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Abstract

Since the development of the Standard Model of Particle Physics in the second half of the 20th century,
experimental physicists have put great effort into probing the theory for consistency. Even though our
universe shows clear signs for insufficiencies in the Standard Model, all experimental results have been
compatible with it so far. The operational start of the Large Hadron Collider (LHC) in 2009 was an
essential milestone in the process of validating the Standard Model as it enabled the collaborations
ATLAS and CMS to discover the Higgs boson in 2012. Since then, extensive measures have been
taken to investigate the newly found particle’s properties. The behavior of the Higgs boson under
Charge-Parity (𝐶𝑃) is one of them. Significant deviations from the Standard Model value could
indicate an explanation for the observed matter-anti matter imbalance in the universe. Nevertheless, the
Higgs boson 𝐶𝑃 has not been measured with sufficient precision to accept or reject the Standard Model
hypothesis.

Not only in the context of Higgs 𝐶𝑃 measurements, Higgs boson decays to 𝜏 leptons are interesting,
as they allow to probe, how the Higgs boson couples to fermions. However, reconstructing hadronic
𝜏 decays is especially challenging. To address this issue, the PanTau algorithm had been developed
within ATLAS and served well in the latest 𝐶𝑃 measurements. It provided the 𝜏 decay mode as well
as the decay product four-vectors. Lately, the PanTau decay mode reconstruction was significantly
outperformed by a deep neural network. This however, did not include a reconstruction of the decay
product four-vectors that are essential for Higgs 𝐶𝑃 measurements.

This thesis studies the updated decay mode reconstruction and an additional neural network is
optimized that provides reconstruction of the decay product kinematics in the 1p1n decay mode. Here,
the essential part is reconstructing the neutral pion. The analysis in different figures of merit of the
reconstruction yields a result competitive with the PanTau algorithm, even without any information on
the associations between Photon Shots and Neutral PFOs.

The structure of the thesis is as follows: Chapter 1 provides an overview of the Standard Model with
an emphasis on the 𝜏 lepton and Higgs 𝐶𝑃 measurements. Chapter 2 explains the ATLAS event recon-
struction, followed by an introduction into the used machine learning techniques. The PanTau algorithm
and its performance are described in Chapter 4 and the neural network decay mode reconstruction is
investigated in Chapter 5. Subsequently, a neural network for reconstruction of the neutral pion in
the 1p1n decay mode is optimized. Finally, the reconstruction is assessed in a comparison between
Monte Carlo data and experimental data.
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CHAPTER 1

The Standard Model of Particle Physics

The Standard Model describes the fundamental particles and their interactions among each other to the
highest-known level. Developed in the second half of the 20th century, it has been tested numerous times
without finding significant deviations from its predictions. The Standard Model is summarized in Fig. 1.1.

Figure 1.1: Overview of the Standard Model of particle physics [1].

One can distinguish between fermions and bosons. Fermions have spin-1
2 and can be further divided

into quarks and leptons. Quarks make up the constituents of hadrons and have either a charge of +2
3 or

− 1
3 . Leptons have charge ±1, except for the neutrinos, which are neutral. Both, hadrons and leptons,
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Chapter 1 The Standard Model of Particle Physics

can be divided into three generations which, due to lepton universality, only differ in their mass. For
each particle, a corresponding anti-particle with opposite charge exists. Interactions between fermions
are described by the five bosons. The photon mediates the electromagnetic interaction. It is massless
and does not carry electric charge. For the Gluon, which mediates the strong interaction, the same
accounts. However, it does carry color charge. The 𝑊± and 𝑍

0 bosons mediate the weak interaction and
carry either no charge (𝑍0) or ±1 (𝑊±). Their respective rest masses are (91.1876 ± 0.0021) GeV and
(80.377 ± 0.012) GeV [2]. The photon, the gluon and the 𝑊 and 𝑍 bosons all have spin-1. The Higgs
boson is the only particle in the Standard Model with spin-0. Its rest mass is (125.25 ± 0.17) GeV [2].

1.1 The 𝝉 Lepton

The 𝜏 lepton has a mass of (1 776.86 ± 0.12) MeV and is therefore the heaviest lepton. It was discovered
in 1975 at the Stanford Linear Accelerator Center (SLAC) [3] and is particularly interesting as it can
decay to leptons and hadrons due to its high mass. The lowest order Feynman diagram of the 𝜏 lepton
decay can be seen in Fig. 1.2. After a mean lifetime of only (290.3 ± 0.5) s−15 it decays to a 𝜏 neutrino

𝜏
−

𝜈𝜏

𝑒
−, 𝜇−, d, s

𝜈𝑒, 𝜈𝜇, 𝑢̄, 𝑢̄

𝑊
−

Figure 1.2: Lowest order Feynman diagram of a 𝜏 lepton decay.

and a 𝑊 boson first. Subsequently, the 𝑊 boson decays either to a light lepton and the corresponding
neutrino (leptonic decay) or to a light quark and its anti-quark (hadronic decay). In this analysis, in
the dominant hadronic decay modes are particularly interesting. They are listed in Table 1.1 with their
corresponding branching ratio predicted by the Standard Model and can be distinguished by their number
of charged hadrons (either pions or kaons) and neutral pions. It makes sense to assign labels to the

Table 1.1: Notation for the dominant hadronic 𝜏 lepton decay modes with the corresponding branching ratios B.
ℎ
± indicates a charged hadron. Neutrinos are omitted [4].

Decay mode Label B (w.r.t total 𝜏 decays)

ℎ
± 1p0n 11.5%

ℎ
±
𝜋

0 1p1n 25.9%
ℎ
± ≥ 2𝜋0 1pXn 10.6%

3ℎ± 1p0n 9.46%
3ℎ± ≥ 1𝜋0 3pXn 5.09%

different decay modes accordingly (e.g. 1p1n denotes ℎ±𝜋0). As the neutrino cannot be detected with
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Chapter 1 The Standard Model of Particle Physics

the ATLAS detector (see Chapter 2), it is omitted. The neutral pions from the 𝜏 decay further decay into
two photons (98.823 ± 0.034) % of the time. The photons can further decay via pair production into
𝑒
+
𝑒
− [2].

1.2 Electroweak Unification and the Higgs Mechanism

There has always been the goal of unifying all forces into one theory. Therefore, a main achievement
was the electroweak unification developed by Glashow, Salam and Weinberg (GSW), who received
the Nobel Prize 1979 for their work [5, 6]. The theory of the weak interaction is represented by
an SU(2)L group. The index L denotes exclusive coupling to left-handed particles or right-handed
anti-particles. To be self-consistent, the theory would require gauge invariance. Accordingly, three gauge
fields are introduced for the weak interaction: 𝑊 (1)

,𝑊
(2) and 𝑊

(3) . 𝑊 (1) and 𝑊
(2) can be combined to

the charged 𝑊 bosons:

𝑊
±
𝜇 =

1
√

2

(
𝑊

1
𝜇 ∓ 𝑖𝑊

2
𝜇

)
(1.1)

On the other hand, the 𝑍
0 boson as mediator of neutral currents cannot be associated with the 𝑊 (3) as

experiments showed that the 𝑍
0 couples to both, left and right-handed particles. According to Quantum

Electrodynamics (QED), the photon can serve as a neutral boson. With this, a local U(1)𝑌 gauge symmetry
can be introduced. The index 𝑌 is the coupling of 𝐵𝜇, the new gauge field to the weak hypercharge. The
GSW theory states that the photon field 𝐴𝜇 as well as the 𝑍𝜇 field are a mixture of 𝑊 (3)

𝜇 and 𝐵𝜇:

𝐴𝜇 = +𝐵𝜇 cos
(
𝜃W

)
+𝑊

(3)
𝜇 cos

(
𝜃W

)
(1.2)

𝑍𝜇 = −𝐵𝜇 cos
(
𝜃W

)
+𝑊

(3)
𝜇 cos

(
𝜃W

)
(1.3)

𝜃W denotes the weak mixing angle [7].
So far, these bosons are massless, which was not experienced in experiments. The Higgs mechanism

developed by R. Brought, F. Englert and P. Higgs was proposed in 1964 [8–10]. It solves this problem
by introducing a scalar isospin doublet Φ:

Φ =

(
Φ

+

Φ
0

)
=

1
√

2

(
Φ

+
1 + 𝑖Φ

+
2

Φ
0
3 + 𝑖Φ

0
4

)
. (1.4)

The Higgs potential is defined by

𝑉 (Φ) = 𝜇
2
Φ

∗
Φ + 𝜆(Φ∗

Φ
2) (1.5)

with 𝜇 < 0 and 𝜆 > 0. As observable in Fig. 1.3, the potential has an infinite number of minima. When
choosing one of them, the global symmetry is broken and this field excitation is associated with the Higgs
boson [7]. Furthermore, the weak gauge bosons now acquire masses. Same accounts for the fermions.

3



Chapter 1 The Standard Model of Particle Physics

𝑉 (Φ)

Re(Φ) Im(Φ)

Figure 1.3: Sketch of the Higgs potential 𝑉 (Φ) from Eq. (1.5) adapted from [11]. Re(Φ)
and Im(Φ) indicate real and imaginary part.

1.3 Shortcomings of the Standard Model

Even though the Standard Model very accurately describes the physics observed in experiments so
far, there are still a number of shortcomings that require an extension of the model. The one most
relevant for this analysis is an insufficient source for 𝐶𝑃 violation in the Standard Model. Under
𝐶𝑃 transformations charge (𝐶) and parity (𝑃) are inverted, which means that all particles are transformed
into their corresponding anti-particles and the orientation of space is reversed. Hence, left-handed
particles are transferred to right-handed anti-particles and vice versa. The sources of 𝐶𝑃 violation that
were found beyond that were not sufficient to explain the strong matter-antimatter asymmetry that can be
observed in the universe.

Another shortcoming of the Standard Model is its inability to explain Dark Matter. When exploring
the movement of galaxies inside a cluster, it was observed that the mass of a galaxy must be higher than
the sum of masses of the luminous stars it contains, which leads to the assumption that there must be
another source for gravitational force [12]. This cannot be explained by the Standard Model. In addition,
the Standard Model does not describe the gravitational force. Gravitation continues to be described with
General Relativity. A way to unite the two theories has not been found yet. A further shortcoming is the
so-called hierarchy problem. The large discrepancy between the energy scales of the gravitational force
and the electroweak force leads to large Higgs masses at high energy scales. The Higgs mass would
have to be fine-tuned at high precision for the Standard Model to be applicable with these high mass
scales. Lastly, the Standard Model predicts Neutrinos to be massless. However, it has been observed that
Neutrinos have a mass difference, which implies that at least two of them do have a mass.

1.4 Towards an Improved Higgs 𝑪𝑷 Measurement

The Higgs boson predicted by the Standard Model predicts one purely 𝐶𝑃-even Higgs Boson. If
this is not the case, it could be an indicator for the missing source of 𝐶𝑃 violation mentioned in the
previous section. Therefore, it is of high interest to measure the Higgs 𝐶𝑃 precisely. When considering
𝐻 → 𝜏𝜏 decays, 𝐶𝑃 violation is described by the single mixing angle parameter 𝜙𝜏 ∈

[
−90◦, 90◦

]
in
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Chapter 1 The Standard Model of Particle Physics

the generalized Yukawa coupling term in the Lagrangian

L𝑌 = −
𝑚𝜏

𝜈
𝜅𝜏 (cos 𝜙𝜏𝜏𝜏 + sin 𝜙𝜏𝜏𝑖𝛾5𝜏)ℎ (1.6)

with 𝑚𝜏 denoting the 𝜏 lepton mass, 𝜅𝜏 the reduced Yukawa coupling strength and 𝜈 the Standard
Model VEV [13]. A value of 𝜙𝜏 = 0◦ would realize the Standard Model hypothesis; 𝜙𝜏 = ±90◦ would
realize the pure CP-odd hypothesis. All other values of 𝜙𝜏 would indicate a mixing of 𝐶𝑃-even and odd,
which would violate 𝐶𝑃. The ATLAS and CMS collaborations have put large efforts into measuring
this parameter. The results are compatible with the Standard Model, but a 𝐶𝑃-odd contribution could
not be excluded by either of them. The ATLAS result 𝜙𝜏 = 9◦ ± 16◦ rejected the CP-odd hypothesis
by 3.4 standard deviations, while the CMS value 𝜙𝜏 = 4◦ ± 17◦ disfavored CP-odd by 3.2 standard
deviations [14, 15].

The angle 𝜙𝜏 can be measured by exploiting the correlation between the 𝜏 leptons’ transverse spin
components. For different decay modes of the 𝜏 lepton, different approaches can be used to receive
𝜙𝜏 . The 1p1n decay mode is well suited due to its high cross-section. For this decay mode, the
𝜌 decay plane method was developed in [16–18]: The signed acoplanarity angle between the two
𝜏 decay planes 𝜑∗

𝐶𝑃 (Fig. 1.4) is measured in order to compare its distribution to the expected distributions
for a 𝐶𝑃-even and 𝐶𝑃-odd Higgs. In order to extract 𝜑∗

𝐶𝑃 , the angular directions of the two pions from

Figure 1.4: Graphical display of the decay planes of a di-𝜏 decay via the 𝜌 resonance [14].

the 𝜌 decay have to be measured. Another observable that needs to be considered is the energy difference
between the two pions from the 𝜏 decay:

𝑌± =
𝐸 (𝜋±) − 𝐸 (𝜋0)
𝐸 (𝜋±) + 𝐸 (𝜋0)

(1.7)

When splitting the phase space in 𝑌+𝑌− > 0 and 𝑌+𝑌− < 0, one receives the distributions for 𝜑∗
𝐶𝑃. The

distributions predicted by the Standard Model are shown in 1.5. Any measured phase shift from these
distributions would result in a non-zero value for 𝜙𝜏 .

Obviously, a higher angular resolution and energy resolution directly leads to an improved Higgs 𝐶𝑃

measurement. This thesis aims to improve reconstruction of the 𝜏 decay products in order to achieve this.
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Chapter 1 The Standard Model of Particle Physics

Figure 1.5: Dependence of the differential cross-section on 𝜑
∗
𝐶𝑃 for 𝑌+𝑌− > 0 (left) and 𝑌+𝑌− < 0 (right) [16].
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CHAPTER 2

The Large Hadron Collider (LHC) and the
ATLAS Detector

In the following, the experimental design, the process of data taking as well as reconstruction and
simulation of particle collisions is described. For further reading, consider [19].

2.1 The LHC

The LHC is a particle collider located at CERN laboratory in Geneva, Switzerland. With a circumference
of approximately 27 km, the LHC is the largest particle collider in the world. The LHC started operating
in 2009 and accelerates either protons or lead ions. In this thesis, proton-proton collisions from
LHC run 2 (2015-2018) are considered. During this data taking period, a center of mass energy of 13 TeV
was reached. In order to force collisions, the protons are extracted from hydrogen atoms, pre-accelerated
and fed into the circular LHC beam pipes. Here, two proton beams, each consisting of bunches of 1011

particles separated by 25 ns, run in opposite directions. At the four main experiments, ATLAS, CMS,
LHCb and ALICE, the two beams are forced to collide and data is recorded.

2.2 The ATLAS Coordinate System

Position and motion of a particle in the ATLAS detector is described in the right-handed coordinate
system illustrated in Fig. 2.1. Its center is the nominal interaction point. The positive 𝑥-axis points
towards the accelerator ring’s center, while the 𝑦-axis points upwards. The 𝑧-axis points along the beam
pipe. The azimuthal angle 𝜙 is the angular distance between a particle’s momentum vector and the 𝑥-axis
in the 𝑥-𝑦-plane. The polar angle 𝜃 denotes the angle between the 𝑧-axis and the momentum vector of
the particle. As this observable is not Lorentz invariant, the pseudorapidity 𝜂 = − ln tan(𝜃/2) is mostly
used. The transverse momentum 𝑝T is the component of the momentum in the 𝑥-𝑦-plane. The angular
distance is defined as

Δ𝑅 =

√︃
Δ𝜂

2 + Δ𝜙
2
. (2.1)

7



Chapter 2 The Large Hadron Collider (LHC) and the ATLAS Detector

Figure 2.1: Sketch of the LHC and the ATLAS coordinate system. The other three major experiments at LHC,
namely ALICE, CMS and LHCb are depicted as well [20].

2.3 Components of the ATLAS Detector

The ATLAS (A Toroidal LHC ApparatuS) experiment is one of the four major experiments at the LHC.
In this section, the main components of the ATLAS detector will be described with an emphasis on the
parts that enable the detection of 𝜏 leptons. The full detector can be seen in Fig. 2.2. With a length of
44 m and a diameter of 25 m it is the largest volume particle detector ever constructed.

Figure 2.2: Sketch of the ATLAS detector [21].

2.3.1 The Inner Detector

In the Inner Detector, the trajectory of charged particles is determined. A magnetic field generated by a
solenoid bends these trajectories to enable charge and momentum measurement. The Inner Detector

8



Chapter 2 The Large Hadron Collider (LHC) and the ATLAS Detector

consists of three layers, represented in Fig. 2.3. The layer closest to the beam axis is the Pixel Detector

Figure 2.3: Sketch of the components of the ATLAS Inner Detector [19].

followed by the Semiconductor Tracker (SCT) modules. They enable precise vertex measurements
within a range of |𝜂 | < 2.5. The outermost part is the Transition Radiation Tracker (TRT) that covers
|𝜂 | < 2.0. It plays a main role in momentum measurement and particle identification.

2.3.2 The Calorimeter System

The calorimeter system is responsible for energy measurements especially for neutral particles as they
do not leave a track in the Inner Detector. It consists of the electromagnetic (ECAL) and the hadronic
calorimeter (HCAL) as displayed in Fig. 2.4.

Figure 2.4: Sketch of the calorimeter system of the ATLAS detector [19].

9



Chapter 2 The Large Hadron Collider (LHC) and the ATLAS Detector

The Electromagnetic Calorimeter

The electromagnetic calorimeter (ECAL) is a liquid argon (LAr) sampling calorimeter that is responsible
for the energy measurement of electrons and photons. It is divided into a barrel and the end-caps. This
way, the ECAL covers the regions |𝜂 | < 1.3 and 1.5 < |𝜂 | < 2.5. As represented in Fig. 2.5, the ECAL
consists of three layers. The innermost part is the strip layer (EM1), which was designed specifically
to be able to separate closely located photons that originated from neutral pion decays as mentioned
in Section 1.1. The second layer (EM2) is responsible for the most part of an electromagnetic shower,
while the third layer (EM3) contains the rest of the shower [22].

Figure 2.5: Sketch of the electromagnetic calorimeter of the ATLAS detector [19].

The Hadronic Calorimeter

In this part of the detector, the energies of hadrons that were not stopped in the ECAL are measured.
Again, the detector is divided in a barrel (|𝜂 | < 1.7) and an end-cap region (1.5 < |𝜂 | < 3.2).

2.3.3 The Muon System

The Muon System is the outermost part of the detector and is responsible for measuring the tracks and
momenta of muons.

2.3.4 The Trigger System

In LCH run 2, a brunch crossing rate of 40 MHz was reached, which corresponds to the aforementioned
bunch-spacing of 25 ns. At this rate, it is not possible to record all data measured by the detector, so
two trigger levels are imposed. The Level-1 (L1) trigger considers a subset of the detector information
to identify events containing physics worth analyzing. In this process, specific signatures, like the one

10



Chapter 2 The Large Hadron Collider (LHC) and the ATLAS Detector

of muon are recognized. The L1 reduces the data frequency to approximately 100 kHz. Furthermore,
it defines regions of interest. The High Level Trigger (HLT) exploits this information to refine the
reconstruction. Selection cuts are added. This decreases the data taking frequency to around 100 kHz,
which can be used for offline physics analyses [23].

