For the spin0hh sample there are not enough
events in each slice for this method, so the sample is divided into 160 slices instead. The Z sample
and H sample are not split and instead only used for validation purposes.

8.3 Methods of NN evaluation

Evaluating the performance of a neural network at reconstructing the ditau mass is not trivial. There
are multiple metrics that give insight into the performance of a neural network. They can not be
considered independently but instead complement each other and must all be taken into account. In
this thesis three different methods of evaluation are used. First, the loss is considered. A low loss
means that the neural network is good at what it was explicitly told to do, which is to minimize the
loss function. It is important to consider both the loss of the training set and the loss of the testing set,
as a large disparity between the two can reveal overtraining or underlying issues in the sample.

In the second method used to evaluate the performance of a NN, the relative resolution of the mass
reconstruction is considered. For this the quantity

Δ𝑚𝑟𝑒𝑙 =
𝑚𝑡𝑟𝑢𝑒 − 𝑚𝑟𝑒𝑐𝑜𝑛

𝑚𝑟𝑒𝑐𝑜𝑛

(8.53)

is evaluated and shown in bins of the true mass. A relatively smooth distribution of the relative mass
resolution for the entire mass range of the sample is a satisfactory result of the NN reconstruction.

In the third method discussed in this thesis, the performance of the neural network is evaluated
by applying it to the Higgs sample and Z sample in order to create a ROC curve (receiver operating
characteristic curve). The aim of this method is to have good H and Z boson reconstructions and to
maximize the area under the curve (AUC) of the ROC curve.

8.4 RNN Stability

In this section the general stability of the learning process is studied. Prior work has shown that
the loss often spikes and has inconsistent final values. To study the randomness of this, the seed of
TensorFlow is varied. In addition, the possibility for a bias in the sample when splitting into testing,
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training and validation is also studied. For this, the sample is split differently by assigning different
parts of the slice to the three categories.

Some loss graphs for the 𝛾
∗ training sample are shown in fig. 8.1. The first plot is a very common

loss graph of the training process. The training loss quickly drops to under 25, where it slowly drops
further and then stabilizes at about 24.6. While the training loss is rather smooth, with only some
bumps, the testing loss is very erratic and has small spikes every few epochs, before also slowly
stabilizing in the course of the training. The other three plots shown in fig. 8.1 are handpicked to
show problematic irregularities. In the second plot there is a sudden sharp increase of the training
loss at about 126 epochs into the training. This behavior continues for about 25 epochs, doubling
the loss of the training, before it slowly starts falling off again. Since the training rate has already
been halved multiple times by that point, the remaining epochs are not enough to lower the loss to its
minimum and the training ends suboptimally. The testing loss remains unaffected during the entire
process. While the cause of this type of phenomena cannot be determined with certainty, it probably
stems from a very small phase space of events for which the derivative of some weights in the network
grow to extreme values. In this specific case, the spike can be attributed to one single event. The third
plot shows a somewhat typical loss plot in which the training takes a long time and both the training
and the testing loss show erratic behavior. After about 130 epochs the loss eventually stabilizes and
doesn’t peak anymore. In the fourth plot the training seems to get stuck at an elevated value, before
suddenly dropping sharply at about 23 epochs into the training to a lower value where it then slowly
stabilizes. The cause for falling into an early plateau can not be determined.

The effects of halving the learning rate 𝛼 can be seen as little steps in the training loss of the first
plot from the epochs 25-125 and in the fourth plot from epochs 50-125. Here, the training loss starts
growing very slowly after reaching a local minimum, while the high learning rate keeps the loss
becoming smaller. Once the learning rate is halved, the loss manages to continue to drop again.

In general the loss is usually stable by the time it reaches 200 epochs, which is why a training length
of 200 is used in this thesis. Early stopping conditions are also not used since the training sometimes
plateaus temporarily, during which the learning would end early if early stopping conditions are used.

Similar example plots for the tauspinner sample are shown in fig. 8.2. For this sample the training
process seems to be more stable. The loss value converges to a range of 22-23 every time and no large
peaks or other significant irregularities are visible.

The loss plots for the spin0hh sample are shown in 8.3. Here, the training is also significantly more
stable than the 𝛾

∗ sample but it does show more spiking than the tauspinner sample. The training loss
consistently converges to values 25-27 and the testing loss reaches values of 27-29. This divergence
between the testing and training sets might be a result of the fact that the spin0hh sample is the smallest
of the three samples and it also has the largest bias to larger masses.

To analyze the stability of the training process further, the testing loss of 180 neural networks after
40 epochs is shown in fig. 8.4. The x-axis shows the random seed of TensorFlow and the y-axis shows
the input permutation used for the training, testing and xvalidation split. In this plot, the 𝛾

∗ sample is
used. While the loss is stable and reaches values between 24 and 26 for most neural networks, there
are three outliers above 27. The same plot after 80 epochs is shown in fig. 8.5. Here, there are only
two outliers left and most losses have dropped slightly. Fig. 8.6 shows the losses after 200 epochs.
The overall loss of most neural networks has continued to drop slightly, but the two outliers remain at a
high loss and a new outlier spikes and reaches a loss of over 29. The same plot after 200 epochs for the
training sample is shown in fig. 8.7. Here, five losses over 26 can be found. The outliers overlap with
the outliers of the testing sample, but also include two new outliers that are not visible in the testing
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Figure 8.1: Four selected loss graphs of a neural network trained on the 𝛾
∗ sample. The training and testing loss

is shown.
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Figure 8.2: Two selected loss graphs of a neural network trained on the tauspinner sample. Training and testing
loss is shown.

loss. Neither the permutation of the input sample split nor the random TensorFlow seed seem to be
particularly relevant to the optimization of the loss function. Instead, it seems to be an effect based on
the combined random nature of all aspects of the neural network with no specific underlying structure.
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Figure 8.3: Two selected loss graphs of a neural network trained on the spin0hh sample. Training and testing
loss is shown.
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Figure 8.4: Test loss after 40 epochs of 180 neural networks trained on the 𝛾
∗ sample with varied random

TensorFlow seed and test-train split.

A histogram of the testing losses for the 𝛾
∗ after 200 epochs is shown in fig. 8.8. The mean of the

loss is 𝜇 = 24.63 with a standard deviation of 𝜎 = 0.49. The same plot for the tauspinner sample
is shown in fig. 8.9 and for the spin0hh sample in fig. 8.10. For the tauspinner sample the mean
loss is 𝜇 = 22.70 with a standard deviation of 𝜎 = 0.50. The mean loss of the spin0hh sample is
𝜇 = 26.40 with a standard deviation of 𝜎 = 0.78. As already discussed, the training process seems
more stable for the tauspinner and spin0hh samples. While the loss for tauspinner sample seems to
be generally lower than for the spin0hh sample and 𝛾

∗ sample, this does not mean that these neural
networks are better. Due to the different shapes of the Monte Carlo samples, the loss value itself
cannot be compared between different setups.

In general the training seems to stabilize after 200 epochs around the same value. Therefore the
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Figure 8.5: Test loss after 80 epochs of 180 neural networks trained on the 𝛾
∗ sample with varied random

TensorFlow seed and test-train split.
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Figure 8.6: Test loss after 200 epochs of 180 neural networks trained on the 𝛾
∗ sample with varied random

TensorFlow seed and test-train split.

neural networks are trained for 200 epochs in this thesis. Since there is still a chance that the training
is still unstable after 200 epochs or that it stabilizes at a high value, three or more neural networks are
always trained simultaneously. They are then checked for consistency.
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Figure 8.7: Train loss after 200 epochs of 180 neural networks trained on the 𝛾
∗ sample with varied random

TensorFlow seed and test-train split.
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Figure 8.8: Histogram of test loss after 200 epochs of 180 neural networks trained on the 𝛾
∗ sample with varied

random TensorFlow seed and test-train split.
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Figure 8.9: Histogram of test loss after 200 epochs of 180 neural networks trained on the tauspinner sample
with varied random TensorFlow seed and test-train split.
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Figure 8.10: Histogram of test loss after 200 epochs of 180 neural networks trained on the spin0hh sample with
varied random TensorFlow seed and test-train split.
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8.5 Reconstruction Performance

In this section the performance of the reconstruction of neural networks trained on the three training
samples are analyzed. For this, the relative resolution of the reconstructed masses is used. In addition,
a calibration method is introduced and implemented. The neural network reconstruction of the Higgs
sample and the Z sample and their separation power between those two samples are also presented.
The target of the RNN reconstruction in this section is the true ditau mass 𝑚𝑡𝑟𝑢𝑒 of the event.

8.5.1 𝜸∗ Sample Reconstruction

The relative mass resolution of a neural network trained on the 𝛾
∗ sample is shown in fig. 8.11 (left).