2.4 Particle Reconstruction

During data processing, the detector responses of the different detector components have to be mapped
to physics particles. Most of the particles mentioned here build, together with additional detector
information, the basis for the reconstruction of hadronically decaying 𝜏 leptons that will be explained
and analyzed in the next chapters.

Electrons and Photons

Electrons and photons leave similar signatures in the ECAL. The charged electron, however, leaves an
additional track in the Inner Detector. Therefore, both are reconstructed from energy deposits in the
ECAL using the Sliding Window Algorithm [24]. If an additional track pointing to the ECAL cluster is
measured by the tracking system, the particle is identified with an electron, otherwise a photon.

For the reconstruction of 𝜏 leptons, two more extensions to this algorithm are essential: The
measurement of two matched tracks associated with an ECAL cluster is identified with a 𝛾 → 𝑒

+
𝑒
−

conversion (Conversion Track). Additionally, Photon Shots are local maxima in the ECAL strip layer as
explained in Section 2.3.2.

Jets

Jets are collimated sprays of particles produced by quarks or gluons. They are reconstructed using
the anti-𝑘𝑡 algorithm. The algorithm exploits clusters in the HCAL that exceed noise level [25]. In
𝜏 reconstruction, it is essential to separate ordinary jets from 𝜏 candidates, as will be explained in
Chapter 4.

Muons

Muons only interact minimally with most components of the ATLAS detector. They reach the Muon
System, where most of them are stopped. Together with the Inner Detector, trajectory, momentum and
energy can be measure [26]. As muons can originate from leptonic 𝜏 decays, and because of their
straight forward identification, they can serve well as trigger for decays to 𝑍𝜏𝜇𝜏had, that will be analyzed
in later chapters.

Missing Transverse Energy

To determine the missing transverse energy, momentum conservation in the transverse plane can be
utilized:

𝐸
miss
T =

∑︁
selected
electrons

𝑝
𝑒
T +

∑︁
accepted
photons

𝑝
𝛾

T +
∑︁

accepted
𝜏leptons

𝑝
𝜏had
T +

∑︁
selected
muons

𝑝
𝜇

T +
∑︁

accepted
jets

𝑝
jets
T +

∑︁
unused
tracks

𝑝
track
T (2.2)
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This is possible as the colliding protons initially only have a momentum component parallel to the 𝑧-axis.
Missing transverse energy can result from weakly interacting particles, like neutrinos, or from particles
outside the detector acceptance [27]. As there is always a neutrino involved in the 𝜏 decay, it is highly
relevant to reconstruct 𝐸miss

T accurately.

Pile-Up

Particle reconstruction is significantly impeded by the fact that per bunch crossing, usually more than
one particle collision happens. This results in a contamination of the signals of the detector. Therefore,
it is important, to consider the average interactions per bunch crossing.

2.5 Event Generation and Simulation

In order to test the Standard Model, not only the actual data needs to be taken. In addition, simulated
data is necessary to be able to compare theory and experimental data. In this process, Monte Carlo
generators play an important role. Event generators like Sherpa, Pythia and Powheg are able to
randomly generate particle collisions according to the Standard Model [28–30]. This includes a whole
chain of steps as illustrated in Fig. 2.6: The hard process is calculated pertubatively on matrix element
level (red). Additionally, initial state radiation (ISR) and final state radiation (FSR) during the hard
process are considered (blue). In the further decay, parton showers are formed via fragmentation and
hadronization (green). Moreover, QED bremsstrahlung during the process (yellow) and the underlying
event (purple) are simulated.

Figure 2.6: Exemplary event generated with the SherpaMonte Carlo generator. Red: Hard scattering. Blue: ISR
and FSR. Green: Fragmentation and hadronization. Yellow: QED bremsstrahlung. Purple: Underlying event [31].
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CHAPTER 3

Machine Learning Techniques

The surge of Machine Learning (ML) techniques has influenced large parts of science, business and our
daily lives. ML is a subfield of artificial intelligence that focuses on the development of algorithms that
enable computer systems to learn and make predictions or decisions without being explicitly programmed.
Since the deep learning revolution about ten years ago, it has been possible to train significantly more
complex ML models on much larger datasets. With the ever-increasing volume of data produced by
particle physics experiments such as the LHC, ML has become a valuable tool for extracting meaningful
information from the data [32]. 𝜏 lepton reconstruction in the ATLAS experiment is no exception from
this: Over the last years, classic ML methods for identification and decay mode classification were
replaced by deep learning methods in order to achieve significant advances in performance [33, 34].

In this chapter, the basics of ML will be covered to introduce the concepts applied in the following
chapters. More detailed information can be found in [35], [36] and [37].

3.1 Fundamental Concepts

To solve a general ML problem, the steps summarized in Fig. 3.1 are performed repeatedly, until the
model reaches acceptable performance. The input data for an ML model contains a number of samples.

Figure 3.1: Graphical Display of a general machine learning workflow [35].
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Each sample contains features x ∈ X and labels y ∈ Y. Usually, the number of features 𝑚 is high and
there is only one label (𝑛 = 1). However, in this analysis, the number of labels varies. The ML algorithm
aims to choose a model ℎ from the hypothesis space H that predicts most accurately the labels from
the features. After making an initial choice on ℎ, the chosen model is used to predict ℎ(x) = ŷ for each
sample. The loss function 𝐿 ((x, y), ℎ) (see Section 3.2) describes the quality of the prediction and is
used to adapt ℎ. As feature and label space vary in their structure and elements from them might be
hard to generate (especially the labels), different strategies of ML are used. Besides supervised learning,
there is unsupervised learning and reinforcement learning. In supervised learning, which this thesis
focuses on, a training dataset with known labels is used to train the model. In unsupervised learning, ML
algorithms like k-means clustering are trained to find correlations within unlabeled data. Reinforcement
learning includes methods that do not require training data, but learn during prediction via trial-and-error.
One can further divide the ML problem into classification and regression tasks. In classification tasks,
Y is discrete; in a regression task, it is continuous.

3.2 The Loss Function

As already mentioned, the loss function

𝐿 : X ×Y ×H → R+ : ((x, 𝑦), ℎ) ↦→ 𝐿 ((x, 𝑦), ℎ) (3.1)

is used to quantify the quality of the model prediction. Depending on the ML problem, different loss
functions are feasable. For classification tasks with unordered Y, categorical cross-entropy can be used.
It is defined as

𝐿 ((x, y), ℎ) = 𝐿 (y, ŷ) := −
𝑛∑︁
𝑖=1

𝑦
′
𝑖 · log 𝑦̂𝑖 (3.2)

with y′ one-hot encoded and ŷ containing the predicted probabilities for each possible label. For
regression tasks, the mean squared error (MSE) loss is widely used:

𝐿 (y, ŷ) :=
𝑛∑︁
𝑖=1

(𝑦𝑖 − 𝑦̂𝑖)
2
. (3.3)

If instances of Y vary in their importance, one can extend the function to

𝐿 (y, ŷ) :=
𝑛∑︁
𝑖=1

𝑎𝑖 · (𝑦𝑖 − 𝑦̂𝑖)
2 with 𝑎𝑖 ∈ R

𝑛 (3.4)

and assign large 𝑎𝑖 to labels with higher relevance.

3.3 Gradient-Based Learning

In the context of deep learning, gradient-based methods became essential. They require each hypothesis
ℎ
(w) ∈ H to be characterized by a specific weight vector w ∈ R𝑛. In addition, the loss function has

to depend smoothly on w. For simplicity, we define the loss function as 𝐿 (w). Accordingly, the ML
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problem becomes

min
w∈R𝑛

𝐿 (w). (3.5)

As 𝐿 (w) is smooth, its gradient Δ𝐿 (w) (in a sufficiently small neighborhood) around the current guess
w(𝑟 ) can be determined. Accordingly, the gradient descent step can be performed by evaluating

w(𝑟+1)
= w(𝑟 ) − 𝛼Δ𝐿 (w(𝑟 ) ) (3.6)

with 𝛼 > 0 denoting the learning rate. This step can be performed repedeatly until a minimum in 𝐿 (w)
is reached. The algorithm is named gradient descent. This however, only works, if the learning rate is
appropriately chosen. Too large 𝛼 may lead to an oscillation around the minimum and too small 𝛼 may
lead to unfeasable training durations. This can be tackled by using the stochastic gradient descent (SGD)
including a variable learning rate. Furthermore, in this algorithm the local derivative is approximated by
different randomization strategies. The adam optimizer facilitates this as described in more detail in
[38]. Helpful for better convergence is standardizing the features to make computations more efficient.
Smoother convergence can be achieved by passing not only one sample, but several at a time into the
algorithm. The batch size is the number of samples per step in this mini-batch SGD. An epoch is finished
after all samples have been considered.

To investigate if the training was successful, it is worth considering the development of the loss during
training. In order to avoid exploiting statistical effects in the training sample, a separate validation
dataset is defined that is independent of the training data. Now, the training error (total error on the
training dataset) and the validation error (total error on the validation dataset) can be observed against
the number of epochs. This relation is known as the learning curve. If both errors are still decreasing at
the end of the training it is a sign over underfitting. If the validation error reached its minimum, but the
training loss is still decreasing, it is a sign of overfitting.

3.4 Artificial Neural Networks (ANN)

ANNs are ML models inspired by the biological neural networks of the human brain. They consist of
interconnected nodes that are organized into layers and are capable of modeling complex non-linear
relationships between inputs and outputs with high performance. We speak of deep learning for large
numbers of layers.

3.4.1 Feed Forward Neural Networks

The most basic type of ANN is the feed forward neural network. The output of a single node, called
perceptron is

𝑎(x) = 𝜎(wTx + 𝑏) = 𝜎(𝑧) (3.7)

with 𝑤 being the weight vector, 𝑥 the input and 𝑏 the bias. The activation function 𝜎 can have different
shapes (Fig. 3.2) and can be used to implement non-linearity into the ANN. The final output of the ANN
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Figure 3.2: Graphical Display of different activation functions 𝜎(𝑧) [39].

can be calculated via forward propagation using the relation

𝑎
(𝑙)
𝑗

= 𝜎

(∑︁
𝑘

𝑤
(𝑙)
𝑗𝑘
𝑎
(𝑙−1)
𝑘

+ 𝑏
(𝑙)
𝑗

)
(3.8)

where 𝑎
(𝑙−1)
𝑘

denotes the output of the 𝑘
th neuron from the previous layer and 𝑤

(𝑙)
𝑗𝑘

denotes the weight of
the 𝑘

th neuron to the current neuron 𝑗 . An example feed forward neural network can be observed in
Fig. 3.3. Its input vector has size three, the two intermediate layers (hidden layers) have four nodes each
and the output has size two.

As the criteria for gradient-based learning mentioned in Section 3.3 are fulfilled for ANNs, the concept
of gradient descent can be applied. From Eq. (3.6) follows that

Δ𝐿 (w) = 𝜕𝐿

𝜕𝑤𝑖 𝑗

=
𝜕𝐿

𝜕𝑎 𝑗

𝜕𝑎 𝑗

𝜕𝑧 𝑗

𝜕𝑧 𝑗

𝜕𝑤𝑖 𝑗

. (3.9)

needs to be determined. The single terms can be simplified to

𝜕𝐿

𝜕𝑎 𝑗

=

𝑁∑︁
𝑙=1

𝜕𝐿

𝜕𝑎𝑙

𝜕𝑎𝑙

𝜕𝑧 𝑗

𝜕𝑧𝑙

𝜕𝑎 𝑗

=

𝑁∑︁
𝑙=1

𝛿 𝑗𝑤 𝑗𝑙,
𝜕𝑎 𝑗

𝜕𝑧 𝑗
= 𝜎

′(𝑧 𝑗), and
𝜕𝑧 𝑗

𝜕𝑤𝑖 𝑗

= 𝑎𝑖 . (3.10)
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Figure 3.3: Graphical Display of a feed forward neural network with 𝑥𝑖 being the feature input, 𝜎 the activation
function and 𝑦̂𝑖 the output [39].

Starting at the output layer, 𝛿 𝑗 can be computed recursively with high efficiency. This process is known
as back propagation.

A problem when training ANNs is often that the input distribution for each layer shifts during training.
This can limit training speed and convergence. One can normalize the layer inputs via batch normalization
to address this issue [40].

3.4.2 Recurrent Neural Networks (RNN)

The simple recurrent neural network (sRNN) introduces feedback loops into the structure of the feed
forward neural network. Therefore, it is able to process not only vectors, but ordered sequences of
vectors. This is achieved by adapting Eq. (3.7) to

s𝑡 (x𝑡 , s𝑡−1) = 𝑔𝑡
(
V · 𝜎𝑡 (Ws𝑡−1 + Ux𝑡 + b) + 𝑐

)
with 𝑡 = 0, . . . , 𝑁. (3.11)

Here, U, V and W are weight matrices, x is the input vector, s the internal state and 𝑁 the length
of the sequence. 𝑔 is a non-linear activation function. A sketch of the sRNN node is displayed
in Fig. 3.4. Adjusting the weights is done similarly to a feed forward neural network by performing
back propagation through time [42].

A common problem with sRNNs is that with longer sequences, the gradients often vanish or explode.
This can be tackled by considering a long short-term memory (LSTM) RNN, which is considered the
“dominant workhorse in sequence processing” [42]. This gated RNN introduces the input gate 𝑖𝑡 , the
forget gate 𝑓𝑡 and the output gate 𝑜𝑡 via

𝑐𝑡 = 𝜎(W𝑐s𝑡−1 + U𝑐x𝑡 + 𝑏𝑐) (3.12)
𝑐𝑡 = 𝑓𝑡 · 𝑐𝑡−1 + 𝑖𝑡 · 𝑐𝑡 (3.13)
𝑠𝑡 = 𝑜𝑡 · 𝜎(𝑐𝑡 ). (3.14)

It effectively avoids the problem of vanishing or exploding gradients.
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Figure 3.4: Graphical Display of an RNN node adapted from [41]. 𝑈, 𝑉 and 𝑊 denote weight matrices, 𝑥 the input
vector, 𝑠 the interval state and 𝑡 the time step.

3.4.3 DeepSet Neural Networks

The DeepSet neural network (DeepSet NN) implements a neural network architecture that enables
processing unordered sequences with variable length. If the sequence order has no meaning in the
context of the ML problem, this can have advantages over RNNs as time-consuming loops within the
nodes can be avoided. The formal definition of the DeepSet NN can be summarized as

ŷ(x) = 𝜆

(∑︁
𝑖

𝜅𝑖 (x)
)
. (3.15)

The input vector x is transformed into some representation 𝜅(x), whose components are added up and
fed into a feed forward neural network 𝜆. 𝜅 is usually a feed forward neural network as well. As the
summation is commutative, it marks the step at which the ordering of the input elements becomes
irrelevant [43].

3.5 Comparison between Deep Learning and Classical ML Approaches

Apart from ANNs, a variety of classical ML algorithms have been used long before the ascent of deep
learning. These include linear regression, support vector machines (SVM), nearest neighbor algorithms
and boosted decision trees (BDT). Most of them require less computational power, but do require a
more elaborated extraction of the input features. As BDTs are widely used in ATLAS 𝜏 reconstruction,
they will be compared to ANNs in more detail in the following. Just like an ANN, a BDT can perform
supervised classification and regression tasks. The tree is trained iteratively. In a simple classification
task with Y = {0, 1}. During the first step, an input feature is chosen, and the samples are ordered
according to this variable. Now, for different thresholds of the input feature, the dataset is split into
two. In each subset, the purity of labels is calculated. The same is repeated for the other input features.
The input feature and threshold that produces the highest purity is chosen. Subsequently, two branches
exist. For each of them, the procedure is repeated until all branches have reached an acceptable level
of purity. These leaves acquire the label of the majority of samples that they contain. To classify a
new sample with unknown label, the sample is passed through the tree and at every threshold it takes
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its according path until it reaches a leave. The sample is labeled with the leave’s label. The BDT is
boosted by giving higher weights to wrongly classified samples during the training process. Usually,
BDTs require higher-level representations of the data, but therefore training is faster. Furthermore, if a
BDT is predicting poorly, its tree structure can give hints on what the problem might be. This does not
account for deep ANNs that act more like a black box. However, the advantages of BDTs only apply, if
it is possible to extract all information inside the data into a manageable amount of input features and
the training dataset is not too large. Otherwise, it can drastically increase training duration due to the
iterative training approach. The gradient-based ANN training does not have this problem. Another
disadvantage of BDTs is the fact, that they can only represent linear decision boundaries. As already
mentioned, ANNs can learn much more complex representations [44].

3.6 Hyperparameter Optimization

Until now, the mentioned parameters of the ML algorithm, like the weights in an ANN, were all adjusted
during training. Hyperparameters, however, are higher-level parameters that are set manually before
training. There are two types of hyperparameters: The first type only concerns the model, like the
number of layers of an ANN or the activation function. The second type concerns the optimization
process, like learning rate and batch size [45]. There are various ways of determining the hyperparameter
configuration that suits best the specific ML problem. They vary in complexity from trying out random
hyperparameter values (random search) to training artificial neural networks that predict the optimal
hyperparameter values. Tuning hyperparameters is usually consuming a high amount of computational
resources, so it is advisable to choose the tuning algorithm thoughtfully.

3.6.1 Grid Search

When performing a grid search, range and step size for each hyperparameter to be optimized are defined.
A loop over all hyperparameter combinations is run and the hyperparameter configuration that produces
the lowest final validation loss is chosen. An advantage of this method is that by choosing large ranges
and small step sizes, the hyperparameter space can be entirely scanned. On the other hand, computational
costs rise quickly with larger ranges and smaller step sizes.

3.6.2 Bayesian Optimization

A problem shared among the random and grid search approach is the fact that the algorithms do not
consider previous observations. Bayesian optimization addresses this problem by keeping history over
the previously tested hyperparameter configurations and their performance. On every call, they choose a
hyperparameter configuration that is in the region of former configurations with high performance. If
the loss landscape with respect to the hyperparameter values is not too complex, this can lead to quick
convergence.
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CHAPTER 4

Reconstruction of 𝝉 Leptons with the PanTau
Algorithm

As highlighted in Section 1.4, an accurate reconstruction of 𝜏 leptons is an essential part of Higgs𝐶𝑃 meas-
urements at ATLAS. However, the reconstruction can be quite challenging: Due to its low lifetime, the 𝜏
decays already before reaching the detector. The neutrino generated by the decay cannot be directly
detected by the ATLAS detector (Chapter 2). Therefore, the visible part of the decay (𝜏vis) has to be
reconstructed with high accuracy. Reconstruction of leptonic 𝜏 decays is rather simple as the resulting
muon or electron can be directly detected. For hadronic 𝜏 decays, more elaborate techniques are required
to reconstruct the hadronic remnants (𝜏had-vis) as their signature is similar to the one of an ordinary jet.
For simplicity, 𝜏had-vis will be referred to as 𝜏vis from now on.

In previous ATLAS analyses like [46], the PanTau algorithm used a particle flow algorithm (see Sec-
tion 4.2) and various BDTs (see Section 3.5) to provide 𝜏 decay mode reconstruction and reconstruction
of the decay products’ kinematics. A full diagram of the PanTau workflow can be found in Appendix C.
The aspects relevant for this analysis are described in this chapter.

4.1 Identification of 𝝉 Leptons

As already mentioned, before reconstructing the 𝜏vis candidate, accurate 𝜏 identification has to be
performed to discriminate from regular jets. Fig. 4.1 demonstrates common differences between jets and
𝜏vis: In general, the jet is fewer collimated and contains more hadrons then the 𝜏vis [47]. Since Run 2,
𝜏vis identification is achieved using an ANN initially developed by C. Deutsch [48, 49].

(a) Typical signature of a jet. (b) Typical signature of hadronic tau decay.

Figure 4.1: Graphical display of common differences between a jet (a) and a 𝜏vis (b) [47].
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4.2 CellBased Particle Flow Algorithm

CellBased is an algorithm on calorimeter cell level developed to reconstruct objects stemming from
hadronic 𝜏 decays. It utilizes various properties of the ATLAS detector described in Chapter 2. Charged
particle flow objects (Charged PFOs), mostly originating from charged pions, can easily be identified
by the corresponding track in the pixel detector. Their total energy can be estimated from the energy
deposited in the electromagnetic calorimeter. The remaining energy deposits are reclustered to receive
the neutral pion candidates (Neutral PFOs). These however, can also originate from other sources like
pile-up (Section 2.4). Therefore, a BDT is used to identify the clusters from real neutral pions [50].
Furthermore, a custom algorithm developed by S. Yuen provides information on the connections between
Neutral PFOs and Photon Shots [51].

A schematic display of the signature of a sample 1p1n decay (Section 1.1) in the 𝜂-𝜙-plane can be
seen in Fig. 4.2. Conversion Tracks from electron pair production are depicted as well. One can observe
well the charged PFO originating from the charged pion as well as two groups of objects originating
from the neutral pion decay to two photons.

Figure 4.2: Graphical display of the reconstructed objects in a generated 𝜏 decay. Each circles’ area represents the
object’s energy [52].

4.3 Decay Mode Reconstruction

The 𝜏 decay mode is determined by a combination of various BDTs that use the kinematics of all PFOs
found by the CellBased algorithm. The performance of this classification task can be quantified using
a confusion matrix [35]. The two axes of the matrix represent true (x-axis) and predicted decay mode
(y-axis). Here, column normalization is used to obtain the classification efficiency for each decay mode
(migration matrix). The overall efficiency is the weighted average of the values on the diagonal from

21



Chapter 4 Reconstruction of 𝜏 Leptons with the PanTau Algorithm

bottom left to top right. The resulting migration matrix for the PanTau classification on a 𝛾
∗ → 𝜏𝜏

dataset can be observed in Fig. 4.3. The diagonal efficiency is 73 1%.

Figure 4.3: Migration matrix of the decay mode classification performance of the PanTau algorithm on a 𝛾∗ → 𝜏𝜏

sample [34].

4.4 Prediction of the Decay Product Kinematics

In order to perform the 𝜌 decay plane method described in Section 1.4, one needs to reconstruct the
four-vectors of the charged and neutral pion from the 1p1n decay. The charged pion four-vector can be
obtained with high accuracy from the tracking system, so the crucial part is reconstructing the neutral
pion. It does not leave a track in the Inner Detector (only in the case pair production before entering
the ECAL) and its signature in the calorimeter can be difficult to interpret. Therefore, PanTau exploits
information from various detector parts with a custom algorithm. Consider Appendix C for further
details.

The performance of the prediction can be measured in different figures of merit that describe the
trajectory of the neutral pion from the 1p1n decay. To isolate these events, only events true decay mode
1p1n will be considered in the following. Furthermore, to be consistent with the performance measurement
in Chapter 6, only events with 1p1n predicted by the ANN in Chapter 5 are considered. Due to the large
𝑝T spectrum, the unphysical 𝛾∗ → 𝜏𝜏 dataset serves well for developing a general 𝜏 reconstruction.
However, in this thesis, reconstructing physical decays that enable Higgs 𝐶𝑃 measurements is of interest.
Therefore, the neural network is evaluated on a 𝑍 → 𝜏𝜏 sample that was generated by using the
tag-and-probe method. As introduced in Section 2.4, a single muon is used as a trigger (tag). If a 𝜏had is
found in the same event (probe), the event is accepted [53].

As describes in Section 1.4, an important figure of merit is the energy resolution of the neutral pion.
We define the 𝐸 (𝜋0) residual as

Δ𝐸 (𝜋0) =
𝐸 (𝜋0

PanTau) − 𝐸 (𝜋0
true)

𝐸 (𝜋0
true)

. (4.1)
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The residual distribution is shown for different binnings of 𝑝T(𝜏vis,true) in Fig. 4.4. The outliers at −100%
result from events for which PanTau predicts 𝐸 (𝜋0) = 0. As we use the decay mode selection predicted
by the ANN in Chapter 5, these events were reconstructed as 1p0n by PanTau. By considering the
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Figure 4.4: Distributions for different intervals of 𝑝T (𝜏vis,true) of the 𝐸 (𝜋0) residual for the PanTau algorithm.

quantiles of these distributions, the behavior can be summarized (Fig. 4.5). Another way to quantify
the performance is by defining the overall resolution as the average deviation of all values within the
90% quantile and the bias as the median of the distribution. The behavior of these two observables is
depicted in Fig. 4.6. One can observe that bias and resolution both decrease for higher 𝑝T(𝜏vis,true). An
explanation for this could be the uncertainty on the compensation for pile-up in the calorimeter. Here, a
constant value is subtracted from all energy deposits. With higher 𝑝T(𝜏vis,true) and therefore on average
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Figure 4.5: Display of the quantiles of the 𝐸 (𝜋0) residual distribution for the PanTau algorithm against 𝑝T (𝜏vis,true).
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Figure 4.6: Bias and resolution of the 𝐸 (𝜋0) prediction for the PanTau algorithm.

higher 𝐸 (𝜋0) as well, this constant error has a lower impact on the overall uncertainty. To understand the
energy resolution in more detail, it is helpful to consider the angular distance between the two pions.
According to Eq. (2.1), it is defined as

𝑑 (𝜋0
, 𝜋

±) =
√︂(

𝜙(𝜋0) − 𝜙(𝜋±)
)2

+
(
𝜂(𝜋0) − 𝜂(𝜋±)

)2
. (4.2)

The dataset is split into high and low 𝑑 (𝜋0
, 𝜋

±) and the quantiles of each residual distribution are shown
in Fig. 4.7. This time against 𝐸 (𝜋0

true). A small angular distance should make assigning the different
objects to the right one of the two pions harder, wich should result in a worse energy resolution. However,
a small distance between the two pions is more likely with larger 𝑝T(𝜏vis). In the plot, one can observe
this effect: Apart from the lowest energy bin, the 𝐸 (𝜋0) resolution is better for higher angular distances.

Another measure of interest is the angular orientation of the 𝜏 axis in the 𝜂-𝜙-plane. In the 1p1n decay,
it is defined by the orientation of the straight line passing through the two pions. 𝛼(𝜋0

, 𝜋
±) ∈ [0, 𝜋] is

the unsigned angular direction deviation from the true 𝜏 axis. To consider the effects of high and low
energy neutral pions, similarly to before, a cut on 𝐸 (𝜋0

true) is performed to visualize the angular direction
resolution (Fig. 4.8). One can observe that not only the energy resolution improves with higher energies,
but also the angular direction resolution. In the low energy bin, it remains more or less constant with
higher angular distances between the two pions. In the high energy bin, the resolution improves. This is
reasonable due to the already mentioned effect that with low angular distances, the objects are harder to
assign correctly to the pions.
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Figure 4.7: Display of the quantiles of the 𝐸 (𝜋0) residual distribution for the PanTau algorithm against 𝐸 (𝜋0
true)

with a cut on 𝑑 (𝜋0
, 𝜋

±).
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As explained in Section 1.4, the energy asymmetry Υ is the more physics oriented measure in this
analysis than 𝐸 (𝜋0). The corresponding performance of PanTau is shown in Fig. 4.9. The behavior of a
stronger performance with larger 𝑝T(𝜏vis,true) can is not as strong as for 𝐸 (𝜋0).

30 40 50 60 70 80
pT(τvis,true) [GeV]

−0.2

0.0

0.2

∆
Υ

7872 8399
7086 946 228

∆Υ distribution quantiles

PanTau

Median

60% quantile

90% quantile

Number of events

Figure 4.9: Display of the quantiles of the Υ residual distribution for the PanTau algorithm against 𝑝T (𝜏vis,true).

Further figures of merit are the angular deviation in 𝜙 and 𝜂 (Figs. 4.10 and 4.11). Worth noting are
the long tails of the distributions in the highest 𝑝T bin. Apart from that, like for the other observables the
resolution gets better with higher 𝑝𝑡.
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Figure 4.10: Display of the quantiles of the 𝜂(𝜋0) residual distribution for the PanTau algorithm against 𝑝T (𝜏vis,true).
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Figure 4.11: Display of the quantiles of the 𝜙(𝜋0) residual distribution for the PanTau algorithm against 𝑝T (𝜏vis,true).

In addition, the resolution on 𝑑 (𝜋0
, 𝜋

±) is of interest, as it shows, if it is possible to resolve the
locations of the two pions. The performance is displayed against the true angular distance in Fig. 4.12.
For easier visualization, two different y-axis ranges are shown. The plot shows that in the in most cases,
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Figure 4.12: Display of the quantiles of the 𝑑 (𝜋0
, 𝜋

±) residual distribution for the PanTau algorithm against
𝑑 (𝜋0

, 𝜋
±) for two different ranges on the y-axis.

the distance resolution is significantly smaller than the true distance. Only for small distances this is not
the case.

Furthermore, it is helpful to consider dependence of the performance of PanTau on the angular
direction of the neutral pion. The 𝐸 (𝜋0) resolution is displayed against 𝜙(𝜋0

true) and 𝜂(𝜋0
true) in Fig. 4.13.

As expected, the resolution does not deviate strongly with 𝜙 and 𝜂.
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Figure 4.13: Display of the quantiles of the 𝐸 (𝜋0) residual distribution for the PanTau algorithm against 𝜂(𝜋0
true)

and 𝜙(𝜋0
true).

Another factor that can impair performance is pile-up as explained in Section 2.4. The corresponding
plot can be seen in Fig. 4.14. As expected, with more interactions per bunch crossing, the resolution
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Figure 4.14: Display of the quantiles of the 𝐸 (𝜋0) residual distribution for the PanTau algorithm against pile-up.

worsens.
As the 1p1n decay is mediated by the 𝜌 particle (Section 1.4), the invariant mass of charged and

neutral pion should result in the 𝜌 mass. The predicted distribution of the 𝜌 mass and the corresponding
distribution on truth level is shown in Fig. 4.15. It is clear to see that PanTau has a bias towards higher
masses. The origin of the outliers around the 𝜋

± mass (140.0 GeV [2]) can be explained by the fact that,
if no 𝜋

0 is detected, the 𝜌 mass is just the mass of the reconstructed 𝜋
±. This is the same effect as for the

outliers in Fig. 4.4.
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Figure 4.15: Display of the 𝜌 meson mass distribution from the 1p1n decay for PanTau and truth data. The Particle
Data Group (PDG) average is depicted as well [2].

For more displays of the PanTau reconstruction performance consider Appendix A.
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CHAPTER 5

Decay Mode Reconstruction with a Recurrent
Neural Network (RNN)

Before improving the reconstruction of the 𝜏 decay product kinematics, it is worth considering an updated
method of the decay mode reconstruction. Inspired by the previously cited work from C. Deutsch,
an RNN (Section 3.4.2) was developed by H. Nguyen in [34], which significantly outperformed the
PanTau decay mode classification by exploiting the advantages of deep neural networks over BDTs
described in Section 3.5.

In this section, especially input data, architecture and performance on different data samples will be
discussed. Even though the developed RNN does not (like the PanTau algorithm) deliver the decay
product kinematics, it serves as a basis for a second neural network that will be described and optimized
in the following chapter to reconstruct the decay products’ four vectors.

5.1 Input Data

The RNN is trained on a Monte Carlo data sample (Section 2.5) simulating the unphysical 𝛾∗ → 𝜏𝜏 decay.

5.1.1 Input Features

Just like for PanTau, the RNN input features contain the kinematics of Charged and Neutral PFOs:
The signed angular distance to the 𝜏 axis in 𝜂 and 𝜙 and the 10th logarithm of the PFO’s transverse
momentum. As especially the correct reconstruction of neutral pions is challenging, more information
on the Neutral PFOs is added. In addition, the network receives the kinematic information for the Photon
Shots and Conversion Tracks. The full list of input features with explanations is shown in Table 5.1.

5.1.2 Cut Selection

The cuts listed in Table 5.2 were applied to speed up training and avoid that the neural networks learns
common reconstruction errors: The cut applied on 𝑝T(𝜏vis) avoids that the model learns reconstruction
errors as the Particle Flow algorithm was developed for 𝑝T(𝜏vis) in this interval. The cut on 𝜂 avoids
events where the 𝜏 is located to close to the beam axis to be properly detected by the tracking system and
rejects 𝜏 candidates between barell and end-cap of the calorimeter.
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Table 5.1: RNN input features

Object Variable Description

Charged PFO Δ𝜙(𝜏,Charged PFO) Distance in 𝜙 between Charged PFO and 𝜏 axis
Δ𝜂(𝜏,Charged PFO) Distance in 𝜂 between Charged PFO and 𝜏 axis
log

(
𝑝T(Charged PFO)

)
logarithm of Charged PFO transverse momentum

log
(
𝑝T(𝜏)

)
logarithm of reconstructed 𝜏 transverse momentum

Neutral PFO Δ𝜙(𝜏,Neutral PFO) Distance in 𝜙 between Neutral PFO and 𝜏 axis
Δ𝜂(𝜏,Neutral PFO) Distance in 𝜂 between Neutral PFO and 𝜏 axis
log

(
𝑝T(Neutral PFO)

)
logarithm of Neutral PFO transverse momentum

log
(
𝑝T,𝜏

)
logarithm of reconstructed 𝜏 transverse momentum

𝜋
0 BDT score likeliness of the Neutral PFO stemming from a 𝜋

0

NHitsInEM1 Number of Photons associated with the Neutral PFO
NPosECells_EM1 Number of cells with positive energy in EM1
ENG_FRAC_CORE Fraction of total cluster energy contained in the highest

energy cell
SECOND_R Second moment of the radial distance between cluster

cells and shower axis
ptSubRatio Fractional transverse momentum overlap between

Neutral and Charged PFOs
𝜂-width in EM1 Second moment of the distance in 𝜂 between cluster

cells and cluster center
energyfrac_EM2 Energy fraction contained in EM2

Photon Shot Δ𝜙(𝜏, Shot) Distance in 𝜙 between Photon Shot and 𝜏 axis
Δ𝜂(𝜏, Shot) Distance in 𝜂 between Photon Shot and 𝜏 axis
log

(
𝑝T(Shot)

)
logarithm of Photon Shot transverse momentum

log
(
𝑝T(𝜏)

)
logarithm of reconstructed 𝜏 transverse momentum

Conversion Track Δ𝜙(𝜏,ConvTrack) Distance in 𝜙 between Conversion Track and recon-
structed 𝜏 axis

Δ𝜂(𝜏,ConvTrack) Distance in 𝜂 between Conversion Track and recon-
structed 𝜏 axis

log
(
𝑝T(ConvTrack)

)
logarithm of Conversion Track transverse momentum

log
(
𝑝T(𝜏)

)
logarithm of reconstructed 𝜏 transverse momentum

Table 5.2: Cuts applied on the training data.

· 20 GeV > 𝑝T(𝜏vis) > 100 GeV on truth and reconstruction level
· |𝜂 | < 2.5 AND ( |𝜂 | > 1.52 OR |𝜂 | < 1.37) on truth and reconstruction level
· number of charged tracks of one or three on truth and reconstruction level
· truth decay mode is one out of the modes listed in Table 1.1
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5.1.3 Target

The target is the truth matched decay mode.

5.2 RNN Architecture

The recurrent form of the neural network is used to be able to pass a series of vectors to the network
instead of only one vector. This is necessary, as there is e.g. up to three charged tracks per event. As the
RNN additionally requires an ordering of the vectors, they are passed ordered by 𝑝T even though this has
no physical meaning.

The RNN architecture is depicted in Fig. 5.1. The data for the four different types of objects is received
by the RNN in four different branches. Per event, up to three Charged PFOs, ten Neutral PFOs, six
Photon Shots and four Conversion Tracks are passed as a sequence to the network. Each branch consists
of a dense layer and an LSTM layer. The number of nodes is shown in brackets in the figure. After
merging the four branches, three dense layers are added before a 5-vector with the probabilities for the
five chosen decay modes is returned through the softmax activation function. The internal activation
function is always the hyperbolic tangent.

Figure 5.1: Architecture of the used RNN for decay mode reconstruction [34].

5.3 Preprocessing and Training

The Keras framework with Tensorflow as backend is used for training and evaluation. For proper
separation of training, test and validation data, the dataset is split randomly according to the ratio 4:5:1.
K-fold cross-validation is not chosen as it is computationally expensive and due to the large size of
the dataset [35]. In addition, the input features are standardized. In each epoch, the neural network is
evaluated on the training data and the validation error is calculated on the validation data. By using the
Adam optimizer with an initial learning rate of 0.001 and a batch size of 256 the weights of the RNN are
adjusted continuously. A maximum of 300 epochs is chosen. An early stopping criterion assures that
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training stops, if the validation loss does not improve any further. This should prevent overtraining as the
validation loss is calculated on the validation set (independent of the training set).

5.4 RNN Classification Performance

The classification performance of the RNN on the 𝛾∗ → 𝜏𝜏 sample is shown in Fig. 5.2. The improvement
compared to PanTau (Fig. 4.3) can be clearly observed. The diagonal efficiency improves to 80.0%.
Anyway, the deviation that produces the 2x2 submatrix in the right top corner and the 3x3 submatrix in
the left bottom corner can still be observed, which can be explained by the fact that the neural network
still has problems determining the number of neutral hadrons.
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Figure 5.2: Migration matrix of the decay mode classification with the RNN setup from H. Nguyen in [34] on a
𝛾
∗ → 𝜏𝜏 sample.

As already explained in Section 4.4, the especially the performance on the physical 𝑍 → 𝜏𝜏 sample is
of interest. Therefore, the model is evaluated once again on this dataset. The classification efficiency for
the 1p1n decay increases from 84.5% to 88.7%, while the diagonal efficiency drops to 72.0%, which is
not trivial. This can be explained by considering the distribution of the decay modes predicted by the
standard model (Table 1.1). As the number of 1p1n decays is much larger than the number of occurrences
of the other decay modes, a higher efficiency for 1p1n influences the diagonal efficiency disproportionally
high. This does not explain the deviation in efficiency for the single decay modes, though. A trivial
reason for this could be overtraining. If the evaluation set for 𝛾∗ → 𝜏𝜏 is not independent of the training
set, then the performance on the obviously independent 𝑍 → 𝜏𝜏 sample could be worse. However,
overtraining is not likely due to the already explained early stopping criterion. Furthermore, training and
test set were split randomly to assure independence.