It has a mean value of 𝜇 = −0.070 and a standard deviation of 𝜎 = 0.188. 8.11 (right) shows the
entire mass distribution of the RNN reconstruction. Despite the large standard deviation of the relative
resolution of the reconstruction, the reconstruction itself is constrained in the 60−220 GeV mass range
of the training sample. Fig. 8.12 shows the relative mass resolution (left) and the mass distribution
(right) of the MMC ditau mass reconstruction. The distribution has a mean value of 𝜇 = −0.070 and a
standard deviation of 𝜎 = 0.188. Therefore, the RNN has a lower mean value standard deviation for
the relative resolution than the MMC reconstruction on this sample. The mean of both the RNN and
MMC reconstruction in bins of the true mass are shown in fig. 8.13. The error bars show the 68%
quantiles of each bin. The total bias 𝑏 is calculated as

𝑏 =

√︃∑𝑛𝑏
𝑖=1 𝑏

2
𝑖

𝑛𝑏
(8.54)

where 𝑏𝑖 is the individual bias of the 𝑖-th bin and is equivalent to the mean of the relative mass
resolution of that bin. 𝑛𝑏 = 16 stands for the number of bins. For a RNN trained on the 𝛾

∗-sample the
total bias is 𝑏 = 0.170 and for the MMC reconstruction on the 𝛾

∗-sample the total bias is 𝑏 = 0.143.
The mean 68% quantile 𝜇𝑏 is calculated similarly as

𝜇𝑏 =

√︂∑𝑛𝑏
𝑖=1

(
𝑙𝑒𝑟𝑟,𝑖+ℎ𝑒𝑟𝑟,𝑖

2

)2

𝑛𝑏
(8.55)

where 𝑙𝑒𝑟𝑟 ,𝑖 is the width between the mean and the lower 16% quantile of each bin content and ℎ𝑒𝑟𝑟 ,𝑖
is the width between the mean and the upper 16% quantile of each bin. For this RNN the mean 68%
quantile width is calculated to be 𝜇𝑏 = 0.195 and for the MMC reconstruction 𝜇𝑏 = 0.210.

The 68% and 95% quantile widths of the relative mass resolution are shown in fig. 8.14. At very
low masses the RNN and the MMC have very similar 68% quantile widths: Both are at 𝜎 ≈ 0.15.
The 68% quantile width of the neural network then quickly rises with higher masses before reaching a
maximum at 90 − 100 GeV with 𝜎 ≈ 0.18. It then shrinks almost linearly and reaches a minimum at
210 − 220 GeV with 𝜎 ≈ 0.09. The MMC follows a different trend. At first the 68% quantile width
stays almost constant is at its minimum value of 𝜎 ≈ 0.15 at 70 − 80 GeV, before then continuously
rising and reaching a maximum of 𝜎 ≈ 0.19 at 210 − 220 GeV. The RNN starts having a smaller
width than the MMC between 120 − 130 GeV. The 95% quantiles follow a similar trend.

There are two noteworthy features of these distributions. First , there is a very clear downward trend
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Figure 8.11: The relative mass resolution (left) and mass reconstruction as well as the true mass (right) of a
neural network trained on the 𝛾

∗ sample
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Figure 8.12: The relative mass resolution (left) and mass reconstruction (right) of the MMC reconstruction of
the 𝛾

∗ sample.

of the bias visible in the plot for the relative mass resolution of the neural network. There are very high
positive biases for low masses, reaching 𝑏𝑚𝑎𝑥 ≈ +0.22, and very high negative biases for high masses,
reaching 𝑏𝑚𝑖𝑛 ≈ −0.14. The MMC reconstruction also shows a downward trend in the bias though it
is not as strong. For low masses it reaches up to 𝑏𝑚𝑎𝑥 ≈ +0.05 and it goes down to 𝑏𝑚𝑖𝑛 ≈ −0.10.
For the RNN this is, in fact, to be expected since the network learns that the sample is constrained
to 60 − 220 GeV and therefore is biased to overestimate low mass events and to underestimate high
mass events. This can be seen in fig. 8.15 and fig. 8.16, where the relative mass resolution for
the lowest bin (60 − 70 GeV) and highest bin (210 − 220 GeV) are shown respectively. 8.15 shows
that almost no events have their mass underestimated. The mean of the distribution is 𝜇 = 0.241
with a standard deviation of 𝜎 = 0.189. In a similar manner, 8.16 shows that almost no events have
their mass overestimated. The mean is 𝜇 = 0.138 with a standard deviation of 𝜎 = 0.103. These
distributions are also highly un-gaussian, which is not desired. The reconstructed mass distributions
of those mass slices are also shown in fig. 8.15 (right) and fig. 8.16 (right). The mean of the
60 GeV < 𝑚𝑡𝑟𝑢𝑡ℎ < 70 GeV slice is 𝜇 = 81.4 GeV with a standard deviation of 𝜎 = 12.7 GeV. This
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Figure 8.13: The mean relative mass resolution and the 68% quantile width of the relative mass resolution in
bins of the true ditau mass of a RNN trained on the 𝛾

∗ and the MMC reconstruction of the 𝛾
∗ sample.

distribution is highly overestimated with the mean lying above the actual mass slice by almost one
standard deviation. For the 210 GeV < 𝑚𝑡𝑟𝑢𝑡ℎ < 220 GeV slice the mean lies at 𝜇 = 185.3 GeV and
has a standard deviation of 𝜎 = 22.1 GeV. This distribution is highly underestimated by over one
standard deviation to the edge of the slice.

The same plots for the MMC reconstruction are shown in fig. 8.17 and fig. 8.18. The mass
resolution distribution for 60 GeV < 𝑚𝑡𝑟𝑢𝑡ℎ < 70 GeV has a mean of 𝜇 = 0.057 with a standard
deviation of 𝜎 = 0.191. The distribution is also not Gaussian. There is a more pronounced tail to
positive resolutions than to lower resolutions. The mass distribution has a mean of 𝜇 = 69.4 GeV
with a standard deviation of 𝜎 = 13.1 GeV. For the 210 GeV < 𝑚𝑡𝑟𝑢𝑡ℎ < 220 GeV slice, the mean
of the relative mass resolution distribution is 𝜇 = −0.113 with a standard deviation of 𝜎 = 0.197.
This distribution is also not Gaussian. It has a sharp cutoff towards positive relative resolutions and
a larger tail towards negative relative resolutions. The mass distribution of this slice has a mean of
𝜇 = 190.0 GeV with a standard deviation of 𝜎 = 41.0 GeV. This is a significantly larger standard
deviation than for the same mass slice for the RNN reconstruction and is consistent with the values
plotted in fig. 8.13. Overall both the RNN and the MMC seem to be biased by overestimating low
mass events and underestimating high mass events.

Also noteworthy is that the results shown in the plots do not allow for a direct comparison between
the MMC and the neural network. The MMC has a larger 𝜇-value but a smaller total bias 𝑏 than
the neural network. This is expected, since the RNN is inclined to develop a bias by learning the
shape of the mass distribution of the training sample. A way to reduce the large bias and its slope
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Figure 8.14: The 68% and 95% quantile width of the relative mass resolution in bins of the true ditau mass of a
RNN trained on the 𝛾

∗ sample and the MMC reconstruction of the 𝛾
∗ sample.

0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8
mreco/mtrue -1

0

200

400

600

800

1000

1200

1400

1600

N

Rel.res. of a RNN trained on the * dataset, 60<mtrue<70

Rel. res. of MMC, =0.241 , =0.189

0 20 40 60 80 100 120
m / GeV

0

1000

2000

3000

4000

5000

6000

N

RNN recon. trained on the * dataset, 60<mtrue<70

RNN recon., =81.4 GeV, =12.7 GeV
true mass, =65.6 GeV, =2.8 GeV

Figure 8.15: The relative mass resolution (left) and mass reconstruction as well as the true mass (right) of a
neural network trained on the 𝛾

∗ sample for true masses 60 GeV < 𝑚𝑡𝑟𝑢𝑒 < 70 GeV

visible in fig. 8.13 is by calibrating the reconstructed masses to the real masses. To make the results
displayed in the plots comparable, an approach developed in [61] is applied. With this method, the
mass distribution in bins of 10 GeV across the 60 − 220 GeV range is fitted to their correct value. Due
to the very asymmetrical distributions, the mean of each bin is used for the fitting since it provides a
compromise between the peak position and the large outliers. The mass distribution with the 68%
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Figure 8.16: The relative mass resolution (left) and mass reconstruction as well as the true mass (right) of a
neural network trained on the 𝛾

∗ sample for true masses 210 GeV < 𝑚𝑡𝑟𝑢𝑒 < 220 GeV
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Figure 8.17: The relative mass resolution (left) and mass reconstruction (right) of the MMC reconstruction of
the 𝛾

∗ sample for true masses 60 GeV < 𝑚𝑡𝑟𝑢𝑒 < 70 GeV

quantiles in bins of 10 GeV is shown in fig. 8.19 (left: RNN, right: MMC). The blue line shows the
ideal 𝑚𝑟𝑒𝑐𝑜 = 𝑚𝑡𝑟𝑢𝑡ℎ line that is fitted to. To fit a function to the medians of the bins, a polynomial of
4th degree is used:

𝑚𝑡𝑟𝑢𝑒 = 𝑎 ·
(
𝑚𝑟𝑒𝑐𝑜

)4 + 𝑏 ·
(
𝑚𝑟𝑒𝑐𝑜

)3 + 𝑐 ·
(
𝑚𝑟𝑒𝑐𝑜

)2 + 𝑑 ·
(
𝑚𝑟𝑒𝑐𝑜

)
+ 𝑒 (8.56)

The fit is also shown in the plot as the red line.
Applying the fit to all events leads to fig. 8.20. The The medians of the bins now lie approximately

on the 𝑚𝑟𝑒𝑐𝑜 = 𝑚𝑡𝑟𝑢𝑡ℎ line, so that the bias of the plot is almost completely removed. However, the
goal of the calibration is to remove the bias in bins of the true mass and not in bins of the reconstructed
mass. Those two requirements are not equal because the asymmetrical mass distributions of each bin
lead to bin-to-bin migration effects. The median values of the corrected values in bins of true masses
is shown in fig. 8.21. A new bias from the correction is now visible, but it can be approximated with a
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Figure 8.18: The relative mass resolution (left) and mass reconstruction (right) of the MMC reconstruction of
the 𝛾