Another reason could be that different observables are differently distributed in the two datasets. This
can be observed in Fig. 5.4. As already mentioned, the 𝑝T(𝜏vis,true) spectrum of the 𝛾

∗ → 𝜏𝜏 process
is much wider than for 𝑍 → 𝜏𝜏. A similar effect can be observed for 𝜂(𝜏vis,true). As expected, the
𝜙(𝜏vis,true) distributions do not differ by much. The behavior of the prediction efficiency against different
observables for each decay mode is shown in Fig. 5.5 to 5.8. There is no strong dependency on any
variables. Only the efficiency for the 1pXn decay mode increases with higher 𝑝T(𝜏vis,true).
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Figure 5.3: Migration matrix of the decay mode classification with the RNN on a 𝑍 → 𝜏𝜏 sample.
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Figure 5.4: Distributions of different observables in the 𝑍 → 𝜏𝜏 and 𝛾
∗ → 𝜏𝜏 sample. The error bars denote the
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The unclear effects could be further understood by assessing the performance against other observables
that are differently distributed in the different datasets.
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Figure 5.5: Dependence of the classification efficiency for different decay modes on 𝑝T (𝜏vis,true). The error bars
denote the 99% Clopper-Pearson intervals [54].
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Figure 5.6: Dependence of the classification efficiency for different decay modes on 𝜂(𝜏vis,true). The error bars
denote the 99% Clopper-Pearson intervals [54].

5.5 Correction Using the Number of Charged Tracks

While the already mentioned error counting the number of neutral hadrons can hardly be resolved,
mistakes while counting the number of charged hadrons can be corrected by the number of charged
tracks delivered with high accuracy from Tracking System. Applying this correction results in the
migration matrix shown in Fig. 5.9. It is obvious, how this correction helps to improve the efficiency for
the 3pXn decay mode. Even though the efficiency for the 1p1n decay worsens slightly, an overall more
consistent 𝜏 reconstruction is received by applying this correction.
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Figure 5.7: Dependence of the classification efficiency for different decay modes on 𝜙(𝜏vis,true). The error bars
denote the 99% Clopper-Pearson intervals [54].
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Figure 5.8: Dependence of the classification efficiency for different decay modes on the average number of
interactions per bunch crossing. The error bars denote the 99% Clopper-Pearson intervals [54].
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Figure 5.9: Migration matrix of the decay mode classification with the RNN on a 𝑍 → 𝜏𝜏 sample with a
post-processing correction using the number of tracks.
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CHAPTER 6

Reconstruction of the Neutral Pion in the 1p1n
Decay Mode with a Neural Network

A prototype of an RNN (Section 3.4.2) that predicts the neutral pion kinematics was developed by
Y. Kinoshita in [55] based on H. Nguyen’s work. The setup that predicts the pion kinematics is
very similar, but various changes are imposed to adapt the ML algorithm from a classification to a
regression task. In this chapter, the architecture, preprocessing and training configuration are introduced
and optimized. Then, the performance is assessed in the figures of merit introduced in Chapter 4.

6.1 Setup

As described in the previous chapter, the performance of the reconstruction on the physical 𝑍 → 𝜏𝜏 dataset
is of interest. Therefore, training and evaluation are performed on this sample. The input features stay
the same as in Table 5.1. A major change is the target. Instead of using the truth decay mode for the
optimization, the four-vector of the true neutral energy (𝐸, 𝑝T, 𝜂, 𝜙) is used. It is transformed to the
following three variables to achieve similar orders of magnitude: The transverse momentum is divided by
the charged transverse momentum and the angles 𝜂 and 𝜙 are replaced by the angular distances between
charged and neutral pion. The mass of the neutral pion is well known to be 135.0 GeV [2], so three
components of the four-vector are sufficient to describe the neutral pion kinematics. The target vector is
therefore (

𝑝T(𝜋
0)/𝑝T(𝜋

±), Δ𝜙(𝜋0
, 𝜋

±), Δ𝜂(𝜋0
, 𝜋

±)
)
. (6.1)

As predicting a vector with numerical values is a regression task and not a classification task. The
network has to be adjusted: The final activation function is changed to a linear function and the loss
function is changed to mean squared error Eq. (3.4). The selection cuts are mostly adopted from the decay
mode network. The only addition is requiring the truth decay mode to be 1p1n. All other configurations
on training, preprocessing and architecture stay the same. The updated regression RNN architecture can
be seen in Fig. 6.1.
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Figure 6.1: Architecture of the regression RNN.

6.2 Performance of the Recurrent Neural Network

The figures of merits are calculated as introduced for the PanTau algorithm in Chapter 4. To estimate
the stability of the ANN performance, the network is trained several times with different Tensorflow
seeds (10, 11, 12). The value for resolution and bias are the average of the three runs; the uncertainty
is the standard deviation. As computational resources are limited, training only three times is chosen.
Training multiple times is not trivial to do for the PanTau algorithm with this setup, so no uncertainty is
shown here. The performance of the regression neural network can be visualized with several details,
as already shown in Section 4.4. To simplify, in this section, the focus will mostly lie on energy and
angular resolution. The full selection of plots can be found in Appendix A.

In Fig. 6.2 and 6.3 the performance of the RNN is summarized. One can observe that the 𝐸 (𝜋0) res-
olution is similar for the RNN and PanTau. Nevertheless, there is still a bias for the RNN. A bias on
the 𝐸 (𝜋0) prediction, however, can be calibrated, so in the following, just the energy resolution will
be considered. The behavior does not differ much for the two bins of 𝑑 (𝜋0

, 𝜋
±) (𝐸 (𝜋0) > 25 GeV and

𝐸 (𝜋0) ≥ 25 GeV). The angular resolution is significantly worse for the RNN. Especially in the high
energy bin, PanTau outperforms the RNN. This is not surprising as several aspects of the RNN training
pipeline were not optimized yet.

6.3 Target Transformation and Batch Normalization

As described in Chapter 3, batch normalization and a proper transformation of the target and feature
distributions are highly recommended when training a neural network. Therefore, batch normalization
is added after the merge of the four branches of the RNN. The feature distributions are already being
standardized as described in Section 5.3. When considering the target distributions, there is still room for
improvement, though, as visible in Fig. 6.4. In comparison to the angular distributions, the distribution
of the 𝑝T ratio is not only very unlike a Gaussian, but also has a obviously much higher median and has
a significant amount of outliers.

This can be corrected by using a quantile transformer [56]. This transforms any input distribution into
a Gaussian using its quantiles. The resulting target distributions can be observed in Fig. 6.5. As can be
seen in Fig. 6.6 and 6.7, the changes significantly improve the performance. The RNN energy resolution
is now significantly better than PanTau and the RNN angular resolution now matches the performance
of PanTau. In the low energy bin, it outperforms PanTau.
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Figure 6.2: Energy resolution and bias for the RNN and PanTau in two bins of 𝑑 (𝜋0
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±). The error bars denote
the average of three training runs with different Tensorflow seeds.
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Figure 6.4: Distribution of the targets of the neural network.
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Figure 6.5: Distribution of the targets of the neural network after applying the quantile transformation.
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Figure 6.7: 𝛼(𝜋0
, 𝜋

±) resolution and bias for PanTau and the RNN with improved setup in two bins of 𝐸 (𝜋0
true).

Improved setup means the addition of batch normalization and a target transformation. The error bars denote the
average of three training runs with different Tensorflow seeds.

6.4 Implementing the DeepSet NN

In Section 5.2, it was explained that from the physics perspective, considering the order of elements
passed to the neural network is not necessary. As the RNN still considers the order, computational
performance can be improved by using a different approach that allows passing sets of vectors (instead
of ordered sequences) to the network. In [43] the DeepSet architecture was developed that fulfills this
requirement. In [14] it is used to improve 𝜏 decay mode reconstruction. A significantly lower training
time was achieved through this. The same is now implemented for the regression neural network in this
analysis. The new architecture can be seen in Fig. 6.8. Applying the concept from Section 3.4.3, the
DeepSet functionality is implemented by replacing the LSTM nodes with two separate feed forward
neural networks (𝜅 and 𝜆) and a summation in between in each branch. The prediction performance of
the DeepSet NN is summarized in Fig. 6.9 and 6.10. It does not differ significantly from the RNN. Just
in the high energy bin, the resolution is slightly worse.

A major improvement, however, is achieved in terms of computational performance: Fig. 6.11 shows
the validation loss against training time. It is obvious that the minimum loss is reached already after less
than half of the duration. This could be very helpful in future analyses with much larger datasets.

6.5 Assessing the Loss Function

When predicting the neutral pion kinematics, there is a trade-off between optimizing energy and angular
resolution. Both are required for 𝐶𝑃 measurements as described in Section 1.4. To understand, if there
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Figure 6.8: Architecture of the used DeepSet NN. 𝜅𝑖 and 𝜆𝑖 are feed forward neural networks. Σ denotes a
summation over the outputs of 𝜅𝑖 .
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Figure 6.9: Energy resolution for the DeepSet NN, the RNN and PanTau. The error bars denote the average of
three training runs with different Tensorflow seeds.
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Figure 6.11: Validation and training loss against training time for the RNN and the DeepSet NN.

is room for improvement here, the mean squared error loss function is altered via Eq. (3.4) to

Loss = 𝑎 · (Δ𝑝T)
2 + 𝑏 · (Δ𝜙)2 + 𝑐 · (Δ𝜂)2 (6.2)

with the adjustable constants 𝑎, 𝑏 and 𝑐. In Fig. 6.12 and 6.13, scenarios with a very high weight for the
angles or for the transverse momentum are shown.

The expected behavior that if the angular error is weighted stronger, the energy resolution worsens and
the angular resolution improves and vice versa is only partly fulfilled. The effect can only be observed
for the energy resolution that worsens for larger 𝑏 and 𝑐. In conclusion, changing the loss function

0 25 50 75 100 125 150 175
E(π0

true) [GeV]

0

25

50

75

E
(π

0 )
re

so
lu

ti
on

[%
]

Dependence of the E(π0) resolution on E(π0
true)

Sym. loss function

loss weights: pT :1, φ:20, η:20

PanTau

0 25 50 75 100 125 150 175
E(π0

true) [GeV]

0.0

0.2

0.4

0.6

α
b

ia
s

[r
ad

]

Dependence of the α bias on E(π0
true)

Sym. loss function

loss weights: pT :1, φ:20, η:20

PanTau

0 25 50 75 100 125 150 175
E(π0

true) [GeV]

0.0

0.2

0.4

0.6

α
re

so
lu

ti
on

[r
ad

]

Dependence of the α resolution on E(π0
true)

Sym. loss function

loss weights: pT :1, φ:20, η:20

PanTau

Figure 6.12: Performance of the ANN for a large weight of the angles in the loss function.

does not affect the performance strongly. This could be due to the fact that the architecture needs to be
optimized first or that the data does not contain any more information. If this is solved, it could be worth
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Figure 6.13: Performance of the ANN for a large weight of the transverse momentum in the loss function.

including physical requirements into the loss function. For example, the 1p1n decay is mediated by the
𝜌 particle. Therefore, the distribution of the invariant mass of the neutral and charged pion should be
centered around the Standard Model value of the 𝜌 mass. Adding a term that penalizes a deviation from
this value could help to improve the performance.

6.6 Hyperparameter Optimization

The overall structure of a neural network can largely influence its performance. A model with low
complexity might not be able to learn all information that the data contains, and a too complex model can
lead to overtraining and long training durations. In this section, the architecture of the neural network as
well as the training parameters are assessed.

Hyperparameter optimization is computationally expensive. The choices on the considered parameter
ranges in this chapter are all a compromise of considering all reasonable parameter options and the
availability of computational resources. Furthermore, ideally, the network architecture and the training
configuration would be optimized together. However, especially considering wide ranges of batch sizes
and learning rates can lead quickly to very long training durations and large RAM allocation. Therefore,
the optimization is split into a grid search (Section 3.6.1) on the training parameters and a Bayesian
optimization (Section 3.6.2) of the architecture.

6.6.1 Grid search on Training Parameters

The training configuration is optimized by performing a grid search on batch size and learning rate. The
choices are listed in Table 6.1. The result can be observed in Fig. 6.14, in which for each of the nine
combinations the validation loss and the training loss are considered. For all combinations a minimum
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Table 6.1: Parameters and choices considered during the training parameter grid search.

training parameter search options

Batch size [28, 212, 214]
Learning rate [10−5, 10−4, 10−3]

Table 6.2: Architecture parameters on the corresponding ranges considered in the Bayesian optimization.

hyperparameter search range

Number of layers in 𝜅 [1, 8]
Number of units in 𝜅 [8, 64]
Number of layers in 𝜆 [1, 8]
Number of units in 𝜆 [8, 64]
Number of final dense layers [1, 8]
Number of units in each final dense layer [8, 256]
Internal activation function tanh, ReLu, sigmoid

in validation loss around is reached. The number of epochs is chosen high enough that this is the case for
all combinations. Of course there is the possibility, that there exist further minima at a larger number of
epochs, but testing this would require large amounts of computational resources, so this compromise is
chosen. For all combinations, the minimum is located around 0.06. With the assumption that with a
lower validation loss, the performance in energy and angular resolution improves too, it can be concluded
that with all configurations optimal results in the reconstruction can be reached. To not use unnecessary
computing resources, it makes sense to consider the training duration until the minimum is reached. As
expected, this is the case for large batch sizes, so a batch size of 2

4
is chosen. The training converges

most smoothly with low learning rates, which was expected as well. Accordingly, a learning rate of
0.001 is selected.

6.6.2 Bayesian Optimization

The optimized hyperparameters and their corresponding ranges are listed in Table 6.2. The number
of calls was set to 100. The maximum number of epochs per call is set to 500 to leave enough time
for convergence. The development of the minimum validation loss can be observed in Fig. 6.15. No
convergence can be observed, just a lower threshold with some outliers above.

The lowest validation loss was reached already in call number 4. The architecture configuration is
summarized in Table 6.3 As it was already observed, that the performance significantly changes with
different Tensorflow seeds, the possibility exists that it is a coincidence that this configuration yields
the lowest validation loss. The result is compared to the baseline in Fig. 6.16 and 6.17. No significant
improvement can be observed.

To exclude that the number of epochs was set to low (undertraining), a criterion on convergence
is imposed: If the validation loss after 500 epochs does not deviate more than one percent from the
validation loss 20 epochs before, it is considered converged. If it is higher, it is considered diverged.
According to this definition, for all calls the training either diverged or converged, so choosing more
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Figure 6.14: Learning curves for different configurations of batch size and learning rate. The x-axis is displayed in
units of time instead of number of epochs

Table 6.3: Best performing configuration of architecture parameters received from the Bayesian optimization.

Hyperparameter Best value

Number of layers in 𝜅 7
Number of units in 𝜅 22
Number of layers in 𝜆 2
Number of units in 𝜆 9
Number of final dense layers 3
Number of units in each final dense layer 37
Internal activation function tanh
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Figure 6.15: Minimum validation loss against call of the Bayesian hyperparameter optimization.
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Figure 6.16: Energy resolution for the ANN with and without optimized hyperparameters. The error bars denote
the average of three training runs with different Tensorflow seeds.
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Figure 6.17: 𝛼(𝜋0
, 𝜋

±) resolution and bias for the ANN with and without optimized hyperparameters. The error
bars denote the average of three training runs with different Tensorflow seeds.
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epochs would not improve the result. As an example, the learning curve (validation loss against epoch)
for call one can be observed in Fig. 6.18. Consider Appendix A for all of them.
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Figure 6.18: Learning curve for call one of the hyperparameter optimization.

Another reason for no further improvement during the optimization could be the high complexity
of the parameter space and a not sufficiently high number of calls. One could investigate correlations
between architecture parameters and minimum validation loss and perform more calls to address this
issue.
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Figure 6.19: Display of the 𝜌 meson mass distribution from the 1p1n decay for PanTau, the optimized neural
network and truth data. The Particle Data Group (PDG) average is depicted as well [2].

6.7 Chapter Summary: Links between Photon Shots and Neutral PFOs

To summarize, it is worth comparing the predicted 𝜌 mass distribution from Section 4.4 to the one
predicted by the neural network. This can be seen in Fig. 6.19. As already discussed, the neural network
outperforms PanTau in terms of energy resolution. As the invariant mass of the two pions depends
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strongly on their energies, it is not surprising that the distribution for the neural network is more narrow.
Especially at the tail to high energies.
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Figure 6.20: 2D residual distribution plots PanTau (right) and the optimized neural network (left).

A comparison of the final performance in terms of angular resolution is illustrated in the 2D residual
plots in Fig. 6.20. The performance of the neural network in 𝜙 resolution is a bit stronger. However, the
shape of the 𝜂 residual distribution appears to be much more narrow for PanTau. To further investigate
this effect, the 𝜂 residual distribution is depicted in Fig. 6.21 with a logarithmic 𝑦-axis. It is obvious
that the performance of the neural network is worse around the center of the distribution. Towards, the
tails, the opposite accounts. The stronger performance of PanTau for most of the events in 𝜂 resolution
could possibly result from more information in the strip layer of the ECAL. As shown in Fig. 2.5, the
strip layer has high granularity in the 𝜂 direction. This effect can be explained as follows: As already
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Figure 6.21: Graphical display of the 𝜂(𝜋0) residual distribution for PanTau and the neural network with a
logarithmic 𝑦-axis.

described in Section 4.4, the PanTau algorithm exploits information on ECAL cell level to link photon
shots and individual Neutral PFOs. The neural network input features do not contain this information.
The locations in 𝜂 and 𝜙 of the Neutral PFOs do not include the structure of the clusters, so only
with this information, it can not be said clear, if a Photon Shot can be associated with a Neutral PFO.
Extracting this information again from upstream datasets could help increase especially the 𝜂 resolution
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in future analyses. Furthermore, it is quite promising that the neural network is able to reach an overall
performance competitive with the PanTau algorithm, although it uses significantly less information.
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CHAPTER 7

Validation on LHC Data

Up to this chapter of the thesis, the verification of the prediction performance has been assessed on data
generated by Monte Carlo simulations (Section 2.5) according to the Standard Model. This had the great
advantage that the labels have always been provided: True decay mode and true neutral pion four-vector
were obtained from the simulation as well. It is essential, however, to verify this simulation on real data
taken by the ATLAS detector. In order to achieve this, once again, data obtained via the tag-and-probe
method is used. The accordance of real data and simulation is compared in the following with the
framework sif that runs on top of the HAPPy framework. As estimating systematic uncertainties would
require a much larger effort, they are not considered in the following.

7.1 Cut Selection

The cut selection for this chapter is listed in Table 7.1 and matches the signal region from the
2017 𝜏 reconstruction analysis described in [53].

Table 7.1: Cuts applied in the comparison of data and simulation. Consider [53] for further explanations.

· trigger: Single-muon with 𝑝T > 20 GeV
· at least one medium 𝜏had-vis with one or three tracks
· muon and tau lepton have opposite charge
· no 𝑏-tagged jets
· 𝑚T(𝜇, 𝐸

miss
T ) < 50 GeV

· ∑ cosΔ𝜙(𝜏had-vis, 𝐸
miss
T ) > −0.15

· 45 GeV < 𝑚vis(𝜇, 𝜏had-vis) < 85 GeV
· Δ𝜙(𝜇, 𝜏had-vis) > 2.4
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7.2 Overall modelling

7.2.1 General Observables

To start with, general observables concerning the event and the reconstructed 𝜏 are investigated as can be
observed in Fig. 7.1. Each variable is plotted in a double plot: The upper plot represents a histogram of
the real data (black marker with a striped area representing the statistical error) as well was different
processes generated via simulation. These processes mostly include true 𝑍 → 𝜏𝜏 decays, 𝑍 decays to
two leptons and decays to a 𝑊 boson with additional jets. An estimate for processes that were falsely
reconstructed ditau decays (both 𝜏 lepton have Same Sign charge) are displayed as well. Other processes
with rather low incidence in this region are reconstructed 𝑍 decays from fake muons, processes involving
top quarks and processes involving two vector bosons. In the lower plot, the ratio of the data and the sum
of the simulated events in each bin is displayed. For 𝜙, 𝜂 and the transverse momentum of the 𝜏 lepton,
data and simulation do not deviate by more than 10%. One can nicely observe the lower selection cut on
the transverse momentum at 𝑝T(𝜏vis) = 20 GeV. The number of average interactions per bunch crossing
is mostly modelled accurately. Some deviations are visible towards higher values.

Figure 7.1: Comparison plots between data and simulation for general observables. All decay modes included.

7.2.2 Neural Network Features

In a next step, the modelling of the neural network input features is assessed. They were introduced
in Section 5.1.1. This marks an important step as missmodelling on these variables can negatively
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Figure 7.2: Comparison plots between data and simulation for Neutral PFO variables. All decay modes included.
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influence the neural network performance. In Fig. 7.2, it can be observed that most variables converning
the Neutral PFOs are modelled accurately. The logarithm of the transverse momentum is not ideally
modelled towards lower values. However, this only applies for transverse momenta of a few GeV. For the
number of positive cells in the strip layer of the ECAL (NPosECells_EM1), the calibration is slightly
false. The simulated distribution is shifted towards lower values. The opposite accounts for the fraction
of the energy deposit in the ECAL contained in the center cell of the cluster (ENG_FRAC_CORE).
Further slight missmodelling accurs for low values of the width in 𝜂 in the ECAL strip layer (𝜂-width
in EM1) and the energy fraction in the second layer of the ECAL (energyfrac EM2). When observed

Figure 7.3: Comparison plots between data and simulation for Charged PFO variables. All decay modes included.

the modelling of the variables concerning the Charged PFOs in Fig. 7.3, it is obvious that there is an
issue with the angular distances in 𝜂 and 𝜙. The same accounts for the logarithm of the transverse
momentum. The modelling is inaccurate for transverse momenta lower than approximately 12 GeV. A

Figure 7.4: Comparison plots between data and simulation for the Photon Shot variables. All decay modes
included.

similar effect can be observed for the logarithm of the transverse momentum of Photon Shots (Fig. 7.4)
and Conversion Tracks (Fig. 7.5). Here, the data deviates from simulation in 𝜂 and 𝜙 as well.
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Figure 7.5: Comparison plots between data and simulation for the Conversion Track variables. All decay modes
included.

7.3 Observables Based on the Neural Network Output

After having assessed the neural network input features, the output variables of the two neural networks
considered in this thesis are investigated.

7.3.1 Decay Mode

The comparison of data and simulation for the decay mode predicted by the neural network described in
Chapter 5 can be seen in Fig. 7.6. The modelling for reconstructed decay modes containing up to one
neutral pion are accurately modelled. This does no account for the 1pXn and 3pXn decay mode, though.

Figure 7.6: Comparison plots between data and simulation of the decay mode classification ANN. All decay modes
included.
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7.3.2 Neutral Pion Kinematics

In this section, variables related to the neutral pion four-vector predicted by the neural network optimized
in Chapter 6 are discussed. The comparison plots for data and simulation can be observed in Fig. 7.7.
The modelling for 𝜙(𝜋0), the transverse momentum and the energy match well. The distributions for
𝜂(𝜋0) and the angular distances between neutral and charged pion show missmodelling towards the
center of the distribution.

Figure 7.7: Comparison plots between data and simulation of variables predicted by the ANN. All decay modes
included.

In Fig. 7.8, observables derived from the neutral pion four-vector are assessed. Here, strong deviations
from the data can be observed for the energy asymmetry at values close to −1. These are events with
low energy of the charged pion compared to the neutral pion. The simulated distribution of the angular
distance between the two pion 𝑑 (𝜋0

, 𝜋
±) is too wide compared to the distribution of the data. The shape

of the simulated distribution of the 𝜌 mass matches the data, however, it is shifted towards higher masses.

7.4 Modelling of Exclusive Decay Modes

In a next step, the possibility of investigating the modelling of the introduced observables for exclusive
decay modes predicted by the neural network was examined. This did not yield satisfactory results most
likely due to software-related issues. The reason for error could not be found, however it was narrowed
down as described in the following.
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Figure 7.8: Comparison plots between data and simulation of observables derived from the ANN prediction for the
𝜋

0 kinematics. All decay modes included.

When plotting different variables exclusively for the 1p0n decay mode (Fig. 7.9), the disagreement
between simulation and data is obvious. For this crosscheck, the decay mode predicted by PanTau and
the number of charged tracks plottet. The simulated distributions show the expcted behavior. E.g., there
are only events with one 𝜏 track. This was assured by the correction introduced in Section 5.5. This does
not account for the data and the same sign estimate, as the same sign estimate is determined by using the
data distribution in the same sign region (not from the Monte Carlo simulation). The same plots for

Figure 7.9: Comparison plots between data and simulation for additional observables for crosschecking. Exclusively
events with decay mode 1p0n predicted by the ANN.

inclusive plotting are displayed in Fig. 7.10. One can observe in these plots that the shapes match the
shapes of the data in the exclusive plots. This could be a sign that in the exclusive plots, random events
are shown for the data. This is supported by the fact that observables that should behave the same way
for all decay modes are not affected by the missmodelling, as to be seen in Fig. 7.11. A reason for the
problem is most likely caused by a software-related error in the bookkeeping of the different datasets.
The comparison plots for all decay modes and variables can be found in Appendix B.
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Figure 7.10: Comparison plots between data and simulation for additional observables for crosschecking. All
decay modes selected.

Figure 7.11: Comparison plots between data and simulation for different observables. Exclusively events with
decay mode 1p0n predicted by the ANN.
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CHAPTER 8

Conclusion

In this thesis, the performance of a newly developed RNN predicting the 𝜏 decay mode was investigated
and a separate artificial neural network for the prediction of 𝜏 decay product kinematics was optimized.
The result was compared to the PanTau algorithm that was used previously to perform both tasks.

In order to achieve this, the structure of the PanTau algorithm was analyzed as a basis for estimating
its performance compared to the two neural networks. In the next step, the newly developed RNN for the
decay mode classification was analyzed. Its performance was compared to the performance of PanTau,
once more validating the superiority of the RNN. The structure of this RNN was used in the following as
a basis to develop a second artificial neural network that predicts the four-vector of the neutral pion in the
1p1n decay mode. Already before conducting extensive optimization steps, an energy resolution close to
the performance of PanTau was reached. The strongest improvement in prediction performance was
enabled by a Gaussian transformation of the target distributions. Apart from that, training duration was
significantly reduced by implementing the DeepSet architecture into the network. Various methods were
investigated to optimize the loss function, training configuration and architecture of the network, which,
however, yielded no significant improvement in performance. An indicator for too little information
in the training dataset. Moreover, by investigating the performance of the neural network and PanTau
in terms of 𝜂 resolution, evidence was found that the neural network input features are missing crucial
information from the ECAL strip layer. Including this information could significantly improve the
performance in the future. The performance of the optimized network was extensively compared to the
PanTau result in different figures of merit, most importantly energy and angular resolution. Both were
proven to be competitive with the PanTau reconstruction. Finally, a comparison between simulation
and real data measured by the ATLAS detector yielded satisfactory agreement. Further improvements
could be achieved by considering promising developments in other parts of the ATLAS 𝜏 reconstruction:
A graph neural network was developed that improved 𝜏 identification as well as a convolution neural
network on calorimeter cell level to improve the decay mode classification [57, 58].

The results of this thesis support the assumption that the neural network’s prediction of the neutral pion
four-vector could have a positive impact on future Higgs 𝐶𝑃 measurements in the ATLAS collaboration,
an important step in the further validating the Standard Model or possibly discover an explanation for the
matter-anti matter asymmetry in the universe. Moreover, this thesis proves once more the ability of deep
learning methods to replace or even outperform classic machine learning algorithms. Together with the
increasing amount of data in particle physics experiments and growing computational capacities, this
insight could be used to significantly improve future particle physics analyses.

60



APPENDIX A

Neutral Pion Reconstruction: Additional Figures

61



Appendix A Neutral Pion Reconstruction: Additional Figures

A.1 PanTau algorithm performance compared to the
DeepSet NN with Optimized Hyperparameters

Figure of Merit: 𝚫𝑬(𝝅0
)
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Figure A.1: Δ𝐸 (𝜋0) plots for different intervals of 𝑝T (𝜏vis,true) for the PanTau algorithm as well as for the PanTau
algorithm and the DeepSet NN with optimized hyperparameters: Residual distributions and a summary of their
quantiles as well as displays of bias and resolution.
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Figure A.2: Δ𝐸 (𝜋0) plots for different intervals of 𝐸 (𝜋0
true) for the PanTau algorithm as well as for the PanTau

algorithm and the DeepSet NN with optimized hyperparameters: Residual distributions and a summary of their
quantiles as well as displays of bias and resolution. The cut 𝑑 (𝜋0

, 𝜋
±)true >= 0.05 is applied.
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Figure A.3: Δ𝐸 (𝜋0) plots for different intervals of 𝐸 (𝜋0
true) for the PanTau algorithm as well as for the PanTau

algorithm and the DeepSet NN with optimized hyperparameters: Residual distributions and a summary of their
quantiles as well as displays of bias and resolution. The cut 𝑑 (𝜋0

, 𝜋
±)true < 0.05 is applied.
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Appendix A Neutral Pion Reconstruction: Additional Figures

Binning: 𝜼(𝝅0
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Figure A.4: Δ𝐸 (𝜋0) plots for different intervals of 𝜂(𝜋0
true) for the PanTau algorithm as well as for the PanTau

algorithm and the DeepSet NN with optimized hyperparameters: Residual distributions and a summary of their
quantiles as well as displays of bias and resolution.
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Binning: 𝝓(𝝅0
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Figure A.5: Δ𝐸 (𝜋0) plots for different intervals of 𝜙(𝜋0
true) for the PanTau algorithm as well as for the PanTau

algorithm and the DeepSet NN with optimized hyperparameters: Residual distributions and a summary of their
quantiles as well as displays of bias and resolution.
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Binning: Pile-up
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Figure A.6: Δ𝐸 (𝜋0) plots for different intervals of Pile-up for the PanTau algorithm as well as for the PanTau
algorithm and the DeepSet NN with optimized hyperparameters: Residual distributions and a summary of their
quantiles as well as displays of bias and resolution.
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Binning: 𝒅(𝝅0, 𝝅±
)
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Figure A.7: Δ𝐸 (𝜋0) plots for different intervals of 𝑑 (𝜋0
, 𝜋

±) for the PanTau algorithm as well as for the PanTau
algorithm and the DeepSet NN with optimized hyperparameters: Residual distributions and a summary of their
quantiles as well as displays of bias and resolution.
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Figure A.8: Δ𝜙(𝜋0) plots for different intervals of 𝑝T (𝜏vis,true) for the PanTau algorithm as well as for the PanTau
algorithm and the DeepSet NN with optimized hyperparameters: Residual distributions and a summary of their
quantiles as well as displays of bias and resolution.
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Figure A.9: Δ𝜙(𝜋0) plots for different intervals of 𝐸 (𝜋0
true) for the PanTau algorithm as well as for the PanTau

algorithm and the DeepSet NN with optimized hyperparameters: Residual distributions and a summary of their
quantiles as well as displays of bias and resolution.
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Figure A.10: Δ𝜙(𝜋0) plots for different intervals of 𝜂(𝜋0
true) for the PanTau algorithm as well as for the PanTau

algorithm and the DeepSet NN with optimized hyperparameters: Residual distributions and a summary of their
quantiles as well as displays of bias and resolution.
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Figure A.11: Δ𝜙(𝜋0) plots for different intervals of 𝜙(𝜋0
true) for the PanTau algorithm as well as for the PanTau

algorithm and the DeepSet NN with optimized hyperparameters: Residual distributions and a summary of their
quantiles as well as displays of bias and resolution.
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Binning: Pile-up
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Figure A.12: Δ𝜙(𝜋0) plots for different intervals of Pile-up for the PanTau algorithm as well as for the PanTau
algorithm and the DeepSet NN with optimized hyperparameters: Residual distributions and a summary of their
quantiles as well as displays of bias and resolution.
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Binning: 𝒅(𝝅0, 𝝅±
)
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Figure A.13: Δ𝜙(𝜋0) plots for different intervals of 𝑑 (𝜋0
, 𝜋

±) for the PanTau algorithm as well as for the PanTau
algorithm and the DeepSet NN with optimized hyperparameters: Residual distributions and a summary of their
quantiles as well as displays of bias and resolution.
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Figure A.14: Δ𝜂(𝜋0) plots for different intervals of 𝑝T (𝜏vis,true) for the PanTau algorithm as well as for the PanTau
algorithm and the DeepSet NN with optimized hyperparameters: Residual distributions and a summary of their
quantiles as well as displays of bias and resolution.
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Binning: 𝑬(𝝅0
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Figure A.15: Δ𝜂(𝜋0) plots for different intervals of 𝐸 (𝜋0
true) for the PanTau algorithm as well as for the PanTau

algorithm and the DeepSet NN with optimized hyperparameters: Residual distributions and a summary of their
quantiles as well as displays of bias and resolution.
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Binning: 𝜼(𝝅0
true)
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Figure A.16: Δ𝜂(𝜋0) plots for different intervals of 𝜂(𝜋0
true) for the PanTau algorithm as well as for the PanTau

algorithm and the DeepSet NN with optimized hyperparameters: Residual distributions and a summary of their
quantiles as well as displays of bias and resolution.
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Binning: 𝝓(𝝅0
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Figure A.17: Δ𝜂(𝜋0) plots for different intervals of 𝜙(𝜋0
true) for the PanTau algorithm as well as for the PanTau

algorithm and the DeepSet NN with optimized hyperparameters: Residual distributions and a summary of their
quantiles as well as displays of bias and resolution.
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Binning: Pile-up
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Figure A.18: Δ𝜂(𝜋0) plots for different intervals of Pile-up for the PanTau algorithm as well as for the PanTau
algorithm and the DeepSet NN with optimized hyperparameters: Residual distributions and a summary of their
quantiles as well as displays of bias and resolution.
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Binning: 𝒅(𝝅0, 𝝅±
)
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Figure A.19: Δ𝜂(𝜋0) plots for different intervals of 𝑑 (𝜋0
, 𝜋

±) for the PanTau algorithm as well as for the PanTau
algorithm and the DeepSet NN with optimized hyperparameters: Residual distributions and a summary of their
quantiles as well as displays of bias and resolution.
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Figure of Merit: 𝚫𝒅(𝝅0, 𝝅±
)

Binning: 𝒑T(𝝉vis,true)
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Figure A.20: Δ𝑑 (𝜋0
, 𝜋

±) plots for different intervals of 𝑝T (𝜏vis,true) for the PanTau algorithm as well as for the
PanTau algorithm and the DeepSet NN with optimized hyperparameters: Residual distributions and a summary
of their quantiles as well as displays of bias and resolution.
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Figure A.21: Δ𝑑 (𝜋0
, 𝜋

±) plots for different intervals of 𝐸 (𝜋0
true) for the PanTau algorithm as well as for the

PanTau algorithm and the DeepSet NN with optimized hyperparameters: Residual distributions and a summary
of their quantiles as well as displays of bias and resolution.

85



Appendix A Neutral Pion Reconstruction: Additional Figures

Binning: 𝜼(𝝅0
true)

−0.2 −0.1 0.0 0.1 0.2
∆d(π0, π±)

0

200

400

600

ev
en

ts

∆d(π0, π±) for −2.5 < η(τvis,true) < −1.667

PanTau
Total events: 2887
Median: -0.0
Resolution: 0.017

−0.2 −0.1 0.0 0.1 0.2
∆d(π0, π±)

0

200

400

600

ev
en

ts

∆d(π0, π±) for −1.667 < η(τvis,true) < −0.833

PanTau
Total events: 3718
Median: 0.0
Resolution: 0.015

−0.2 −0.1 0.0 0.1 0.2
∆d(π0, π±)

0

250

500

750

1000

ev
en

ts

∆d(π0, π±) for −0.833 < η(τvis,true) < 0.0

PanTau
Total events: 5572
Median: -0.0
Resolution: 0.014

−0.2 −0.1 0.0 0.1 0.2
∆d(π0, π±)

0

250

500

750

1000

ev
en

ts

∆d(π0, π±) for 0.0 < η(τvis,true) < 0.833

PanTau
Total events: 5719
Median: -0.0
Resolution: 0.012

−0.2 −0.1 0.0 0.1 0.2
∆d(π0, π±)

0

200

400

600

ev
en

ts

∆d(π0, π±) for 0.833 < η(τvis,true) < 1.667

PanTau
Total events: 3707
Median: -0.0
Resolution: 0.026

−0.2 −0.1 0.0 0.1 0.2
∆d(π0, π±)

0

200

400

600

ev
en

ts

∆d(π0, π±) for 1.667 < η(τvis,true) < 2.5

PanTau
Total events: 2922
Median: -0.0
Resolution: 0.018

−0.2 −0.1 0.0 0.1 0.2
∆d(π0, π±)

0

200

400

ev
en

ts

∆d(π0, π±) for −2.5 < η(τvis,true) < −1.667

DeepSet NN
(optimized hyperparameters)
Total events: 2887
Median: -0.004
Resolution: 0.008

−0.2 −0.1 0.0 0.1 0.2
∆d(π0, π±)

0

200

400

600

ev
en

ts

∆d(π0, π±) for −1.667 < η(τvis,true) < −0.833

DeepSet NN
(optimized hyperparameters)
Total events: 3718
Median: -0.003
Resolution: 0.009

−0.2 −0.1 0.0 0.1 0.2
∆d(π0, π±)

0

200

400

600

800
ev

en
ts

∆d(π0, π±) for −0.833 < η(τvis,true) < 0.0

DeepSet NN
(optimized hyperparameters)
Total events: 5572
Median: -0.007
Resolution: 0.01

−0.2 −0.1 0.0 0.1 0.2
∆d(π0, π±)

0

200

400

600

800

ev
en

ts

∆d(π0, π±) for 0.0 < η(τvis,true) < 0.833

DeepSet NN
(optimized hyperparameters)
Total events: 5719
Median: -0.007
Resolution: 0.01

−0.2 −0.1 0.0 0.1 0.2
∆d(π0, π±)

0

200

400

600

ev
en

ts

∆d(π0, π±) for 0.833 < η(τvis,true) < 1.667

DeepSet NN
(optimized hyperparameters)
Total events: 3707
Median: -0.007
Resolution: 0.01

−0.2 −0.1 0.0 0.1 0.2
∆d(π0, π±)

0

200

400

ev
en

ts

∆d(π0, π±) for 1.667 < η(τvis,true) < 2.5

DeepSet NN
(optimized hyperparameters)
Total events: 2922
Median: -0.007
Resolution: 0.009

−2 −1 0 1 2
η(τvis,true)

0.0

0.2

0.4

∆
d

(π
0 ,
π
±

)

2887

3718 5572
5719

3707

2922

∆d(π0, π±) distribution quantiles
PanTau

Median

60% quantile

90% quantile

Number of events

−2 −1 0 1 2
η(τvis,true)

−0.04

−0.02

0.00

∆
d

(π
0 ,
π
±

)

2887 3718 5572 5719 3707 2922

∆d(π0, π±) distribution quantiles
DeepSet NN
(optimized hyperparameters)

Median

60% quantile

90% quantile

Number of events

−2 −1 0 1 2
η(τvis,true)