∗ sample for true masses 210 GeV < 𝑚𝑡𝑟𝑢𝑒 < 220 GeV
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Figure 8.19: The median and 68% quantiles of the reconstructed mass in bins of the true mass for the RNN
(left) and MMC(right) reconstruction.

linear function of the form:
𝑚𝑟𝑒𝑐𝑜 = 𝑝 · 𝑚𝑡𝑟𝑢𝑒 + 𝑡 (8.57)

⇔ 𝑚𝑡𝑟𝑢𝑒 =
𝑚𝑟𝑒𝑐𝑜 − 𝑡

𝑝
. (8.58)

Since the true masses are usually not known, the function has to be inverted so that the function
can be applied to the corrected mass 𝑚𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑

𝜏𝜏 . The final result is shown in fig. 8.22. The bias is
mostly gone. As shown, this method can be applied to both the RNN reconstruction and the MMC
reconstructions. The relative resolution plot of the calibrated reconstruction in bins of 𝑚𝑡𝑟𝑢𝑡ℎ is shown
in fig. 8.23 and the 68% and 95% quantiles are shown fig. 8.24. The new plot shows that the bias
is mostly gone, but the 68% quantile widths have increased. This is an expected effect since the
entire mass reconstruction has been stretched out to remove the bias of the mean of each bin. The
new plot also allows for a comparison between the RNN and MMC reconstruction. The total bias
is 𝑏𝑅𝑁𝑁 = 0.086 and 𝑏𝑀𝑀𝐶 = 0.085 for the RNN and MMC reconstruction respectively and the

64



8.5 Reconstruction Performance

60 80 100 120 140 160 180 200 220
mreco / GeV

60

80

100

120

140

160

180

200

220

m
tru

e /
 G

eV

60 80 100 120 140 160 180 200 220
mreco / GeV

0

50

100

150

200

m
tru

e /
 G

eV
Figure 8.20: The median and 68% quantiles of the reconstructed mass in bins of the true mass for the RNN
(left) and MMC (right) reconstruction after the first calibration step.

mean 68% quantile width is 𝜇𝑅𝑁𝑁
𝑏 = 0.219 and 𝜇

𝑀𝑀𝐶
𝑏 = 0.225 respectively. While the bias is nearly

zero for the bins of 𝑚𝑡𝑟𝑢𝑒 < 180 GeV, for higher masses the bias becomes significant again. The 68%
quantile width of the RNN is slightly higher for the bins in the mass range 80 GeV < 𝑚𝑡𝑟𝑢𝑒 < 130 GeV
than for the MMC and lower in the other mass bins. The 95% quantile widths are lower for the RNN
than for the MMC across the entire mass range. The difference in the 95% quantile width is the most
significant for the lowest bins.
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Figure 8.21: The median and 68% quantiles of the true mass in bins of the reconstructed mass for the RNN
(left) and MMC (right) reconstruction after the first calibration step.

The final method of evaluating the neural networks presented in this thesis is a receiver operating
characteristic (ROC) curve. The Higgs and Z samples are used to measure the separation power of the
RNN and MMC. Since the samples generated by Monte Carlo are based on Standard Model Higgs
and Z bosons, and since the cuts applied to these samples are generally used in analysis, this method
gives a useful comparison between the RNN and the MMC reconstruction. The ROC curve for an
RNN trained on the 𝛾

∗ sample is shown in fig. 8.25. The area under the curve (AUC) is 0.875 for the
RNN and 0.908 for the MMC, which demonstrates that the MMC is better able to separate Higgs
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Figure 8.22: The median and 68% quantiles of the true mass in bins of the reconstructed mass for the RNN
(left) and MMC (right) reconstruction after the second calibration step.
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Figure 8.23: The mean relative mass resolution and the 68% quantile width of the relative mass resolution in
bins of the true ditau mass of a RNN trained on the 𝛾

∗ sample and the MMC reconstruction of the 𝛾
∗ sample

after the calibration.

and Z event. This is because the cuts applied to the Higgs and Z samples appear to benefit the MMC
reconstruction more than the RNN reconstruction.
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Figure 8.24: The 68% and 95% quantile width of the relative mass resolution in bins of the true ditau-mass of a
RNN trained on the 𝛾

∗ sample and the MMC reconstruction of the 𝛾
∗ sample after the calibration.
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Figure 8.25: A ROC curve of the separation power between the H sample and the Z sample for the RNN trained
on the 𝛾

∗ sample and the MMC reconstruction.

67



Chapter 8 Neural Network Analysis

8.5.2 Tauspinner Sample Reconstruction

A similar analysis is done for the tauspinner sample. The relative mass resolution of an RNN trained
on the tauspinner sample sample is shown in fig. 8.26 (left). The distribution has a mean value of
𝜇 = −0.027 with a standard deviation of 𝜎 = 0.161. This is a significant improvement to the same mass
resolution distribution of the 𝛾∗ sample. The mass distribution of the tauspinner sample reconstruction
is shown in fig. 8.26 (right). It has a thick short tail for small masses (50 GeV − 100 GeV) and reaches
a sharp peak at 𝑚𝑟𝑒𝑐𝑜𝑛 ≈ 190 GeV. This is significantly different from the mass distribution of the 𝛾

∗

sample, which looks much more symmetrical. The underlying reason for this is could be the original
mass distribution of the sample, which is much more biased to higher masses for the tauspinner sample
compared to the 𝛾

∗ sample (see fig. 7.1 and fig. 7.3).
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Figure 8.26: The relative mass resolution (left) and mass reconstruction (right) of a neural network trained on
the tauspinner sample.

The relative mass resolution and mass distribution of the MMC reconstruction of the tauspinner
sample is shown in fig. 8.27. The relative resolution of the MMC has a mean of 𝜇 = −0.027 and a
standard deviation of 𝜎 = 0.161. This is also significantly lower compared to the MMC reconstruction
of the 𝛾

∗ sample. More cuts are applied to the tauspinner sample than to the 𝛾
∗ sample. These cuts

lead to an improved reconstruction for both the RNN and the MMC, which is why the relative mass
resolution distribution of the MMC reconstruction is narrower for the tauspinner sample than for the 𝛾

sample.
The relative mass resolution for both the RNN and MMC reconstruction in bins of the true mass are

shown in fig. 8.28. The total bias for the RNN reconstruction is 𝑏 = 0.156 with a mean 68% quantile
width of 𝜇𝑏 = 0.187. The MMC reconstruction has a total bias of 𝑏 = 0.133 and a mean 68% quantile
width of 𝜇𝑏 = 0.192. A significant difference to the MMC and RNN reconstruction of the 𝛾

∗-sample
is that the bin bias 𝑏𝑖 starts rising in the lower bins for both the MMC and RNN reconstruction. The
bias starts at 𝑏𝑖 = 0.10 for the RNN and rises to a maximum of 𝑏𝑖 = 0.15 at 90 − 100 GeV. It then
continuously falls and reaches 𝑏𝑖 ≈ −0.13 in the highest bin. The MMC reconstruction follows a
similar trend. It starts with 𝑏𝑖 ≈ 0.04 and reaches a maximum of 𝑏𝑖 = 0.12 in the 80 − 90 GeV and
90− 100 GeV bins. Then it falls and reaches negative values, reaching a minimum value of 𝑏𝑖 ≈ −0.09
at the highest bin.

Fig. 8.29 and fig. 8.30 show the relative mass resolution (left) and the mass distribution (right) of
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Figure 8.27: The relative mass resolution (left) and mass reconstruction (right) of the MMC reconstruction of
the tauspinner sample.
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Figure 8.28: The mean relative mass resolution and the 68% quantile width of the relative mass resolution in
bins of the true ditau mass of a RNN trained on the tauspinner sample and the MMC reconstruction of the
tauspinner sample.

the lowest and highest mass bins for the RNN reconstruction. The low statistics of the lower mass
regions of the tauspinner sample create a very uneven distribution for the 60 GeV < 𝑚𝑡𝑟𝑢𝑡ℎ < 70 GeV
slice. The mean value of the relative mass resolution for that slice is 𝜇 = 0.099 (𝜎 = 0.204) and
the mean value of the mass distribution is 𝜇 = 71.8 GeV (𝜎 = 13.8 GeV). For the highest mass slice
(210 GeV < 𝑚𝑡𝑟𝑢𝑡ℎ < 220 GeV) the mean relative resolution is 𝜇 = −0.131 (𝜎 = 0.089), and the mean
of the mass distribution is 𝜇 = 186.7 GeV (𝜎 = 19.1 GeV). The distributions are again highly skewed
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into one direction and represent that the RNN learns the underlying shape of the mass distribution of
the tauspinner sample.
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Figure 8.29: The relative mass resolution (left) and mass reconstruction (right) of a neural network trained on
the 𝛾

∗ sample for true masses 60 GeV < 𝑚𝑡𝑟𝑢𝑒 < 70 GeV
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Figure 8.30: The relative mass resolution (left) and mass reconstruction (right) of a neural network trained on
the 𝛾

∗ sample for true masses 210 GeV < 𝑚𝑡𝑟𝑢𝑒 < 220 GeV

The calibration to remove the bias was also applied to this sample. The calibration plots are shown
in fig. 8.31. In the second calibration step, a linear function as used for the 𝛾

∗ sample is not sufficient
for the fit. Instead, a logarithmic function of the form

𝑚
𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑
𝜏𝜏 = 𝑝 ln(𝑚𝑡𝑟𝑢𝑡ℎ

𝜏𝜏 ) + 𝑡 ⇒ 𝑚
𝑡𝑟𝑢𝑡ℎ
𝜏𝜏 = exp(

𝑚
𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑
𝜏𝜏 − 𝑡

𝑝
) (8.59)

is used, and the inverse of it is applied to the data points. This modification is necessary because the
tauspinner sample is a lot more asymmetric in its mass distribution, which worsens the bin-to-bin
migration effects. A quadratic polynomial can also be used, however the logarithm has the benefit that
it is a surjective function, so that its inverse is always defined. The logarithmic calibration results in
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the successful removal of most of the bias. The result of the calibration can be seen in fig. 8.32. Most
of the bias is thereby removed, although a larger bias remains than for the 𝛾∗ sample reconstruction. In
addition to the negative biases at high masses, a positive bias is present in the region of 80 − 120 GeV
for both the RNN and MMC reconstruction. For the lowest bin, the MMC has a bias of 𝑏𝑖 ≈ 0.3,
which might be due to the low statistics for low masses.