0.00

0.01

0.02

d
(π

0 ,
π
±

)
b

ia
s

Dependence of the d(π0, π±) bias on η(τvis,true)

PanTau

DeepSet NN
(optimized hyperparameters)

−2 −1 0 1 2
η(τvis,true)

0.00

0.01

0.02

d
(π

0 ,
π
±

)
re

so
lu

ti
on

Dependence of the d(π0, π±) resolution on η(τvis,true)

PanTau

DeepSet NN
(optimized hyperparameters)

Figure A.22: Δ𝑑 (𝜋0
, 𝜋

±) plots for different intervals of 𝜂(𝜋0
true) for the PanTau algorithm as well as for the PanTau

algorithm and the DeepSet NN with optimized hyperparameters: Residual distributions and a summary of their
quantiles as well as displays of bias and resolution.
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Figure A.23: Δ𝑑 (𝜋0
, 𝜋

±) plots for different intervals of 𝜙(𝜋0
true) for the PanTau algorithm as well as for the PanTau

algorithm and the DeepSet NN with optimized hyperparameters: Residual distributions and a summary of their
quantiles as well as displays of bias and resolution.
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Figure A.24: Δ𝑑 (𝜋0
, 𝜋

±) plots for different intervals of Pile-up for the PanTau algorithm as well as for the PanTau
algorithm and the DeepSet NN with optimized hyperparameters: Residual distributions and a summary of their
quantiles as well as displays of bias and resolution.
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Binning: 𝒅(𝝅0, 𝝅±
)
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Figure A.25: Δ𝑑 (𝜋0
, 𝜋

±) plots for different intervals of 𝑑 (𝜋0
, 𝜋

±) for the PanTau algorithm as well as for the
PanTau algorithm and the DeepSet NN with optimized hyperparameters: Residual distributions and a summary
of their quantiles as well as displays of bias and resolution.
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Figure of Merit: 𝚫𝚼

Binning: 𝒑T(𝝉vis,true)
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Figure A.26: ΔΥ plots for different intervals of 𝑝T (𝜏vis,true) for the PanTau algorithm as well as for the PanTau
algorithm and the DeepSet NN with optimized hyperparameters: Residual distributions and a summary of their
quantiles as well as displays of bias and resolution.
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Binning: 𝑬(𝝅0
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Figure A.27: ΔΥ plots for different intervals of 𝐸 (𝜋0
true) for the PanTau algorithm as well as for the PanTau

algorithm and the DeepSet NN with optimized hyperparameters: Residual distributions and a summary of their
quantiles as well as displays of bias and resolution.
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Binning: 𝜼(𝝅0
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Figure A.28: ΔΥ plots for different intervals of 𝜂(𝜋0
true) for the PanTau algorithm as well as for the PanTau

algorithm and the DeepSet NN with optimized hyperparameters: Residual distributions and a summary of their
quantiles as well as displays of bias and resolution.
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Binning: 𝝓(𝝅0
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Figure A.29: ΔΥ plots for different intervals of 𝜙(𝜋0
true) for the PanTau algorithm as well as for the PanTau

algorithm and the DeepSet NN with optimized hyperparameters: Residual distributions and a summary of their
quantiles as well as displays of bias and resolution.
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Binning: Pile-up
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Figure A.30: ΔΥ plots for different intervals of Pile-up for the PanTau algorithm as well as for the PanTau
algorithm and the DeepSet NN with optimized hyperparameters: Residual distributions and a summary of their
quantiles as well as displays of bias and resolution.
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Binning: 𝒅(𝝅0, 𝝅±
)
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Figure A.31: ΔΥ plots for different intervals of 𝑑 (𝜋0
, 𝜋

±) for the PanTau algorithm as well as for the PanTau
algorithm and the DeepSet NN with optimized hyperparameters: Residual distributions and a summary of their
quantiles as well as displays of bias and resolution.
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Figure of Merit: 𝜶
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Figure A.32: 𝛼 plots for different intervals of 𝑝T (𝜏vis,true) for the PanTau algorithm as well as for the PanTau
algorithm and the DeepSet NN with optimized hyperparameters: Residual distributions and a summary of their
quantiles as well as displays of bias and resolution.
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Figure A.33: 𝛼 plots for different intervals of 𝐸 (𝜋0
true) for the PanTau algorithm as well as for the PanTau algorithm

and the DeepSet NN with optimized hyperparameters: Residual distributions and a summary of their quantiles as
well as displays of bias and resolution.
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Figure A.34: 𝛼 plots for different intervals of 𝜂(𝜋0
true) for the PanTau algorithm as well as for the PanTau algorithm

and the DeepSet NN with optimized hyperparameters: Residual distributions and a summary of their quantiles as
well as displays of bias and resolution.
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Figure A.35: 𝛼 plots for different intervals of 𝜙(𝜋0
true) for the PanTau algorithm as well as for the PanTau algorithm

and the DeepSet NN with optimized hyperparameters: Residual distributions and a summary of their quantiles as
well as displays of bias and resolution.
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Figure A.36: 𝛼 plots for different intervals of Pile-up for the PanTau algorithm as well as for the PanTau algorithm
and the DeepSet NN with optimized hyperparameters: Residual distributions and a summary of their quantiles as
well as displays of bias and resolution.
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Figure A.37: 𝛼 plots for different intervals of 𝑑 (𝜋0
, 𝜋

±) for the PanTau algorithm as well as for the PanTau
algorithm and the DeepSet NN with optimized hyperparameters: Residual distributions and a summary of their
quantiles as well as displays of bias and resolution. The cut 𝐸 (𝜋0

true) >= 25GeV is applied.
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Binning: 𝒅(𝝅0, 𝝅±
), Cut: 𝑬(𝝅0
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Figure A.38: 𝛼 plots for different intervals of 𝑑 (𝜋0
, 𝜋

±) for the PanTau algorithm as well as for the PanTau
algorithm and the DeepSet NN with optimized hyperparameters: Residual distributions and a summary of their
quantiles as well as displays of bias and resolution. The cut 𝐸 (𝜋0

true) < 25GeV is applied.
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Figure of Merit: 𝚫𝝆 mass
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Figure A.39: 𝜌 mass distribution plot on truth level as well as for the PanTau algorithm and the DeepSet NN with
optimized hyperparameters.
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Binning: 𝒑T(𝝉vis,true)
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Figure A.40: Δ𝜌 mass plots for different intervals of 𝑝T (𝜏vis,true) for the PanTau algorithm as well as for the
PanTau algorithm and the DeepSet NN with optimized hyperparameters: Residual distributions and a summary
of their quantiles as well as displays of bias and resolution.
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Binning: 𝑬(𝝅0
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Figure A.41: Δ𝜌 mass plots for different intervals of 𝐸 (𝜋0
true) for the PanTau algorithm as well as for the PanTau

algorithm and the DeepSet NN with optimized hyperparameters: Residual distributions and a summary of their
quantiles as well as displays of bias and resolution.
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Figure A.42: Δ𝜌 mass plots for different intervals of 𝜂(𝜋0
true) for the PanTau algorithm as well as for the PanTau

algorithm and the DeepSet NN with optimized hyperparameters: Residual distributions and a summary of their
quantiles as well as displays of bias and resolution.
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Binning: 𝝓(𝝅0
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Figure A.43: Δ𝜌 mass plots for different intervals of 𝜙(𝜋0
true) for the PanTau algorithm as well as for the PanTau

algorithm and the DeepSet NN with optimized hyperparameters: Residual distributions and a summary of their
quantiles as well as displays of bias and resolution.
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Binning: Pile-up
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Figure A.44: Δ𝜌 mass plots for different intervals of Pile-up for the PanTau algorithm as well as for the PanTau
algorithm and the DeepSet NN with optimized hyperparameters: Residual distributions and a summary of their
quantiles as well as displays of bias and resolution.
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Binning: 𝒅(𝝅0, 𝝅±
)
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Figure A.45: Δ𝜌 mass plots for different intervals of 𝑑 (𝜋0
, 𝜋

±) for the PanTau algorithm as well as for the PanTau
algorithm and the DeepSet NN with optimized hyperparameters: Residual distributions and a summary of their
quantiles as well as displays of bias and resolution.
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A.2 Learning Curves for All Calls of the Hyperparameter Optimization
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Figure A.46: Learning curves for calls 1 through 20 of the hyperparameter optimization.
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Figure A.47: Learning curves for calls 21 through 40 of the hyperparameter optimization.
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Figure A.48: Learning curves for calls 41 through 60 of the hyperparameter optimization.
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Figure A.49: Learning curves for calls 61 through 80 of the hyperparameter optimization.
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Figure A.50: Learning curves for calls 81 through 100 of the hyperparameter optimization.
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APPENDIX B

Validation on LHC Data: Additional Figures
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Appendix B Validation on LHC Data: Additional Figures

B.1 Decay Mode: All

Figure B.1: Data Monte Carlo Comparison plots for all decay modes for General Observables.

Figure B.2: Data Monte Carlo Comparison plots for all decay modes for Neutral PFO Variables.
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Appendix B Validation on LHC Data: Additional Figures

Figure B.3: Data Monte Carlo Comparison plots for all decay modes for Charged PFO Variables.

Figure B.4: Data Monte Carlo Comparison plots for all decay modes for Photon Shot Variables.

Figure B.5: Data Monte Carlo Comparison plots for all decay modes for Conversion Track Variables.
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Appendix B Validation on LHC Data: Additional Figures

Figure B.6: Data Monte Carlo Comparison plots for all decay modes for Neural Network Output Variables.
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Appendix B Validation on LHC Data: Additional Figures

B.2 Decay Mode: 1p0n

Figure B.7: Data Monte Carlo Comparison plots for the decay mode 1p0n for General Observables.

Figure B.8: Data Monte Carlo Comparison plots for the decay mode 1p0n for Neutral PFO Variables.
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Appendix B Validation on LHC Data: Additional Figures

Figure B.9: Data Monte Carlo Comparison plots for the decay mode 1p0n for Charged PFO Variables.

Figure B.10: Data Monte Carlo Comparison plots for the decay mode 1p0n for Photon Shot Variables.

Figure B.11: Data Monte Carlo Comparison plots for the decay mode 1p0n for Conversion Track Variables.
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Appendix B Validation on LHC Data: Additional Figures

Figure B.12: Data Monte Carlo Comparison plots for the decay mode 1p0n for Neural Network Output Variables.
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Appendix B Validation on LHC Data: Additional Figures

B.3 Decay Mode: 1p1n

Figure B.13: Data Monte Carlo Comparison plots for the decay mode 1p1n for General Observables.

Figure B.14: Data Monte Carlo Comparison plots for the decay mode 1p1n for Neutral PFO Variables.
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Appendix B Validation on LHC Data: Additional Figures

Figure B.15: Data Monte Carlo Comparison plots for the decay mode 1p1n for Charged PFO Variables.

Figure B.16: Data Monte Carlo Comparison plots for the decay mode 1p1n for Photon Shot Variables.

Figure B.17: Data Monte Carlo Comparison plots for the decay mode 1p1n for Conversion Track Variables.
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Appendix B Validation on LHC Data: Additional Figures

Figure B.18: Data Monte Carlo Comparison plots for the decay mode 1p1n for Neural Network Output Variables.
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Appendix B Validation on LHC Data: Additional Figures

B.4 Decay Mode: 1pXn

Figure B.19: Data Monte Carlo Comparison plots for the decay mode 1pXn for General Observables.

Figure B.20: Data Monte Carlo Comparison plots for the decay mode 1pXn for Neutral PFO Variables.
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Appendix B Validation on LHC Data: Additional Figures

Figure B.21: Data Monte Carlo Comparison plots for the decay mode 1pXn for Charged PFO Variables.

Figure B.22: Data Monte Carlo Comparison plots for the decay mode 1pXn for Photon Shot Variables.

Figure B.23: Data Monte Carlo Comparison plots for the decay mode 1pXn for Conversion Track Variables.
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Appendix B Validation on LHC Data: Additional Figures

Figure B.24: Data Monte Carlo Comparison plots for the decay mode 1pXn for Neural Network Output Variables.
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Appendix B Validation on LHC Data: Additional Figures

B.5 Decay Mode: 3p0n

Figure B.25: Data Monte Carlo Comparison plots for the decay mode 3p0n for General Observables.

Figure B.26: Data Monte Carlo Comparison plots for the decay mode 3p0n for Neutral PFO Variables.
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Appendix B Validation on LHC Data: Additional Figures

Figure B.27: Data Monte Carlo Comparison plots for the decay mode 3p0n for Charged PFO Variables.

Figure B.28: Data Monte Carlo Comparison plots for the decay mode 3p0n for Photon Shot Variables.

Figure B.29: Data Monte Carlo Comparison plots for the decay mode 3p0n for Conversion Track Variables.
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Appendix B Validation on LHC Data: Additional Figures

Figure B.30: Data Monte Carlo Comparison plots for the decay mode 3p0n for Neural Network Output Variables.
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Appendix B Validation on LHC Data: Additional Figures

B.6 Decay Mode: 3pXn

Figure B.31: Data Monte Carlo Comparison plots for the decay mode 3pXn for General Observables.

Figure B.32: Data Monte Carlo Comparison plots for the decay mode 3pXn for Neutral PFO Variables.

133



Appendix B Validation on LHC Data: Additional Figures

Figure B.33: Data Monte Carlo Comparison plots for the decay mode 3pXn for Charged PFO Variables.

Figure B.34: Data Monte Carlo Comparison plots for the decay mode 3pXn for Photon Shot Variables.

Figure B.35: Data Monte Carlo Comparison plots for the decay mode 3pXn for Conversion Track Variables.
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Appendix B Validation on LHC Data: Additional Figures

Figure B.36: Data Monte Carlo Comparison plots for the decay mode 3pXn for Neural Network Output Variables.
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APPENDIX C

Full Workflow Chart of the PanTau Algorithm

Figure C.1: Full workflow diagram of the PanTau algorithm [34].

136



Bibliography

[1] S. Kottwitz, TEXample, 2023,
url: https://texample.net/tikz/examples/model-physics/ (cit. on p. 1).

[2] Particle Data Group, K. Nakamura et al., Review of Particle Physics, J. Phys. G 37 (2022) 075021,
url: http://pdg.lbl.gov (cit. on pp. 2, 3, 28, 29, 38, 49).

[3] M. L. Perl et al., Evidence for Anomalous Lepton Production in 𝑒
+ − 𝑒

− Annihilation,
Phys. Rev. Lett. 35 (22 1975) 1489,
url: https://link.aps.org/doi/10.1103/PhysRevLett.35.1489 (cit. on p. 2).

[4] P. D. Group, Review of Particle Physics,
Progress of Theoretical and Experimental Physics 2022 (2022), issn: 2050-3911,
url: https://doi.org/10.1093/ptep/ptac097 (cit. on p. 2).

[5] S. Weinberg,
Conceptual foundation of the unified theory of weak and electromagnetic interactions,
url: https://www.nobelprize.org/uploads/2018/06/weinberg-lecture.pdf
(visited on 16/03/2023) (cit. on p. 3).

[6] A. Salam and J. C. Ward, Electromagnetic and weak interactions, Phys. Lett. 13 (1964) 168
(cit. on p. 3).

[7] M. Thomson, Modern Particle Physics, Cambridge University Press, 2013 (cit. on p. 3).

[8] F. Englert and R. Brout, Broken Symmetry and the Mass of Gauge Vector Mesons,
Phys. Rev. Lett. 13 (9 1964) 321,
url: https://link.aps.org/doi/10.1103/PhysRevLett.13.321 (cit. on p. 3).

[9] P. Higgs, Broken symmetries, massless particles and gauge fields, Physics Letters 12 (1964) 132,
issn: 0031-9163,
url: https://www.sciencedirect.com/science/article/pii/0031916364911369
(cit. on p. 3).

[10] P. W. Higgs, Broken Symmetries and the Masses of Gauge Bosons,
Phys. Rev. Lett. 13 (16 1964) 508,
url: https://link.aps.org/doi/10.1103/PhysRevLett.13.508 (cit. on p. 3).

[11] Maike Christina Hansen, Studies into measuring the Higgs CP-state in H → 𝜏𝜏 decays at ATLAS,
PhD thesis: Rheinische Friedrich-Wilhelms-Universität Bonn, 2020,
url: https://hdl.handle.net/20.500.11811/8456 (cit. on p. 4).

137

https://texample.net/tikz/examples/model-physics/
http://pdg.lbl.gov
http://dx.doi.org/10.1103/PhysRevLett.35.1489
https://link.aps.org/doi/10.1103/PhysRevLett.35.1489
http://dx.doi.org/10.1093/ptep/ptac097
https://doi.org/10.1093/ptep/ptac097
https://www.nobelprize.org/uploads/2018/06/weinberg-lecture.pdf
http://dx.doi.org/10.1016/0031-9163(64)90711-5
http://dx.doi.org/10.1103/PhysRevLett.13.321
https://link.aps.org/doi/10.1103/PhysRevLett.13.321
http://dx.doi.org/https://doi.org/10.1016/0031-9163(64)91136-9
https://www.sciencedirect.com/science/article/pii/0031916364911369
http://dx.doi.org/10.1103/PhysRevLett.13.508
https://link.aps.org/doi/10.1103/PhysRevLett.13.508
https://hdl.handle.net/20.500.11811/8456


Bibliography

[12] F. Zwicky, Die Rotverschiebung von extragalaktischen Nebeln,
Helvetica Physica Acta 6 (1933) 110 (cit. on p. 4).

[13] S. Berge, W. Bernreuther and S. Kirchner,
Prospects of constraining the Higgs boson’snature in the tau decay channel at the LHC,
Physical Review D 92 (2015), url: https://doi.org/10.1103%2Fphysrevd.92.096012
(cit. on p. 5).

[14] The ATLAS Collaboration, Measurement of the 𝐶𝑃 properties of Higgs boson interactions with
𝜏-leptons with the ATLAS detector, 2022, url: https://arxiv.org/abs/2212.05833
(cit. on pp. 5, 42).

[15] CMS, Measurement of the CP properties of the Higgs boson in its decays to 𝜏 leptons with the
CMS experiment, 2021, url: https://bib-pubdb1.desy.de/record/462769 (cit. on p. 5).

[16] G. Bower, T. Pierzcha, Z. Was and M. Worek,
Measuring the Higgs boson parity using Tau -> rho nu, Physics Letters B 543 (2002) 227
(cit. on pp. 5, 6).

[17] Z. Was and M. Worek, Transverse spin effects, (2002),
url: https://arxiv.org/abs/hep-ph/0202007 (cit. on p. 5).

[18] K. Desch, A. Imhof, Z. Was and M. Worek, Probing the CP nature of the Higgs boson at linear
colliders with Tau spin correlations in the case of mixed scalar and pseudoscalar couplings,
Physics Letters B 579 (2004) 157,
url: https://doi.org/10.1016%2Fj.physletb.2003.10.074 (cit. on p. 5).

[19] The ATLAS Collaboration, The ATLAS Experiment at the CERN Large Hadron Collider,
Journal of Instrumentation 3 (2008) S08003,
url: https://dx.doi.org/10.1088/1748-0221/3/08/S08003 (cit. on pp. 7, 9, 10).

[20] I. Neutelings, CMS coordinate system,
url: https://tikz.net/axis3d_cms/ (visited on 16/01/2023) (cit. on p. 8).

[21] J. Pequenao, Computer generated image of the whole ATLAS detector, 2008,
url: https://cds.cern.ch/record/1095924# (cit. on p. 8).