The 68% and 95% quantiles are shown in fig. 8.33. For low masses 𝑚𝑡𝑟𝑢𝑡ℎ < 110 GeV and for high
masses 𝑚𝑡𝑟𝑢𝑡ℎ > 170 GeV, the RNN has lower 68% quantile widths than the MMC reconstruction.
The 95% quantile widths are larger for the RNN than for the MMC in the 60 − 70 GeV bin and in the
mass region of 100 GeV to 120 GeV.
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Figure 8.31: The median and 68% quantiles of the true mass in bins of the reconstructed mass for the RNN
reconstruction before (top left) and after (top right) the first calibration step, as well as the median and 68%
quantiles of the reconstructed mass in bins of the true mass for the RNN reconstruction before (bottom left) and
after (bottom right) the second calibration step.

The ROC curves for an RNN trained on the tauspinner sample and the MMC applied to the Higgs
and Z samples, are shown in fig. 8.34. The AUC of the RNN is 0.887, which is an improvement to the
ROC curve of the RNN trained on the 𝛾

∗ sample. Therefore, the emulation of the parity violation
in the tauspinner sample is beneficial to the RNN and has a positive effect on the separating power.
Nevertheless, the MMC still has an advantage over RNNs for the task of separating Higgs and Z events
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Figure 8.32: The mean relative mass resolution and the 68% quantile width of the relative mass resolution in
bins of the true ditau mass of a RNN trained on the tauspinner sample and the MMC reconstruction of the
tauspinner sample after the calibration.
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Figure 8.33: The 68% and 95% quantile width of the relative mass resolution in bins of the true ditau mass
of a RNN trained on the tauspinner sample and the MMC-reconstruction of the tauspinner sample after the
calibration.
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Figure 8.34: A ROCcurve of the separation power between the H sample and the Z sample for the RNN trained
on the tauspinner sample and the MMC reconstruction.
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8.5.3 Spin0hh Sample Reconstruction

In this section the performance of a neural network trained on the spin0hh sample is discussed. The
relative mass resolution of a neural network trained on this sample is shown in fig. 8.35 (left). The
distribution has a mean value of 𝜇 = −0.050 and a standard deviation of 𝜎 = 0.170. The mean value
is negative because the spin0hh sample is more biased to high masses than the other two training
samples and the mass of high mass events is more likely to be underestimated in the reconstruction.
The standard deviation is similar to the standard deviation of the tauspinner sample.

The relative mass resolution of the MMC reconstruction on the spin0hh sample is shown in fig.
8.36 (left). The distribution has a mean value of 𝜇 = −0.050 with a standard deviation of 𝜎 = 0.170.
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Figure 8.35: The relative mass resolution (left) and mass reconstruction (right) of a neural network trained on
the spin0hh sample.
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Figure 8.36: The relative mass resolution (left) and mass reconstruction (right) of the MMC reconstruction of
the spin0hh sample.

The relative mass resolution in bins of true mass is shown in fig. 8.37. The plot is similar to the
other two samples, but especially for low masses the 68% quantile width is very high for the RNN
reconstruction. The maximum bias of the RNN reconstruction is achieved in the lower bins and has a
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value of 𝑏𝑚𝑎𝑥 = 0.20, it then continuously drops and reaches a minimum of 𝑏𝑚𝑖𝑛 = −0.15. The MMC
reconstruction has a maximum bias of 𝑏𝑚𝑎𝑥 = 0.14 and then also continuously falls and reaches a
minimum bias of 𝑏𝑚𝑖𝑛 = −0.10.
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Figure 8.37: The mean relative mass resolution and the 68% quantile width of the relative mass resolution in
bins of the true ditau mass of a RNN trained on the tauspinner sample and the MMC reconstruction of the
tauspinner sample.

The relative mass resolution for the lowest and highest bins are shown on the left in fig. 8.38
and 8.39. The statistics for the spin0hh sample are even lower than for the tauspinner sample so the
derived value from their distributions are not accurate. For the lowest mass bin the mean relative mass
resolution is computed to be 𝜇 = 0.099 with a standard deviation of 𝜎 = 0.204 and for the highest
mass bin it is computed to be 𝜇 = −0.144 with a standard deviation of 0.091. Once again the bins
on the extreme ends of the true mass spectrum show a large bias towards reconstructions that point
towards masses that lie in the range of the sample (60 GeV < 𝑚𝑟𝑒𝑐𝑜𝑛 < 220 GeV).

The calibration plots for this neural network reconstruction can be seen in fig. 8.40. The first
calibration step is successful. For the second calibration step, a logarithm is necessary for the fit
again, since the bin-to-bin effects are similar to the bin-to-bin effects for the tauspinner sample, when
changing from the binned 𝑚𝑟𝑒𝑐𝑜𝑛 plot to the binned 𝑚𝑡𝑟𝑢𝑡ℎ plot.

The binned relative mass resolution after the calibration is shown in fig. 8.41. Most of the bias has
been removed, though the remaining bias 𝑏 = 0.101 is more significant than for the other samples for
both the RNN and MMC reconstruction. The 68% and 95% quantiles are shown in fig. 8.42. While
the 68% quantile width is relatively stable between 0.14 and 0.21, the 95% quantiles reach values over
0.5 for 𝑚𝑡𝑟𝑢𝑒 < 90 GeV. Since this is the case for both the RNN and the MMC reconstruction, this
effect is not because of the low statistics for the RNN training, but instead an effect of the sample itself.
The only low mass events that pass the cuts in the sample might populate a subset of the phase-space
that is difficult for neural networks and for the MMC to reconstruct.
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Figure 8.38: The relative mass resolution (left) and mass reconstruction (right) of a neural network trained on
the spin0hh sample for true masses 60 GeV < 𝑚𝑡𝑟𝑢𝑒 < 70 GeV
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Figure 8.39: The relative mass resolution (left) and mass reconstruction (right) of a neural network trained on
the spin0hh sample for true masses 210 GeV < 𝑚𝑡𝑟𝑢𝑒 < 220 GeV

The ROC curves for an RNN trained on the spin0hh sample and the MMC, when applied to the
Higgs and Z samples, are shown in fig. 8.43. The AUC of the RNN is 0.862. This is a deterioration in
separating power compared to both the 𝛾∗ and tauspinner sample. The low statistics, especially for low
masses and the resulting decline in the mass resolution, might be the reason for this. RNNs trained on
the spin0hh sample is not able to better separate between Higgs and Z events than the MMC.
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Figure 8.40: The median and 68% quantiles of the true mass in bins of the reconstructed mass for the RNN
reconstruction before (top left) and after (top right) the first calibration step, as well as the median and 68%
quantiles of the reconstructed mass in bins of the true mass for the RNN reconstruction before (bottom left) and
after (bottom right) the second calibration step.
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Figure 8.41: The mean relative mass resolution and the 68% quantile width of the relative mass resolution in
bins of the true ditau mass of a RNN trained on the tauspinner sample and the MMC reconstruction of the
spin0hh sample after the calibration.
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Figure 8.42: The 68% and 95% quantile width of the relative mass resolution in bins of the true ditau mass of a
RNN trained on the tauspinner sample and the MMC reconstruction of the spin0hh sample after the calibration.
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Figure 8.43: A ROC curve of the separation power between the H sample and the Z sample for the RNN trained
on the spin0hh sample and the MMC reconstruction.
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8.5.4 Combined sample Reconstruciton

To allow the neural network to learn the kinematic differences of both spin-1 and spin-0 events together,
a combined sample is created by combining the events of the tauspinner and spin0hh samples. Since
the tauspinner events greatly outnumber the spin0hh events, the events are reweighted to give both
samples 50% of the total weight.

The relative resolution in bins of the true ditau mass after the calibration is seen in fig. 8.44. It
follows a very similar pattern to the relative resolution of the tauspinner sample. The total bias of
the RNN is 𝑏𝑅𝑁𝑁 = 0.077 and it is 𝑏𝑀𝑀𝐶 = 0.082 for the MMC. The total and the mean 68%
quantile of the RNN is 𝜇𝑅𝑁𝑁 = 0.204 of the MMC is 𝜇𝑀𝑀𝐶 = 0.211 of the MMC. The 68%
quantiles and 95% quantiles in bins of 𝑚𝑡𝑟𝑢𝑒 are shown in fig. 8.45. With the exception of the
80 GeV < 𝑚𝑡𝑟𝑢𝑒 < 100 GeV range, the RNN reconstruction has lower 68% quantiles than the MMC
reconstruction. The 95% quantiles of the RNN are lower than the MMC across the entire mass range.
For both the 68% and 95% quantiles, the difference in the width between the MMC and the RNN
grows for higher masses. This is a trend that occurs for all samples studied.