[22] S. P. Y. Yuen, Improving the Reconstruction of Neutral Pions in Tau Decays Using the Strip Layer
of the ATLAS Electromagnetic Calorimeter, Master Thesis: University of Bonn, 2013,
url: http://cds.cern.ch/record/2306444 (cit. on p. 10).

[23] The ATLAS Collaboration, Performance of the ATLAS trigger system in 2015,
The European Physical Journal C 77 (2017),
url: https://doi.org/10.1140%2Fepjc%2Fs10052-017-4852-3 (cit. on p. 11).

[24] W. Lampl et al., Calorimeter Clustering Algorithms: Description and Performance, tech. rep.,
All figures including auxiliary figures are available at
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-LARG-PUB-2008-002:
CERN, 2008, url: https://cds.cern.ch/record/1099735 (cit. on p. 11).

[25] M. Cacciari, G. P. Salam and G. Soyez, The anti-k jet clustering algorithm,
Journal of High Energy Physics (2008) (cit. on p. 11).

138

http://dx.doi.org/10.1103/physrevd.92.096012
https://doi.org/10.1103%2Fphysrevd.92.096012
https://arxiv.org/abs/2212.05833
https://bib-pubdb1.desy.de/record/462769
http://dx.doi.org/10.1016/s0370-2693(02)02445-0
http://dx.doi.org/10.48550/ARXIV.HEP-PH/0202007
https://arxiv.org/abs/hep-ph/0202007
http://dx.doi.org/10.1016/j.physletb.2003.10.074
https://doi.org/10.1016%2Fj.physletb.2003.10.074
http://dx.doi.org/10.1088/1748-0221/3/08/S08003
https://dx.doi.org/10.1088/1748-0221/3/08/S08003
https://tikz.net/axis3d_cms/
https://cds.cern.ch/record/1095924#
http://cds.cern.ch/record/2306444
http://dx.doi.org/10.1140/epjc/s10052-017-4852-3
https://doi.org/10.1140%2Fepjc%2Fs10052-017-4852-3
https://cds.cern.ch/record/1099735
http://dx.doi.org/10.1088/1126-6708/2008/04/063


Bibliography

[26] The ATLAS Collaboration,
Muon reconstruction performance of the ATLAS detector in proton-proton collision data at 13TeV,
The European Physical Journal C 76 (2016) (cit. on p. 11).

[27] The ATLAS Collaboration, Performance of missing transverse momentum reconstruction with
the ATLAS detector using proton–proton collisions at 13 TeV,
The European Physical Journal C (2018) (cit. on p. 12).

[28] E. Bothmann et al., Event generation with Sherpa 2.2, SciPost Physics 7 (2019),
url: https://doi.org/10.21468%2Fscipostphys.7.3.034 (cit. on p. 12).

[29] C. Oleari, The POWHEG BOX, Nuclear Physics B - Proceedings Supplements 205-206 (2010) 36,
url: https://doi.org/10.1016%2Fj.nuclphysbps.2010.08.016 (cit. on p. 12).

[30] T. Sjöstrand et al., An introduction to PYTHIA 8.2,
Computer Physics Communications 191 (2015) 159,
url: https://doi.org/10.1016%2Fj.cpc.2015.01.024 (cit. on p. 12).

[31] S. Habib et al., ASCR/HEP Exascale Requirements Review Report, 2016,
arXiv: 1603.09303 [physics.comp-ph] (cit. on p. 12).

[32] G. Karagiorgi, G. Kasieczka, S. Kravitz, B. Nachman and D. Shih,
Machine Learning in the Search for New Fundamental Physics, 2021,
arXiv: 2112.03769 [hep-ph] (cit. on p. 13).

[33] C. Deutsch,
Identification and Classification of Hadronic Tau Lepton Decays in the ATLAS Experiment,
MA thesis: Bonn U., 2017 (cit. on p. 13).

[34] H. Nguyen, Improving hadronic tau decay mode reconstruction at ATLAS using neural networks,
Master Thesis: University of Bonn, 2020, url: https://web.physik.uni-
bonn.de/group/view.php?&group=1&lang=en&c=t&id=123
(cit. on pp. 13, 22, 30, 32, 33, 136).

[35] A. Jung, Machine Learning: The Basics, Springer Singapore, 2022,
url: https://doi.org/10.1007/978-981-16-8193-6 (cit. on pp. 13, 21, 32).

[36] L. Estève et al., INRIA/scikit-learn-mooc: Third MOOC session, version session-3, 2022,
url: https://doi.org/10.5281/zenodo.7220307 (cit. on p. 13).

[37] I. Goodfellow, Y. Bengio and A. Courville, Deep Learning,
http://www.deeplearningbook.org, MIT Press, 2016 (cit. on p. 13).

[38] D. P. Kingma and J. Ba, Adam: A Method for Stochastic Optimization, 2017,
arXiv: 1412.6980 [cs.LG], url: https://arxiv.org/abs/1412.6980 (cit. on p. 15).

[39] I. Goodfellow, Y. Bengio and A. Courville, Deep Learning in Computational Mechanics,
https://link.springer.com/book/10.1007/978-3-030-76587-3, MIT Press, 2022
(cit. on pp. 16, 17).

[40] S. Ioffe and C. Szegedy,
Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift,
2015, url: https://arxiv.org/abs/1502.03167 (cit. on p. 17).

[41] Y. LeCun, Y. Bengio and G. Hinton, Deep learning, Nature 521 (2015) 436 (cit. on p. 18).

139

http://dx.doi.org/10.1140/epjc/s10052-016-4120-y
http://dx.doi.org/10.1140/epjc/s10052-018-6288-9
http://dx.doi.org/10.21468/scipostphys.7.3.034
https://doi.org/10.21468%2Fscipostphys.7.3.034
http://dx.doi.org/10.1016/j.nuclphysbps.2010.08.016
https://doi.org/10.1016%2Fj.nuclphysbps.2010.08.016
http://dx.doi.org/10.1016/j.cpc.2015.01.024
https://doi.org/10.1016%2Fj.cpc.2015.01.024
https://arxiv.org/abs/1603.09303
https://arxiv.org/abs/2112.03769
https://web.physik.uni-bonn.de/group/view.php?&group=1&lang=en&c=t&id=123
https://web.physik.uni-bonn.de/group/view.php?&group=1&lang=en&c=t&id=123
https://doi.org/10.1007/978-981-16-8193-6
https://doi.org/10.5281/zenodo.7220307
http://www.deeplearningbook.org
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://link.springer.com/book/10.1007/978-3-030-76587-3
https://arxiv.org/abs/1502.03167
http://dx.doi.org/doi.org/10.1038/nature14539


Bibliography

[42] F. M. Salem, Recurrent Neural Networks, Springer Cham, 2022,
url: https://doi.org/10.1007/978-3-030-89929-5 (cit. on p. 17).

[43] M. Zaheer et al., Deep Sets, CoRR 1703.06114 (2017), arXiv: 1703.06114 (cit. on pp. 18, 42).

[44] B. P. Roe, Probability and Statistics in the Physical Sciences, Springer Cham, 2020,
url: https://doi.org/10.1007/978-3-030-53694-7 (cit. on p. 19).

[45] T. Agrawal, Hyperparameter Optimization in Machine Learning, Imprint: Apress, 2021,
url: https://doi.org/10.1007/978-1-4842-6579-6 (cit. on p. 19).

[46] The ATLAS Collaboration,
Reconstruction of hadronic decay products of tau leptons with the ATLAS experiment.,
Eur. Phys. J. C 76 (2016) 295, arXiv: 1512.05955,
url: https://cds.cern.ch/record/2116436 (cit. on p. 20).

[47] J. Mahlstedt, The ATLAS Hadronic Tau Trigger,
Journal of Physics: Conference Series 513 (2014) 012021 (cit. on p. 20).

[48] Identification of hadronic tau lepton decays using neural networks in the ATLAS experiment,
tech. rep., CERN, 2019, url: https://cds.cern.ch/record/2688062 (cit. on p. 20).

[49] C. Deutsch,
Identification and Classification of Hadronic Tau Lepton Decays in the ATLAS Experiment,
Master Thesis: University of Bonn, 2017,
url: https://inspirehep.net/literature/1658715 (cit. on p. 20).

[50] B. T. Winter,
Reconstruction of neutral pions in hadronic tau lepton decays in the ATLAS detector,
Presented on Jan 2014, 2013, url: http://cds.cern.ch/record/2318236 (cit. on p. 21).

[51] S. P. Y. Yuen, Analysis of the Higgs boson decay in the 𝐻 → 𝜏had𝜏had channel and CP properties
with 13 TeV collisions at the ATLAS detector, PhD Thesis: University of Bonn, 2019,
url: https://bonndoc.ulb.uni-
bonn.de/xmlui/handle/20.500.11811/8109?locale-attribute=de (cit. on p. 21).

[52] Reconstruction, Identification, and Calibration of hadronically decaying tau leptons with the
ATLAS detector for the LHC Run 3 and reprocessed Run 2 data, (2022),
url: https://inspirehep.net/literature/2153975 (cit. on p. 21).

[53] Measurement of the tau lepton reconstruction and identification performance in the ATLAS
experiment using pp collisions at 13 TeV, tech. rep., CERN, 2017,
url: http://cds.cern.ch/record/2261772 (cit. on pp. 22, 52).

[54] S. Kim, M. P. Fay and M. A. Proschan, “A Practical Guide to Exact Confidence Intervals for a
Distribution of Current Status Data Using the Binomial Approach”,
Emerging Topics in Modeling Interval-Censored Survival Data, ed. by J. Sun and D.-G. Chen,
Springer International Publishing, 2022 51, isbn: 978-3-031-12366-5,
url: https://doi.org/10.1007/978-3-031-12366-5_4 (cit. on pp. 35, 36).

[55] Y. Kinoshita, Identifikation von Neutralen Pion - Teilchen mit einem Neuronalen Netzwerk,
Bachelor Thesis: University of Bonn, 2022, url: https://web.physik.uni-
bonn.de/group/view.php?&group=1&lang=de&c=t&id=140 (cit. on p. 38).

140

https://doi.org/10.1007/978-3-030-89929-5
https://arxiv.org/abs/1703.06114
https://doi.org/10.1007/978-3-030-53694-7
https://doi.org/10.1007/978-1-4842-6579-6
http://dx.doi.org/10.1140/epjc/s10052-016-4110-0
https://arxiv.org/abs/1512.05955
https://cds.cern.ch/record/2116436
http://dx.doi.org/10.1088/1742-6596/513/1/012021
https://cds.cern.ch/record/2688062
https://inspirehep.net/literature/1658715
http://cds.cern.ch/record/2318236
https://bonndoc.ulb.uni-bonn.de/xmlui/handle/20.500.11811/8109?locale-attribute=de
https://bonndoc.ulb.uni-bonn.de/xmlui/handle/20.500.11811/8109?locale-attribute=de
https://inspirehep.net/literature/2153975
http://cds.cern.ch/record/2261772
https://doi.org/10.1007/978-3-031-12366-5_4
https://web.physik.uni-bonn.de/group/view.php?&group=1&lang=de&c=t&id=140
https://web.physik.uni-bonn.de/group/view.php?&group=1&lang=de&c=t&id=140


Bibliography

[56] A. Gramfort et al., scikit-learn QuantileTransformer,
url: https://scikit-learn.org/stable/modules/generated/sklearn.
preprocessing.QuantileTransformer.html (visited on 05/04/2023) (cit. on p. 39).

[57] H. Qu and L. Gouskos, Jet tagging via particle clouds, Physical Review D 101 (2020),
url: https://doi.org/10.1103%2Fphysrevd.101.056019 (cit. on p. 60).

[58] J. Pampel, ML4Pions: Tau Decay Mode Classification Using CNNs,
TAU CP workshop, CERN, 2023 (cit. on p. 60).

141

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.QuantileTransformer.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.QuantileTransformer.html
http://dx.doi.org/10.1103/physrevd.101.056019
https://doi.org/10.1103%2Fphysrevd.101.056019


List of Figures

1.1 Overview of the Standard Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Feynman diagram of a 𝜏 lepton decay. . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Sketch of the Higgs potential. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Sketch of the 𝜏 decay planes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5 Dependence of the differential cross-section on 𝜑

∗
𝐶𝑃 . . . . . . . . . . . . . . . . . . . 6

2.1 Sketch of the LHC and the ATLAS coordinate system. . . . . . . . . . . . . . . . . . 8
2.2 Sketch of the ATLAS detector. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Sketch of the ATLAS Inner Detector. . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Sketch of the calorimeter system of the ATLAS detector. . . . . . . . . . . . . . . . . 9
2.5 Sketch of the ECAL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.6 With Sherpa generated event. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1 Graphical Display of a general machine learning workflow. . . . . . . . . . . . . . . . 13
3.2 Graphical Display of different activation functions. . . . . . . . . . . . . . . . . . . . 16
3.3 Graphical Display of a feed forward neural network. . . . . . . . . . . . . . . . . . . . 17
3.4 Graphical Display of an RNN node. . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.1 Illustrations of the difference between a jet and 𝜏vis. . . . . . . . . . . . . . . . . . . . 20
4.2 1p1n 𝜂-𝜙-display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.3 Migration matrix for the PanTau algorithm on a 𝛾

∗ → 𝜏𝜏 sample . . . . . . . . . . . . 22
4.4 PanTau algorithm residual distributions for different intervals of 𝑝T(𝜏vis,true) of 𝐸 (𝜋0). 23
4.5 Display of the quantiles of the 𝐸 (𝜋0) residual distribution for the PanTau algorithm

against 𝑝T(𝜏vis,true). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.6 Bias and resolution of the 𝐸 (𝜋0) prediction for the PanTau algorithm. . . . . . . . . . 24
4.7 Display of the quantiles of the 𝐸 (𝜋0) residual distribution for the PanTau algorithm

against 𝐸 (𝜋0
true) with a cut on 𝑑 (𝜋0

, 𝜋
±). . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.8 Display of the quantiles of the 𝛼(𝜋0
, 𝜋

±) residual distribution for the PanTau algorithm
against 𝑑 (𝜋0

, 𝜋
±) with a cut on 𝐸 (𝜋0

true). . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.9 Display of the quantiles of the Υ residual distribution for the PanTau algorithm against

𝑝T(𝜏vis,true). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.10 Display of the quantiles of the 𝜂(𝜋0) residual distribution for the PanTau algorithm

against 𝑝T(𝜏vis,true). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

142



List of Figures

4.11 Display of the quantiles of the 𝜙(𝜋0) residual distribution for the PanTau algorithm
against 𝑝T(𝜏vis,true). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.12 Display of the quantiles of the 𝑑 (𝜋0
, 𝜋

±) residual distribution for the PanTau algorithm
against 𝑑 (𝜋0

, 𝜋
±) for two different ranges on the y-axis. . . . . . . . . . . . . . . . . . 27

4.13 Display of the quantiles of the 𝐸 (𝜋0) residual distribution for the PanTau algorithm
against 𝜂(𝜋0

true) and 𝜙(𝜋0
true). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.14 Display of the quantiles of the 𝐸 (𝜋0) residual distribution for the PanTau algorithm
against pile-up. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.15 Display of the 𝜌 meson mass distribution from the 1p1n decay for PanTau and truth
data. The Particle Data Group (PDG) average is depicted as well [2]. . . . . . . . . . . 29

5.1 Architecture of the used RNN for decay mode reconstruction. . . . . . . . . . . . . . . 32
5.2 Migration matrix of the decay mode classification with the RNN setup from H. Nguyen

on a 𝛾
∗ → 𝜏𝜏 sample. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.3 Migration matrix of the decay mode classification with the RNN on a 𝑍 → 𝜏𝜏 sample. 34
5.4 Distributions of different observables in the 𝑍 → 𝜏𝜏 and 𝛾

∗ → 𝜏𝜏 sample. The error
bars denote the Poisson error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.5 Dependence of the classification efficiency for different decay modes on 𝑝T(𝜏vis,true).
The error bars denote the 99% Clopper-Pearson intervals [54]. . . . . . . . . . . . . . 35

5.6 Dependence of the classification efficiency for different decay modes on 𝜂(𝜏vis,true). The
error bars denote the 99% Clopper-Pearson intervals [54]. . . . . . . . . . . . . . . . . 35

5.7 Dependence of the classification efficiency for different decay modes on 𝜙(𝜏vis,true). The
error bars denote the 99% Clopper-Pearson intervals [54]. . . . . . . . . . . . . . . . . 36

5.8 Dependence of the classification efficiency for different decay modes on the average
number of interactions per bunch crossing. The error bars denote the 99% Clopper-
Pearson intervals [54]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.9 Migration matrix of the decay mode classification with the RNN on a 𝑍 → 𝜏𝜏 sample
with a post-processing correction using the number of tracks. . . . . . . . . . . . . . . 37

6.1 Architecture of the regression RNN. . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.2 Energy resolution and bias for the RNN and PanTau. . . . . . . . . . . . . . . . . . . 40
6.3 𝛼(𝜋0

, 𝜋
±) resolution and bias for the RNN and PanTau. . . . . . . . . . . . . . . . . . 40

6.4 Distribution of the targets of the neural network. . . . . . . . . . . . . . . . . . . . . . 41
6.5 Distribution of the targets of the neural network after applying the quantile transformation. 41
6.6 Energy resolution for PanTau and the RNN with improved and basic setup in two

bins. Improved setup means the addition of batch normalization and a target Gaussian
transformation. The error bars denote the average of three training runs with different
Tensorflow seeds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.7 𝛼(𝜋0
, 𝜋

±) resolution and bias for PanTau and the RNN with improved setup. . . . . . 42
6.8 DeepSet neural network architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.9 Energy resolution for the DeepSet NN. . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.10 𝛼(𝜋0

, 𝜋
±) resolution and bias for the DeepSet NN. . . . . . . . . . . . . . . . . . . . . 43

6.11 Validation and training loss against training time for the RNN and the DeepSet NN. . . 44
6.12 Performance of the ANN for a large weight of the angles in the loss function. . . . . . 44

143



List of Figures

6.13 Performance of the ANN for a large weight of the transverse momentum in the loss
function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.14 Learning curves for different configurations of batch size and learning rate. The x-axis
is displayed in units of time instead of number of epochs . . . . . . . . . . . . . . . . 47

6.15 Minimum validation loss against call of the Bayesian hyperparameter optimization. . . 48
6.16 Energy resolution for the ANN with and without optimized hyperparameters. . . . . . 48
6.17 𝛼(𝜋0

, 𝜋
±) resolution and bias for the ANN with and without optimized hyperparameters. 48

6.18 Learning curve for call one of the hyperparameter optimization. . . . . . . . . . . . . 49
6.19 Display of the 𝜌 mass distribution for PanTau, the optimized neural network and truth data. 49
6.20 2D residual distribution plots PanTau and the optimized neural network. . . . . . . . . 50
6.21 𝜂(𝜋0) residual distribution for PanTau and the neural network with a logarithmic 𝑦-axis. 50

7.1 Comparison plots between data and simulation for general observables. All decay modes
included. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

7.2 Comparison plots between data and simulation for Neutral PFO variables. All decay
modes included. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

7.3 Comparison plots between data and simulation for Charged PFO variables. All decay
modes included. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7.4 Comparison plots between data and simulation for the Photon Shot variables. All decay
modes included. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7.5 Comparison plots between data and simulation for the Conversion Track variables. All
decay modes included. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

7.6 Comparison plots between data and simulation of the decay mode classification ANN.
All decay modes included. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

7.7 Comparison plots between data and simulation of variables predicted by the ANN. All
decay modes included. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