The ROC curves for an RNN trained on the combined sample and the MMC, when applied to
the Higgs and Z samples, are shown in fig. 8.46. The AUC of the RNN is 0.897. This is the best
performance of all the samples, reaching values very close to the AUC of the MMC. While the low
statistics of spin0hh sample, when used to train an RNN on its own, leads to a low RNN performance,
it can successfully be used as an addition to the tauspinner sample to mimic spin-1 events and therefore
improve the separating power of the RNN. However, it is still less able to separate between Higgs and
Z events than the MMC.
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Figure 8.44: The mean relative mass resolution and the 68% quantile width of the relative mass resolution in
bins of the true ditau mass of a RNN trained on the combined sample and the MMC reconstruction of the
spin0hh sample after the calibration.
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Figure 8.45: The 68% and 95% quantile width of the relative mass resolution in bins of the true ditau mass of a
RNN trained on the combined sample and the MMC reconstruction of the spin0hh sample after the calibration.
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Figure 8.46: ROC curves of the separation power between the H sample and the Z sample for the RNN trained
on the combined sample and the MMC reconstruction.
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8.6 Target of the Neural Network

In the previous sections, the true mass 𝑡1 = 𝑚𝑡𝑟𝑢𝑒 of the event is the target variable of the RNN which
it learns to reconstruct. In this section some other targets for the RNN training are also considered.
These are as follows:

𝑡2 = 𝑚
𝑖𝑛𝑣
𝑡𝑟𝑢𝑒 = 𝑚𝑡𝑟𝑢𝑒 − 𝑚

𝑣𝑖𝑠
𝑡𝑟𝑢𝑒 (8.60)

𝑡3 = 𝑚
𝑖𝑛𝑣
𝑟𝑒𝑐𝑜𝑛 = 𝑚𝑡𝑟𝑢𝑒 − 𝑚

𝑣𝑖𝑠
𝑟𝑒𝑐𝑜 (8.61)

𝑡4 =
𝑚𝑡𝑟𝑢𝑒

𝑚
𝑣𝑖𝑠
𝑡𝑟𝑢𝑒

(8.62)

𝑡5 =
𝑚𝑡𝑟𝑢𝑒

𝑚
𝑣𝑖𝑠
𝑟𝑒𝑐𝑜

(8.63)

where 𝑚𝑖𝑛𝑣
𝑡𝑟𝑢𝑒 is the matched true invisible neutrino mass, 𝑚𝑣𝑖𝑠

𝑡𝑟𝑢𝑒 is the matched true visible mass of the
tau decays, 𝑚𝑖𝑛𝑣

𝑟𝑒𝑐𝑜𝑛 is the invisible neutrino mass as determined through the reconstructed MET, and
𝑚

𝑣𝑖𝑠
𝑟𝑒𝑐𝑜𝑛 is the reconstructed visible mass of the tau decays in the detector. 𝑡1, 𝑡3 and 𝑡5 can be used in

analysis with real data. 𝑡5 could diverge for very small 𝑚𝑖𝑛𝑣
𝑟𝑒𝑐𝑜𝑛, though there are cuts in the samples on

this variable. 𝑡2 and 𝑡4 can not be used in analysis with real data, since they require the true visible
mass 𝑚𝑣𝑖𝑠

𝑡𝑟𝑢𝑒 to be perfectly reconstructed for use.
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Figure 8.47: Targets 𝑡2-𝑡5 of the combined dataset.
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The targets 𝑡2-𝑡5 might be helpful for the RNN training since it moves the focus of the reconstruction
onto the invisible neutrino momentum, which is the main problem of the ditau mass reconstruction.

The distributions of the targets 𝑡2-𝑡5 are shown in fig. 8.47 for the 𝛾∗ sample. As expected, there are
some negative values for target 𝑡3 since it is possible that the reconstructed energy is larger than the
actual ditau mass. For 𝑡5, the same effect is observed when some events have a value of under 1.
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Figure 8.48: Loss graphs of RNNs using the targets 𝑡2-𝑡4 trained on the combined spin0hh and tauspinner
sample.

The loss graphs of neural networks trained on each of the four new targets of the combined dataset
are shown in fig. 8.48. Noteworthy is that the targets consisting of the ratio of the total mass and the
visible mass follow a smoother trend than the loss graphs of the other targets. Especially target 𝑡4 is
very smooth in its training loss and has no spiking whatsoever.

The resulting prediction is reconverted back into a reconstruction of the true mass by applying the
inverse of the equations 8.60 to 8.63. The relative mass resolution of the reconstructions can be seen
in fig. 8.49. The neural networks trained on targets that include the true visible mass have a residual
bias in the relative mass resolution that is slightly higher (𝜇𝑏 = −0.013 for 𝑡4 and 𝜇𝑏 = −0.014 for 𝑡2,
compared to 𝜇𝑏 = −0.005 for 𝑡5 and 𝜇𝑏 = −0.007 for 𝑡3), and the standard deviations of the relative
mass resolution are higher for the targets that include the reconstructed visible mass (𝜎 = 0.190 for 𝑡3
and 𝜎 = 0.202 for 𝑡5, compared to 𝜎 = 0.173 for 𝑡2 and 𝜎 = 0.178 for 𝑡4).

The reconstruction of neural networks trained on all five targets are compared in a binned relative

83



Chapter 8 Neural Network Analysis

1.0 0.5 0.0 0.5 1.0
mreco/mtrue -1

0

10000

20000

30000

40000

50000

60000

70000

80000
N

Rel.res. of a RNN trained on the t2 target
Rel. res. of RNN, =-0.014 , =0.190

1.0 0.5 0.0 0.5 1.0
mreco/mtrue -1

0

10000

20000

30000

40000

50000

60000

70000

N

Rel.res. of a RNN trained on the t3 target
Rel. res. of RNN, =-0.007 , =0.213

1.0 0.5 0.0 0.5 1.0
mreco/mtrue -1

0

10000

20000

30000

40000

50000

60000

70000

N

Rel.res. of a RNN trained on the t4 target
Rel. res. of RNN, =-0.013 , =0.194

1.0 0.5 0.0 0.5 1.0
mreco/mtrue -1

0

10000

20000

30000

40000

50000

60000

N

Rel.res. of a RNN trained on the t5 target
Rel. res. of RNN, =-0.005 , =0.228

Figure 8.49: The relative mass resolution of the four additional targets after the calibration, using the combined
spin0hh and tauspinner sample.

mass resolution plot after the calibration in fig. 8.50. The calibration manages to remove most of
the bias for all targets. The 68% and 95% quantiles after the calibration are shown in fig. 8.51.
Both 𝑡2 and 𝑡4 lead to better reconstructions and have lower quantile widths for all mass bins where
𝑚𝑡𝑟𝑢𝑒 < 180 GeV. For higher mass bins the standard 𝑡1 target has smaller quantile widths for both the
68% and 95% quantiles. 𝑡3 and 𝑡5 lead to higher quantile widths for almost all bins.

ROC curves of the separation power between the H sample and the Z sample for the RNN trained
on the targets 𝑡1-𝑡4, using the combined spin0hh and tauspinner sample, are shown in fig. 8.52. While
the AUC of the neural network trained on 𝑡1 is 0.897, it is 0.904 and 0.903 for 𝑡2 and 𝑡4 respectively.
For 𝑡3 and 𝑡5, the AUC value are 0.876 and 0.850 respectively. Neural networks trained on the targets
𝑡2 and 𝑡4 have an improved separation power between Higgs and Z events. However, since the the
reconstruction for these targets requires the true visible mass to be known, they can not be used in
analysis with real data. Therefore, the optimal target out of the five that are analyzed in this section is
𝑡1 = 𝑚𝑡𝑟𝑢𝑒
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Figure 8.50: The mean relative mass resolution and the 68% quantile width of the relative mass resolution in
bins of the true ditau mass of RNNs trained on the targets 𝑡2 − 𝑡4, using the combined spin0hh and tauspinner
sample after the calibration.
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Figure 8.52: ROC curves of the separation power between the H sample and the Z sample for RNNs trained on
the five targets 𝑡1 − 𝑡5.
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8.7 Expanded Input Variables

In addition to the standard input set, three further sets of input variables are presented: the Auxiliary
set, the AuxiliaryExtra set, and the Jets set. In the Auxiliary variable set, the number of charged tracks
reconstructed is replaced with the reconstructed decaymode of the taus. This variable is included to
allow the neural network to learn the kinematics of the different decaymodes, especially the difference
between the 1p0n and 1p1n decay modes, which have the same number of charged tracks. It also
includes the MET significance METsig, the pile-up of the event and the number of reconstructed jets
that are assigned to the event. METsig is a measure of how likely the measured MET is a consequence
of random fluctuations. This can be used by the neural network to learn how much relevance to put on
the MET. Pile-up describes the number of proton-antiproton collisions that occur during the same
bunch crossing in the ATLAS interaction point, and generally leads to a deterioration in the quality of
reconstructing jets. In total, the Auxiliary variable set has 13 variables.

The AuxiliaryExtra variable set builds on the Auxiliary set by adding the number of muons
𝑛𝜇 as an additional input and splitting up the Lorentz vectors of the taus into their charged and
neutral components. The transverse momentum, the pseudorapidity and the azimuthal angle are then
considered separately for the neutral as well as the charged component for a total of 23 variables. As
discussed in chapter 2.5, the charged and the neutral parts of a tau decay both contain information on
the helicity of the tau, and, therefore, also contain information on the spin of the source resonance.
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Figure 8.53: Loss graphs of RNNs using the Auxiliary variable set trained on the 𝛾∗ sample (top left), tauspinner
sample (top right) and spin0hh sample (bottom).
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The final input variable set is the Jets set. It has the variables of the standard set but also includes
the 4-vector information (𝑝𝑇 , 𝜙, 𝜂 and 𝑚) of the three most energetic jets that are not allocated to the
tau leptons of the event. These can be used to reconstruct the boost of the resonance. The Jets set has
22 variables. All added variables of the three variable sets are shown in the appendix A for the five
samples.

The loss plots of the Auxiliary variable set for the 𝛾∗, tauspinner- and spin0hh samples are shown in
fig. 8.53. Both the training loss and the testing loss are shown. The losses converge to similar values,
as they do for a neural network trained on the standard variable input set, and the training is generally
stable. The same plots for the Jets set are shown in fig. 8.54. No significant difference in the training
process or final loss values can be seen compared to the other variable input sets. The loss plots for
the AuxiliaryExtra variable set are shown in fig. 8.55. The training process set seems a lot more
inconsistent compared to the other sets. This might be because the neural network has to learn how
to accurately add Lorentz vectors to each other, which is a highly nonlinear process. While neural
networks are supposed to be able to handle nonlinear problems, the entire ditau reconstruction might
be too complex for the given architecture. However, the loss does eventually stabilize and converges
as it nears the end of the training.
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Figure 8.54: Loss graphs of RNNs using the Jets variable set trained on the 𝛾
∗ sample (top left), tauspinner

sample (top right) and spin0hh sample (bottom).
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Figure 8.55: Loss graphs of RNNs using the AuxiliaryExtra variable set trained on the 𝛾
∗ sample (top left),

tauspinner sample (top right) and spin0hh sample (bottom).

In general, the addition of further variables into the training process does not seem to alter the final
loss values significantly. Binned relative mass resolution plots are used in order to further study any
effect that the additional inputs might have on the reconstruction performance of the neural networks.
Fig. 8.56 shows the binned relative mass resolution of the four sets of input variables trained on the 𝛾∗

sample. Neural networks trained on the four variable input sets show very similar patterns. Some
notable differences, however, are that the Jets set of variables seems to have a significantly greater bias
at lower masses and also a slightly greater bias at higher high masses. In general, the total bias is
smallest for the standard set, and the 68% quantile width is the most favorable for the Auxiliary set.

The same fit after the calibration is shown in fig. 8.57. The calibration is able to remove most of the
bias for all four sets of input variables, though some bias remains for the higher bins. In addition, a
bias of 𝑏 = 0.07 is present in the lowest mass bin for the Jets set of input variables. The 68% quantile
and 95% quantile widths are shown in fig. 8.58. The standard and Auxiliary sets of input variables
have the smallest 68% and 95% quantile widths. As these two are the simplest of the four sets of
variables, this indicates that the additional variables do not help in the reconstruction and complicate
the training instead, leading to less satisfying ditau mass reconstruction performances. ROC curves of
the Higgs sample and Z sample reconstruction of neural networks trained with these variable sets
on the 𝛾

∗ dataset are shown in fig. 8.59. The ROC curves of the RNNs trained on the Auxliary and
AuxiliaryExtra variable sets show a slight decrease in separation power between the Higgs sample and
Z sample. The Jets set has a significantly worse separation power with an AUC = 0.773.
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Figure 8.56: Relative resolution of the four sets of input variables in bins of the true mass trained on the 𝛾
∗

sample before the calibration.
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Figure 8.57: Relative resolutions in bins of the true mass after the calibration of RNNs trained on the 𝛾
∗ sample

using the four sets of input variables
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Figure 8.58: 68% and 95% quantiles of the relative mass resolution of the four sets of input variables in bins of
the true mass after the calibration.
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Figure 8.59: ROC curves of the Higgs sample and Z sample reconstruction of neural networks trained with with
the four variable sets on the 𝛾

∗ dataset

91



Chapter 8 Neural Network Analysis

The binned relative mass resolution after the calibration of the four sets of input variables for the
tauspinner sample is shown in fig. 8.60 and the same plot for the spin0hh sample is shown in fig.
8.61. For the tauspinner sample, all variable input sets lead to a bias of 𝑏 = 0.073. The biases of the
individual bins are also very similar. For the spin0hh sample, The bias of the standard, Auxiliary and
AuxiliaryExtra sets are also very similar, between 0.102 and 0.104. However, the Jets set follows a
very different pattern and has a significantly higher bias. Especially in the low mass range, there is a
very large positive bias, reaching 𝑏𝑖 = 0.36 for the 70 GeV < 𝑚𝑡𝑟𝑢𝑒 < 80 GeV bin.
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Figure 8.60: Relative resolutions in bins of the true mass after the calibration of RNNs trained on the tauspinner
sample using the four sets of input variables.

The 68% quantile and 95% quantile widths for the tauspinner sample after the calibration can be
seen in fig. 8.62. The only significant difference between the four sets are the slightly higher 68% and
95% quantile widths for the AuxiliaryExtra set in most bins. The quantiles of RNN reconstructions of
the spin0hh sample can be seen in fig. 8.63. The standard, Auxiliary and AuxiliaryExtra sets show
very similar performances for both the 68% and 95% quantiles, though in the 95% quantile, there are
very large values of over 0.5 for the bins where 𝑚𝑡𝑟𝑢𝑒 < 90 GeV. As already discussed in chapter
8.5.3, this is not an effect exclusive to the RNN, since it also appears in the MMC reconstruction.

ROC curves of the Higgs sample and Z sample reconstruction of neural networks trained with these
variable sets on the tauspinner sample and spin0hh sample are shown in fig. 8.64. The ROC curves of
the RNNs trained on the Auxliary variable set show a slight decrease in separation power between the
Higgs sample and Z sample. The ROC curve of the neural networks trained with the AuxiliaryExtra
variable set have an AUC = 0.621. For the spin0hh sample, the neural network trained with the jets
variable set also shows a significant decrease in separation power with an AUC = 0.730.

Generally it can be said that the extended input sets do not lead to an increase in the reconstruction
performance of the neural network, and instead leads to a performance deterioration. The added
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Figure 8.61: Relative resolutions in bins of the true mass after the calibration of RNNs trained on the spin0hh
sample using the four sets of input variables.
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Figure 8.62: 68% and 95% quantiles of the relative mass resolutions of RNNs trained on the tauspinner sample
using the four sets of input variables after the calibration.
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Figure 8.63: 68% and 95% quantiles of the relative mass resolutions of RNNs trained on the spin0hh sample
using the four sets of input variables after the calibration.
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Figure 8.64: ROC curves of the Higgs sample and Z sample reconstruction of neural networks trained with the
four variable sets on the tauspinner sample (left) and spin0hh sample (right)

variables might make the problem too complex for the neural network to solve. Especially the
AuxiliaryExtra set seems to demand too much of the neural networks since it requires the neural
network to add up the lorentz vectors of the charged part and neutral part of the tau decay. Having too
many variables can also make neural networks prone to overtraining. It is therefore recommended to
either use the standard variable set or the Auxiliary set.
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8.8 Other Loss Functions

In the previous sections the squared error loss 𝐿 = (𝑚𝑡𝑟𝑢𝑒 − 𝑚𝑟𝑒𝑐𝑜)
2 is always used for the neural

network training. In this section two alternative loss functions are considered. The first one is an
alternative to the calibration to correct for the bias. The second loss function includes a penalty term
that adds loss if there is a correlation between the helicity and mass in the reconstruction.

8.8.1 Edge Corrected Loss Function

The inclusion of an edge correction in the loss function is an approach studied in [93]. Although
it manages to reduce the bias in the reconstruction, there is an additional variable which must be
optimized and it leads to a deterioration in neural network performance. The edge corrected loss
function is
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where 𝑦𝑚𝑖𝑛 = 60 GeV and 𝑦𝑚𝑎𝑥 = 220 GeV are the minimum and maximum true mass values of the
sample. The error function terms in the loss function simulate a normal distribution at the boundaries
of the sample, which rewards the neural network if an event is reconstructed outside of the edges of
the sample. The standard deviation 𝜎𝑖 of the normal distribution must be estimated. Since events with
low masses and high masses are expected to have different standard deviations, 𝜎𝑖 should also depend
on the individual mass 𝑦𝑖 of each event. In this thesis a linear relation 𝜎𝑖 = 𝜎𝑦̂ is used, whereby 𝜎

must be optimized.
The relative mass resolution in bins of the true mass is given in fig. 8.65 for𝜎 = 0.00, 0.05, 0.10, 0.18.

The bias decreases with growing 𝜎, but significantly more bias remains as in the calibration approach.
The 68% and 95% quantile widths are shown in fig. 8.66. The quantile widths increase with growing
𝜎. The largest increase is for high masses, while the widths stay nearly constant for the mass range
90 GeV < 𝑚𝑡𝑟𝑢𝑒 < 130 GeV.

The ROC curves of the four neural networks presented in fig. 8.65 applied to the Higgs and Z
sample are shown in fig. 8.67. For 𝜎 = 0.00, the AUC is 0.896 and for 𝜎 = 0.18, the AUC is 0.870.
Therefore, while the edge corrected loss function does partially remove the bias, it also leads to a
deterioration in the separation power between the Higgs and Z sample.

The edge corrected loss function is able to lower the bias of the binned relative mass resolution,
but some bias remains. The calibration is a more capable method of bias removal. Contrary to the
calibration, the edge corrected loss function does lead to a deterioration of the separation power
between Higgs and Z events, and is therefore an inferior way to remove the bias.