7.8 Comparison plots between data and simulation of observables derived from the ANN
prediction for the 𝜋

0 kinematics. All decay modes included. . . . . . . . . . . . . . . 58
7.9 Comparison plots between data and simulation for additional observables for crosscheck-

ing. Exclusively events with decay mode 1p0n predicted by the ANN. . . . . . . . . . 58
7.10 Comparison plots between data and simulation for additional observables for crosscheck-

ing. All decay modes selected. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
7.11 Comparison plots between data and simulation for different observables. Exclusively

events with decay mode 1p0n predicted by the ANN. . . . . . . . . . . . . . . . . . . 59

A.1 Δ𝐸 (𝜋0) plots for different intervals of 𝑝T(𝜏vis,true) for the PanTau algorithm as well
as for the PanTau algorithm and the DeepSet NN with optimized hyperparameters:
Residual distributions and a summary of their quantiles as well as displays of bias and
resolution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

A.2 Δ𝐸 (𝜋0) plots for different intervals of 𝐸 (𝜋0
true) for the PanTau algorithm as well as for

the PanTau algorithm and the DeepSet NN with optimized hyperparameters: Residual
distributions and a summary of their quantiles as well as displays of bias and resolution.
The cut 𝑑 (𝜋0

, 𝜋
±)true >= 0.05 is applied. . . . . . . . . . . . . . . . . . . . . . . . . . 63

144



List of Figures

A.3 Δ𝐸 (𝜋0) plots for different intervals of 𝐸 (𝜋0
true) for the PanTau algorithm as well as for

the PanTau algorithm and the DeepSet NN with optimized hyperparameters: Residual
distributions and a summary of their quantiles as well as displays of bias and resolution.
The cut 𝑑 (𝜋0

, 𝜋
±)true < 0.05 is applied. . . . . . . . . . . . . . . . . . . . . . . . . . . 64

A.4 Δ𝐸 (𝜋0) plots for different intervals of 𝜂(𝜋0
true) for the PanTau algorithm as well as for

the PanTau algorithm and the DeepSet NN with optimized hyperparameters: Residual
distributions and a summary of their quantiles as well as displays of bias and resolution. 65

A.5 Δ𝐸 (𝜋0) plots for different intervals of 𝜙(𝜋0
true) for the PanTau algorithm as well as for

the PanTau algorithm and the DeepSet NN with optimized hyperparameters: Residual
distributions and a summary of their quantiles as well as displays of bias and resolution. 66

A.6 Δ𝐸 (𝜋0) plots for different intervals of Pile-up for the PanTau algorithm as well as for
the PanTau algorithm and the DeepSet NN with optimized hyperparameters: Residual
distributions and a summary of their quantiles as well as displays of bias and resolution. 67

A.7 Δ𝐸 (𝜋0) plots for different intervals of 𝑑 (𝜋0
, 𝜋

±) for the PanTau algorithm as well as for
the PanTau algorithm and the DeepSet NN with optimized hyperparameters: Residual
distributions and a summary of their quantiles as well as displays of bias and resolution. 68

A.8 Δ𝜙(𝜋0) plots for different intervals of 𝑝T(𝜏vis,true) for the PanTau algorithm as well
as for the PanTau algorithm and the DeepSet NN with optimized hyperparameters:
Residual distributions and a summary of their quantiles as well as displays of bias and
resolution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

A.9 Δ𝜙(𝜋0) plots for different intervals of 𝐸 (𝜋0
true) for the PanTau algorithm as well as for

the PanTau algorithm and the DeepSet NN with optimized hyperparameters: Residual
distributions and a summary of their quantiles as well as displays of bias and resolution. 71

A.10 Δ𝜙(𝜋0) plots for different intervals of 𝜂(𝜋0
true) for the PanTau algorithm as well as for

the PanTau algorithm and the DeepSet NN with optimized hyperparameters: Residual
distributions and a summary of their quantiles as well as displays of bias and resolution. 72

A.11 Δ𝜙(𝜋0) plots for different intervals of 𝜙(𝜋0
true) for the PanTau algorithm as well as for

the PanTau algorithm and the DeepSet NN with optimized hyperparameters: Residual
distributions and a summary of their quantiles as well as displays of bias and resolution. 73

A.12 Δ𝜙(𝜋0) plots for different intervals of Pile-up for the PanTau algorithm as well as for
the PanTau algorithm and the DeepSet NN with optimized hyperparameters: Residual
distributions and a summary of their quantiles as well as displays of bias and resolution. 74

A.13 Δ𝜙(𝜋0) plots for different intervals of 𝑑 (𝜋0
, 𝜋

±) for the PanTau algorithm as well as for
the PanTau algorithm and the DeepSet NN with optimized hyperparameters: Residual
distributions and a summary of their quantiles as well as displays of bias and resolution. 75

A.14 Δ𝜂(𝜋0) plots for different intervals of 𝑝T(𝜏vis,true) for the PanTau algorithm as well as for
the PanTau algorithm and the DeepSet NN with optimized hyperparameters: Residual
distributions and a summary of their quantiles as well as displays of bias and resolution. 77

A.15 Δ𝜂(𝜋0) plots for different intervals of 𝐸 (𝜋0
true) for the PanTau algorithm as well as for

the PanTau algorithm and the DeepSet NN with optimized hyperparameters: Residual
distributions and a summary of their quantiles as well as displays of bias and resolution. 78

A.16 Δ𝜂(𝜋0) plots for different intervals of 𝜂(𝜋0
true) for the PanTau algorithm as well as for

the PanTau algorithm and the DeepSet NN with optimized hyperparameters: Residual
distributions and a summary of their quantiles as well as displays of bias and resolution. 79

145



List of Figures

A.17 Δ𝜂(𝜋0) plots for different intervals of 𝜙(𝜋0
true) for the PanTau algorithm as well as for

the PanTau algorithm and the DeepSet NN with optimized hyperparameters: Residual
distributions and a summary of their quantiles as well as displays of bias and resolution. 80

A.18 Δ𝜂(𝜋0) plots for different intervals of Pile-up for the PanTau algorithm as well as for
the PanTau algorithm and the DeepSet NN with optimized hyperparameters: Residual
distributions and a summary of their quantiles as well as displays of bias and resolution. 81

A.19 Δ𝜂(𝜋0) plots for different intervals of 𝑑 (𝜋0
, 𝜋

±) for the PanTau algorithm as well as for
the PanTau algorithm and the DeepSet NN with optimized hyperparameters: Residual
distributions and a summary of their quantiles as well as displays of bias and resolution. 82

A.20 Δ𝑑 (𝜋0
, 𝜋

±) plots for different intervals of 𝑝T(𝜏vis,true) for the PanTau algorithm as well
as for the PanTau algorithm and the DeepSet NN with optimized hyperparameters:
Residual distributions and a summary of their quantiles as well as displays of bias and
resolution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

A.21 Δ𝑑 (𝜋0
, 𝜋

±) plots for different intervals of 𝐸 (𝜋0
true) for the PanTau algorithm as well

as for the PanTau algorithm and the DeepSet NN with optimized hyperparameters:
Residual distributions and a summary of their quantiles as well as displays of bias and
resolution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

A.22 Δ𝑑 (𝜋0
, 𝜋

±) plots for different intervals of 𝜂(𝜋0
true) for the PanTau algorithm as well

as for the PanTau algorithm and the DeepSet NN with optimized hyperparameters:
Residual distributions and a summary of their quantiles as well as displays of bias and
resolution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

A.23 Δ𝑑 (𝜋0
, 𝜋

±) plots for different intervals of 𝜙(𝜋0
true) for the PanTau algorithm as well

as for the PanTau algorithm and the DeepSet NN with optimized hyperparameters:
Residual distributions and a summary of their quantiles as well as displays of bias and
resolution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

A.24 Δ𝑑 (𝜋0
, 𝜋

±) plots for different intervals of Pile-up for the PanTau algorithm as well as for
the PanTau algorithm and the DeepSet NN with optimized hyperparameters: Residual
distributions and a summary of their quantiles as well as displays of bias and resolution. 88

A.25 Δ𝑑 (𝜋0
, 𝜋

±) plots for different intervals of 𝑑 (𝜋0
, 𝜋

±) for the PanTau algorithm as well
as for the PanTau algorithm and the DeepSet NN with optimized hyperparameters:
Residual distributions and a summary of their quantiles as well as displays of bias and
resolution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

A.26 ΔΥ plots for different intervals of 𝑝T(𝜏vis,true) for the PanTau algorithm as well as for
the PanTau algorithm and the DeepSet NN with optimized hyperparameters: Residual
distributions and a summary of their quantiles as well as displays of bias and resolution. 91

A.27 ΔΥ plots for different intervals of 𝐸 (𝜋0
true) for the PanTau algorithm as well as for the

PanTau algorithm and the DeepSet NN with optimized hyperparameters: Residual
distributions and a summary of their quantiles as well as displays of bias and resolution. 92

A.28 ΔΥ plots for different intervals of 𝜂(𝜋0
true) for the PanTau algorithm as well as for the

PanTau algorithm and the DeepSet NN with optimized hyperparameters: Residual
distributions and a summary of their quantiles as well as displays of bias and resolution. 93

A.29 ΔΥ plots for different intervals of 𝜙(𝜋0
true) for the PanTau algorithm as well as for the

PanTau algorithm and the DeepSet NN with optimized hyperparameters: Residual
distributions and a summary of their quantiles as well as displays of bias and resolution. 94

146



List of Figures

A.30 ΔΥ plots for different intervals of Pile-up for the PanTau algorithm as well as for the
PanTau algorithm and the DeepSet NN with optimized hyperparameters: Residual
distributions and a summary of their quantiles as well as displays of bias and resolution. 95

A.31 ΔΥ plots for different intervals of 𝑑 (𝜋0
, 𝜋

±) for the PanTau algorithm as well as for
the PanTau algorithm and the DeepSet NN with optimized hyperparameters: Residual
distributions and a summary of their quantiles as well as displays of bias and resolution. 96

A.32 𝛼 plots for different intervals of 𝑝T(𝜏vis,true) for the PanTau algorithm as well as for
the PanTau algorithm and the DeepSet NN with optimized hyperparameters: Residual
distributions and a summary of their quantiles as well as displays of bias and resolution. 98

A.33 𝛼 plots for different intervals of 𝐸 (𝜋0
true) for the PanTau algorithm as well as for the

PanTau algorithm and the DeepSet NN with optimized hyperparameters: Residual
distributions and a summary of their quantiles as well as displays of bias and resolution. 99

A.34 𝛼 plots for different intervals of 𝜂(𝜋0
true) for the PanTau algorithm as well as for the

PanTau algorithm and the DeepSet NN with optimized hyperparameters: Residual
distributions and a summary of their quantiles as well as displays of bias and resolution. 100

A.35 𝛼 plots for different intervals of 𝜙(𝜋0
true) for the PanTau algorithm as well as for the

PanTau algorithm and the DeepSet NN with optimized hyperparameters: Residual
distributions and a summary of their quantiles as well as displays of bias and resolution. 101

A.36 𝛼 plots for different intervals of Pile-up for the PanTau algorithm as well as for the
PanTau algorithm and the DeepSet NN with optimized hyperparameters: Residual
distributions and a summary of their quantiles as well as displays of bias and resolution. 102

A.37 𝛼 plots for different intervals of 𝑑 (𝜋0
, 𝜋

±) for the PanTau algorithm as well as for the
PanTau algorithm and the DeepSet NN with optimized hyperparameters: Residual
distributions and a summary of their quantiles as well as displays of bias and resolution.
The cut 𝐸 (𝜋0

true) >= 25GeV is applied. . . . . . . . . . . . . . . . . . . . . . . . . . . 103
A.38 𝛼 plots for different intervals of 𝑑 (𝜋0

, 𝜋
±) for the PanTau algorithm as well as for the

PanTau algorithm and the DeepSet NN with optimized hyperparameters: Residual
distributions and a summary of their quantiles as well as displays of bias and resolution.
The cut 𝐸 (𝜋0

true) < 25GeV is applied. . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
A.39 𝜌 mass distribution plot on truth level as well as for the PanTau algorithm and the

DeepSet NN with optimized hyperparameters. . . . . . . . . . . . . . . . . . . . . . . 105
A.40 Δ𝜌 mass plots for different intervals of 𝑝T(𝜏vis,true) for the PanTau algorithm as well

as for the PanTau algorithm and the DeepSet NN with optimized hyperparameters:
Residual distributions and a summary of their quantiles as well as displays of bias and
resolution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

A.41 Δ𝜌 mass plots for different intervals of 𝐸 (𝜋0
true) for the PanTau algorithm as well as for

the PanTau algorithm and the DeepSet NN with optimized hyperparameters: Residual
distributions and a summary of their quantiles as well as displays of bias and resolution. 107

A.42 Δ𝜌 mass plots for different intervals of 𝜂(𝜋0
true) for the PanTau algorithm as well as for

the PanTau algorithm and the DeepSet NN with optimized hyperparameters: Residual
distributions and a summary of their quantiles as well as displays of bias and resolution. 108

A.43 Δ𝜌 mass plots for different intervals of 𝜙(𝜋0
true) for the PanTau algorithm as well as for

the PanTau algorithm and the DeepSet NN with optimized hyperparameters: Residual
distributions and a summary of their quantiles as well as displays of bias and resolution. 109

147



List of Figures

A.44 Δ𝜌 mass plots for different intervals of Pile-up for the PanTau algorithm as well as for
the PanTau algorithm and the DeepSet NN with optimized hyperparameters: Residual
distributions and a summary of their quantiles as well as displays of bias and resolution. 110

A.45 Δ𝜌 mass plots for different intervals of 𝑑 (𝜋0
, 𝜋

±) for the PanTau algorithm as well as for
the PanTau algorithm and the DeepSet NN with optimized hyperparameters: Residual
distributions and a summary of their quantiles as well as displays of bias and resolution. 111

A.46 Learning curves for calls 1 through 20 of the hyperparameter optimization. . . . . . . . 112
A.47 Learning curves for calls 21 through 40 of the hyperparameter optimization. . . . . . . 113
A.48 Learning curves for calls 41 through 60 of the hyperparameter optimization. . . . . . . 114
A.49 Learning curves for calls 61 through 80 of the hyperparameter optimization. . . . . . . 115
A.50 Learning curves for calls 81 through 100 of the hyperparameter optimization. . . . . . 116

B.1 Data Monte Carlo Comparison plots for all decay modes for General Observables. . . . 118
B.2 Data Monte Carlo Comparison plots for all decay modes for Neutral PFO Variables. . . 118
B.3 Data Monte Carlo Comparison plots for all decay modes for Charged PFO Variables. . 119
B.4 Data Monte Carlo Comparison plots for all decay modes for Photon Shot Variables. . . 119
B.5 Data Monte Carlo Comparison plots for all decay modes for Conversion Track Variables.119
B.6 Data Monte Carlo Comparison plots for all decay modes for Neural Network Output

Variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
B.7 Data Monte Carlo Comparison plots for the decay mode 1p0n for General Observables. 121
B.8 Data Monte Carlo Comparison plots for the decay mode 1p0n for Neutral PFO Variables.121
B.9 Data Monte Carlo Comparison plots for the decay mode 1p0n for Charged PFO Variables.122
B.10 Data Monte Carlo Comparison plots for the decay mode 1p0n for Photon Shot Variables. 122
B.11 Data Monte Carlo Comparison plots for the decay mode 1p0n for Conversion Track

Variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
B.12 Data Monte Carlo Comparison plots for the decay mode 1p0n for Neural Network Output

Variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
B.13 Data Monte Carlo Comparison plots for the decay mode 1p1n for General Observables. 124
B.14 Data Monte Carlo Comparison plots for the decay mode 1p1n for Neutral PFO Variables.124
B.15 Data Monte Carlo Comparison plots for the decay mode 1p1n for Charged PFO Variables.125
B.16 Data Monte Carlo Comparison plots for the decay mode 1p1n for Photon Shot Variables. 125
B.17 Data Monte Carlo Comparison plots for the decay mode 1p1n for Conversion Track

Variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
B.18 Data Monte Carlo Comparison plots for the decay mode 1p1n for Neural Network Output

Variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
B.19 Data Monte Carlo Comparison plots for the decay mode 1pXn for General Observables. 127
B.20 Data Monte Carlo Comparison plots for the decay mode 1pXn for Neutral PFO Variables.127
B.21 Data Monte Carlo Comparison plots for the decay mode 1pXn for Charged PFO Variables.128
B.22 Data Monte Carlo Comparison plots for the decay mode 1pXn for Photon Shot Variables.128
B.23 Data Monte Carlo Comparison plots for the decay mode 1pXn for Conversion Track

Variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
B.24 Data Monte Carlo Comparison plots for the decay mode 1pXn for Neural Network

Output Variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
B.25 Data Monte Carlo Comparison plots for the decay mode 3p0n for General Observables. 130
B.26 Data Monte Carlo Comparison plots for the decay mode 3p0n for Neutral PFO Variables.130

148



List of Figures

B.27 Data Monte Carlo Comparison plots for the decay mode 3p0n for Charged PFO Variables.131
B.28 Data Monte Carlo Comparison plots for the decay mode 3p0n for Photon Shot Variables. 131
B.29 Data Monte Carlo Comparison plots for the decay mode 3p0n for Conversion Track

Variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
B.30 Data Monte Carlo Comparison plots for the decay mode 3p0n for Neural Network Output

Variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
B.31 Data Monte Carlo Comparison plots for the decay mode 3pXn for General Observables. 133
B.32 Data Monte Carlo Comparison plots for the decay mode 3pXn for Neutral PFO Variables.133
B.33 Data Monte Carlo Comparison plots for the decay mode 3pXn for Charged PFO Variables.134
B.34 Data Monte Carlo Comparison plots for the decay mode 3pXn for Photon Shot Variables.134
B.35 Data Monte Carlo Comparison plots for the decay mode 3pXn for Conversion Track

Variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
B.36 Data Monte Carlo Comparison plots for the decay mode 3pXn for Neural Network

Output Variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

C.1 Full PanTau workflow diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

149



List of Tables

1.1 Notation for the dominant hadronic 𝜏 lepton decay modes. . . . . . . . . . . . . . . . 2

5.1 RNN input features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.2 Cuts applied on the training data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6.1 Parameters and choices considered during the training parameter grid search. . . . . . 46
6.2 Architecture parameters on the corresponding ranges considered in the Bayesian optim-

ization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.3 Best performing configuration of architecture parameters received from the Bayesian

optimization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

7.1 Cuts applied in the comparison of data and simulation. Consider [53] for further
explanations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

150



Acknowledgements

I would like to express my gratitude to Prof. Dr. Klaus Desch for the opportunity to work on this
interesting topic in his group and for providing me the experience of scientific work within the ATLAS
collaboration. I would also like to thank Prof. Dr. Ian Brock for being the second referee on this thesis.
To Priv. Doz. Dr. Philip Bechtle and Dr. Christian Grefe I am thankful for all advice on physics-related
challenges as well as helpful advice concerning scientific research. Their availability in daily meetings
enabled quick problem solving and greatly added to progress throughout this project. Let me thank
Lena Herrmann, Jan-Eric Heinrichs, Simon Thiele and Marco Menen for test reading this thesis and
offering advice for improvements. Moreover, thanks to all members of the working group for the support
during the last year. Very helpful was also advice from Oliver Freyermuth. Thank you for the quick and
patient advice on all IT-related questions. I would like to extend my gratitude to my friends for all the
encouragement. Lastly, I would like to thank my family for their endless support and advice during my
entire studies.

151