8.8.2 Helicity Correlation Loss Function

As discussed in section chapter 2.5, the kinematics of the ditau decay depend on the helicity of the tau
leptons. This can lead to a bias in the reconstruction that depends on the spin of the resonance. A
modification to the loss function that measures this bias and punishes the neural network for it can be
used to resolve this issue.
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Figure 8.65: Relative resolutions in bins of the true mass of RNNs trained on the spin0hh sample using the edge
corrected loss function on the combined sample.
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Figure 8.66: 68% and 95% quantiles of the relative mass resolutions of RNNs trained on the spin0hh sample
using the edge corrected loss function on the combined sample.
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Figure 8.67: ROC curves of the separation power between the H sample and the Z sample for RNNs trained
using the edge corrected loss function on the combined sample.

For this, a helicity correlation loss function is used:

𝐿 (𝑦; 𝜃) = 1
𝑚

𝑚∑︁
0

(
( 𝑦̂ − 𝑦)2 + 𝜆 ·

��Corr(𝑦H, 𝑦̂H) − Corr(𝑦Z, 𝑦̂Z)
��) (8.65)

where the correlation between two variables is defined as

Corr(𝑥, 𝑦) =
∑(𝑥𝑖 − 𝑥) (𝑦𝑖 − 𝑦̄)√︃∑(𝑥𝑖 − 𝑥)2 ∑(𝑦𝑖 − 𝑦̄)2 + 𝜖

. (8.66)

𝑦H and 𝑦̂H refer to only those true and reconstructed masses that are from the H-sample and 𝑦Z and 𝑦̂Z
refer to only those true and reconstructed masses that are from the Z-sample. 𝜖 = 0.00001 ensures
that the denominator is never zero. The variable 𝜆 must be optimized.

The relative mass resolutions after the calibration of RNNs that are trained with the correlation loss
function in bins of the true mass with 𝜆 = 0, 500, 1000, 1800 are shown in fig. 8.68. The 68% and
95% quantile widths for the four RNN reconstructions are shown in fig. 8.69. There are no significant
differences between the four RNNs, although the performance does degrade slightly for larger 𝜆 values.
For 𝜆 = 0, the mean 68% quantile width is 𝜇𝑏 = 0.204 and for 𝜆 = 1800, the mean 68% quantile
width is 𝜇𝑏 = 0.206. The deterioration in the relative resolution mostly appears in the mass range
80 GeV < 𝑚𝑡𝑟𝑢𝑒 < 110 GeV and above 180 GeV.

Fig. 8.70 shows the ROC curves of the four neural networks applied to the Higgs and Z sample.
For small values of 𝜆 ≤ 1000, a slight difference in the AUC is observed with growing 𝜆 values. For
𝜆 = 1800 a more significant deterioration in the separating power becomes apparent. The AUC is
0.897 for 𝜆 = 0 and falls to 0.890 for 𝜆 = 1800.
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Figure 8.68: Relative resolutions in bins of the true mass of RNNs trained on the combined sample using the
helicty correlation loss function.
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Figure 8.69: 68% and 95% quantiles of the relative mass resolutions of RNNs trained on the combined sample
using the helicty correlation loss function.
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Figure 8.70: ROC curves of the separation power between the H sample and the Z sample for RNNs trained
using the helicty correlation loss function on the combined sample.

The correlation loss function does not seem to lead to a superior separation power between Higgs
and Z events. This might be a consequence of low statistics for the tauspinner Higgs sample in the low
mass region, or it might imply that the reconstruction has no significant bias in the reconstruction
between spin-1 and spin-0 events.

8.9 Summary

Tab. 8.2 shows a summary of the reconstruction performances of the various neural networks that
were trained in this thesis. The MMC reconstruction performances are also shown.
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Sample Loss Input Variables Target 𝑏 𝜇𝑏 AUC
𝛾
∗ Squared Error Standard 𝑚𝑡𝑟𝑢𝑒 0.086 0.219 0.875

Tauspinner Squared Error Standard 𝑚𝑡𝑟𝑢𝑒 0.077 0.205 0.887
Spin0hh Squarred Error Standard 𝑚𝑡𝑟𝑢𝑒 0.101 0.213 0.862

Combined Squarred Error Standard 𝑚𝑡𝑟𝑢𝑒 0.077 0.204 0.897
Combined Squarred Error Standard 𝑚𝑡𝑟𝑢𝑒 − 𝑚

𝑣𝑖𝑠
𝑡𝑟𝑢𝑒 0.087 0.215 0.905

Combined Squarred Error Standard 𝑚𝑡𝑟𝑢𝑒 − 𝑚
𝑣𝑖𝑠
𝑟𝑒𝑐𝑜 0.088 0.225 0.876

Combined Squarred Error Standard 𝑚𝑡𝑟𝑢𝑒/𝑚
𝑣𝑖𝑠
𝑡𝑟𝑢𝑒 0.087 0.215 0.903

Combined Squarred Error Standard 𝑚𝑡𝑟𝑢𝑒/𝑚
𝑣𝑖𝑠
𝑟𝑒𝑐𝑜 0.088 0.234 0.850

𝛾
∗ Squared Error Aux 𝑚𝑡𝑟𝑢𝑒 0.086 0.219 0.871

Tauspinner Squared Error Aux 𝑚𝑡𝑟𝑢𝑒 0.073 0.201 0.894
Spin0hh Squarred Error Aux 𝑚𝑡𝑟𝑢𝑒 0.104 0.211 0.872

𝛾
∗ Squared Error AuxExtra 𝑚𝑡𝑟𝑢𝑒 0.088 0.226 0.855

Tauspinner Squared Error AuxExtra 𝑚𝑡𝑟𝑢𝑒 0.073 0.203 0.621
Spin0hh Squarred Error AuxExtra 𝑚𝑡𝑟𝑢𝑒 0.104 0.215 0.621

𝛾
∗ Squared Error Jets 𝑚𝑡𝑟𝑢𝑒 0.094 0.226 0.772

Tauspinner Squared Error Jets 𝑚𝑡𝑟𝑢𝑒 0.073 0.201 0.891
Spin0hh Squarred Error Jets 𝑚𝑡𝑟𝑢𝑒 0.162 0.281 0.730

Combined Edge Correc. 𝜎 = 0.00 Standard 𝑚𝑡𝑟𝑢𝑒 0.190 0.185 0.896
Combined Edge Correc. 𝜎 = 0.05 Standard 𝑚𝑡𝑟𝑢𝑒 0.167 0.184 0.887
Combined Edge Correc. 𝜎 = 0.10 Standard 𝑚𝑡𝑟𝑢𝑒 0.164 0.194 0.875
Combined Edge Correc. 𝜎 = 0.18 Standard 𝑚𝑡𝑟𝑢𝑒 0.148 0.209 0.870
Combined Helicity Corr. 𝜆 = 0 Standard 𝑚𝑡𝑟𝑢𝑒 0.077 0.204 0.897
Combined Helicity Corr. 𝜆 = 500 Standard 𝑚𝑡𝑟𝑢𝑒 0.076 0.205 0.897
Combined Helicity Corr. 𝜆 = 1000 Standard 𝑚𝑡𝑟𝑢𝑒 0.076 0.206 0.895
Combined Helicity Corr. 𝜆 = 1800 Standard 𝑚𝑡𝑟𝑢𝑒 0.077 0.208 0.890

𝛾
∗ MMC 0.085 0.225 0.908

Tauspinner MMC 0.077 0.210 0.908
Spin0hh MMC 0.101 0.213 0.908

Combined MMC 0.082 0.211 0.908

Table 8.2: A summary of all the neural networks that are presented in this thesis. With the exception of the
neural network trained with the edge corrected error loss, the neural network performance after the calibration
is given.
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CHAPTER 9

Conclusion

The focus of this thesis is the ditau mass reconstruction using regression neural networks trained on
Monte-Carlo-generated ditau events that simulate the ATLAS detector. This is a difficult task due to
the neutrinos that get created in every tau decay. In this thesis it is shown that RNNs can be used for
the ditau mass reconstruction of such events. First, the stability of the training process is studied. A
setup that creates stable training most of the time is found. However, the training does sometimes
finish suboptimally. Because of this, three neural networks with different initial seeds are trained at
the same time.

The reconstruction performance of neural networks is measured using figures of merit: the mean
bias of the relative mass resolution in bins of the true mass 𝑏 and the mean 68%-quantile width 𝜇𝑏.
At first there is a large bias in the relative mass resolution for the low and high regions of the mass
range. This is because the neural networks learn the shape of the training samples and therefore
create a bias in the reconstruction. A two step calibration can be used to remove most of the bias.
When measuring the performance of neural networks after the calibration, it is shown that neural
networks can match and, in some mass regions, exceed the performance of the MMC reconstruction.
The relative mass resolution as a function of the true mass varies when using different samples for
the neural network training. The training sample choice that leads to the smallest quantile widths is
a combined sample of the tauspinner and spin0hh sample. However, the 68%-quantile widths of a
neural network trained on this combined sample is larger for the 80 < 𝑚𝑡𝑟𝑢𝑒 < 110 GeV mass range.
For lower and higher masses as well as for the entire mass range of the 95%-quantiles, neural networks
are able to consistently create smaller quantile widths.

When applying these neural networks to a Standard Model Higgs sample and a Standard Model Z
sample, where stricter cuts are applied, the separation power between the two can be measured using
an ROC curve. For the MMC, the AUC of the ROC curve is 0.908. Using the combined tauspinner
and spin0hh samples, an AUC of the ROC curve of 0.897 is achieved. This means that the neural
network is not better able to differentiate between Higgs and Z events.

Furthermore, the effects of using different targets for the training are shown. Training on the
difference between the true mass and the visible mass can be beneficial to the training, with a mean
68%-quantile width of 𝜇𝑏 = 0.215 compared to 𝜇𝑏 = 0.220 when using the true mass as a target.
However, this is only the case if the true visible mass is considered, meaning when the detector
resolution effects are ignored. Using the reconstructed visible mass leads to a deterioration of the
relative mass resolution (𝜇𝑏 = 0.225). A similar effect is seen when training on the ratio of the true
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mass to the visible mass. When the true visible mass is used in the ratio, a similar improvement in the
relative mass resolution of the reconstructed ditau mass can be observed (𝜇𝑏 = 0.215), but when the
reconstructed visible mass is used in the ratio instead, the mean quantile width of the relative mass
resolution is larger (𝜇𝑏 = 0.234). Since the true visible mass is not a quantity that can be used for the
ditau mass reconstruction of real data, it is concluded that the true mass is the optimal target of the
five target choices.

The effect of different input variables for the neural network training is also demonstrated. Four
different sets of variables are considered. The standard set, consisting of the transverse momentum 𝑝𝑇 ,
the azimuthal angle 𝜙, the pseudorapidity 𝜂, and the number of charged tracks of both reconstructed
tau leptons, as well as the MET and azimuthal angle of the MET, is concluded to be the optimal
choice of the four sets. Adding further variables, such as METsig, the pile-up, and the number of
reconstructed hadronic jets, does not lead to an improvement in the reconstruction performance.

Apart from the squared error loss, two further loss functions are studied. The edge corrected
loss function can be used as an alternative to the calibration, by rewarding the neural network for
reconstructing events outside of the mass range of the training samples. It is able to reduce the bias,
but a large part of the bias remains and the separation power between Higgs and Z events deteriorates.
Therefore, using the squared error loss in combination with the calibration is a better approach to
handling the bias. To remove a possible spin bias in the reconstruction, a helicity correlation loss
function is also studied. It does not lead to an improved reconstruction and it negatively affects the
AUC of the ROC curve. Therefore, it is concluded that training with the squared error loss leads to a
better reconstruction performance.

Generally it can be said that the neural networks studied in this thesis are not able to create a better
H → 𝜏𝜏 and Z → 𝜏𝜏 mass reconstruction than the MMC. It does, however, have better reconstruction
capabilities than the MMC for masses larger than the Higgs mass. It is also a lot simpler to create a new
training for a neural network than to crate a new parametrization for the MMC and the reconstruction
speed of NNs is significantly faster than for the MMC. Going forward it is advised to apply a neural
network in an analysis and measure the systematic effects of the reconstruction in comparison to the
MMC.
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MEGACIENCIA THE CERN AND THE MEGASCIENCE, REAL ACADEMIA NACIONAL
DE MEDICINA ().

[50] A. Elagin et al., A new mass reconstruction technique for resonances decaying to, Nuclear
Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors
and Associated Equipment 654 (2011) 481, url: https://doi.org/10.1016%2Fj.nima.
2011.07.009.

[51] John et al Ellis, A Historical Profile of the Higgs Boson, https://cds.cern.ch/record/
2012465/plots, Accessed: 2022–11-09, 2015.

[52] Despoina Evangelakou, “diTau Mass Reconstruction Methods focus on ATLAS”, II. Physikalisches
Institut, Georg-August-Universit at Göttingen, 2011.

[53] Kjell Magne Fauske, TikZ Example: Neural Network, https://texample.net/tikz/
examples/neural-network/, Accessed: 2022–11-12, 2006.

105

http://dx.doi.org/10.1103/physrevlett.125.051801
https://doi.org/10.1103%2Fphysrevlett.125.051801
https://doi.org/10.1103%2Fphysrevlett.125.051801
https://atlas.cern/Discover/Detector/Calorimeter
https://atlas.cern/Discover/Detector/Calorimeter
https://atlas.cern/Discover/Detector/Magnet-System
https://atlas.cern/Discover/Detector/Magnet-System
https://atlas.cern/Discover/Detector/Muon-Spectrometer
https://atlas.cern/Discover/Detector/Muon-Spectrometer
https://atlas.cern/Discover/Detector/Inner-Detector
https://atlas.cern/Discover/Detector/Inner-Detector
https://atlas.cern/Discover/Detector/Trigger-DAQ
https://atlas.cern/Discover/Detector/Trigger-DAQ
http://dx.doi.org/10.1016/j.ppnp.2016.04.003
https://doi.org/10.1016%2Fj.ppnp.2016.04.003
https://doi.org/10.1016%2Fj.ppnp.2016.04.003
http://dx.doi.org/10.1016/j.nima.2011.07.009
http://dx.doi.org/10.1016/j.nima.2011.07.009
http://dx.doi.org/10.1016/j.nima.2011.07.009
https://doi.org/10.1016%2Fj.nima.2011.07.009
https://doi.org/10.1016%2Fj.nima.2011.07.009
https://cds.cern.ch/record/2012465/plots
https://cds.cern.ch/record/2012465/plots
https://texample.net/tikz/examples/neural-network/
https://texample.net/tikz/examples/neural-network/


Bibliography

[54] Paolo Francavilla, ATLAS Collaboration et al., “The ATLAS tile hadronic calorimeter per-
formance at the LHC”, Journal of Physics: Conference Series, vol. 404, 1, IOP Publishing,
2012 012007.

[55] Stefano Frixione, Paolo Nason and Carlo Oleari, Matching NLO QCD computations with parton
shower simulations: the POWHEG method, Journal of High Energy Physics 2007 (2007) 070,
url: https://doi.org/10.1088%2F1126-6708%2F2007%2F11%2F070.

[56] Camilla Galloni, Hadronic Tau reconstruction and identification performance in ATLAS and
CMS, tech. rep., 2018.

[57] Ian Goodfellow, Yoshua Bengio and Aaron Courville, Deep Learning, http : / / www .
deeplearningbook.org, MIT Press, 2016.

[58] Particle Data Group, Particle Physics Booklet, 2019, url: https://pdg.lbl.gov.
[59] Chris Hays, Higgs boson measurements at ATLAS, tech. rep., ATL-COM-PHYS-2016-1765,

2016.
[60] Universität Heidelberg, Electron-positron annihilation, https://uebungen.physik.uni-

heidelberg.de/c/image/f/vorlesung/20172/818/Chapter16_slides.pdf, Ac-
cessed: 2022–11-11, 2020.

[61] Lena Herrmann, Optimization of a Regression-Based Deep Neural Network for Di-Tau Mass
Reconstruction in ATLAS, Master’s Thesis: Physikalisches Institut Universität Bonn, 2020, url:
https://web.physik.uni-bonn.de/group/view.php?&group=1&lang=de&c=t&id=

121.
[62] Peter W Higgs, Broken symmetries and the masses of gauge bosons, Physical Review Letters

13 (1964) 508.
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Figure A.1: Distributions of the variables of the 𝛾
∗-sample used in the standard set.
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Figure A.2: Distributions of the variables of the tauspinner sample used in the standard set.
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Figure A.3: Distributions of the variables of the spin0hh sample used in the standard set.
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Figure A.4: Distributions of the variables of the H-sample used in the standard set.
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Figure A.5: Distributions of the variables of the Z-sample used in the standard set.
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Figure A.6: Distributions of the variables of the 𝛾
∗-sample used in the Auxiliary set.
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Figure A.7: Distributions of the variables of the tauspinner sample used in the Auxiliary set.
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Figure A.8: Distributions of the variables of the spin0hh sample used in the Auxiliary set.
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Figure A.9: Distributions of the variables of the H-sample used in the Auxiliary set.
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Figure A.10: Distributions of the variables of the Z-sample used in the Auxiliary set.
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Figure A.11: Distributions of the variables of the 𝛾
∗-sample used in the AuxiliaryExtra set (1/2).
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Figure A.12: Distributions of the variables of the 𝛾
∗-sample used in the AuxiliaryExtra set (2/2).
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Figure A.13: Distributions of the variables of the tauspinner sample used in the AuxiliaryExtra set (1/2).
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Figure A.14: Distributions of the variables of the tauspinner sample used in the AuxiliaryExtra set (2/2).
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Figure A.15: Distributions of the variables of the spin0hh sample used in the AuxiliaryExtra set (1/2).
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Figure A.16: Distributions of the variables of the spin0hh sample used in the AuxiliaryExtra set (2/2).
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Figure A.17: Distributions of the variables of the H-sample used in the AuxiliaryExtra set (1/2).
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Figure A.18: Distributions of the variables of the H-sample used in the AuxiliaryExtra set (2/2).
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Figure A.19: Distributions of the variables of the Z-sample used in the AuxiliaryExtra set (1/2).
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Figure A.20: Distributions of the variables of the Z-sample used in the AuxiliaryExtra set (2/2).
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Figure A.21: Distributions of the variables of the 𝛾
∗-sample used in the Jets set (1/2).
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Figure A.22: Distributions of the variables of the 𝛾
∗-sample used in the Jets set (2/2).
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Figure A.23: Distributions of the variables of the tauspinner sample used in the Jets set (1/2).
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Figure A.24: Distributions of the variables of the tauspinner sample used in the Jets set (2/2).
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Figure A.25: Distributions of the variables of the spin0hh sample used in the Jets set (1/2).
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Figure A.26: Distributions of the variables of the spin0hh sample used in the Jets set (2/2).
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Figure A.27: Distributions of the variables of the H-sample used in the Jets set (1/2).
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Figure A.28: Distributions of the variables of the H-sample used in the Jets set (2/2).
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Figure A.29: Distributions of the variables of the Z-sample used in the Jets set (1/2).
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Figure A.30: Distributions of the variables of the Z-sample used in the Jets set (2/2).
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