
Search for Diboson Production in 4τ Final States
with the ATLAS Detector

Dominik Weiß

Masterarbeit in Physik
angefertigt im Physikalischen Institut

vorgelegt der
Mathematisch-Naturwissenschaftlichen Fakultät

der
Rheinischen Friedrich-Wilhelms-Universität

Bonn

Oktober 2021



I hereby declare that this thesis was formulated by myself and that no sources or tools other than those
cited were used.

Bonn, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Date Signature

1. Gutachter: Prof. Dr. Klaus Desch
2. Gutachter: Prof. Dr. Jochen Dingfelder



Acknowledgments

I would like to thank Prof. Dr. Klaus Desch for giving me the possibility of writing my Master thesis
in his research group. Furthermore, I want to thank Dr. Philip Bechtle and Dr. Christian Grefe
for all their ideas and ongoing help in a lot of interesting discussions. The same applies to Henrik
Junkerkalefeld who was a great support for my questions in the first months as well.
In addition, especially Lena Herrmann, Jan-Eric Heinrichs, Marco Menen and Tobias Klingl but of
course also the remaining people of the research group deserve a big thank-you for all of their help and
the great working atmosphere including office sport sessions, occasional chess games, lunch breaks
often filled with funny discussions and in general the productive and very enjoyable time in the office.
Finally, I would like to thank my family, further friends and flatmates for their ongoing support during
the last year and the whole study time.

iii





Contents

1 Introduction 1

2 The Standard Model 3
2.1 Particles and Fundamental Forces . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Electroweak Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Quantum Chromodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 The Z Boson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4.1 Properties and Decay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4.2 Z Z Diboson Production . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.5 Higgs Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5.1 Electroweak Symmetry Breaking and the Higgs Field . . . . . . . . . . . . . 11
2.5.2 The Higgs Boson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.6 The τ-Lepton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Experimental Setup 15
3.1 The Large Hadron Collider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 The ATLAS Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2.1 ATLAS Coordinate System . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.2 Triggers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.3 Tracking & Vertexing in the Inner Detector . . . . . . . . . . . . . . . . . . 19
3.2.4 Calorimetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.5 Muon System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3 Object Reconstruction at ATLAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3.1 Jets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3.2 Leptons & Photons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3.3 Missing Transverse Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4 Event Generation & Monte Carlo Simulation . . . . . . . . . . . . . . . . . . . . . 23

4 TMVA & Boosted Decision Trees 27
4.1 Training using the TMVA Factory . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 Evaluation using the TMVA Reader . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3 Decision Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3.1 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3.2 Boosting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

v



5 Multi-Tau Event Identification 33
5.1 Tau Lepton Identification in ATLAS . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.2 Multiplied Probability Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6 Data Samples & Background Estimation 41
6.1 Observable Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.2 Signal Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.3 Monte Carlo Background Processes . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.4 Preselection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.5 Data Driven Estimation of Fake Taus from QCD Multijet Processes . . . . . . . . . . 46
6.6 Advanced Data Driven Fake Tau Background Estimation . . . . . . . . . . . . . . . 47

7 Event Selection in the ZZ → 4τ Channel 51
7.1 Cut-Based Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
7.2 Multivariate Approach using Boosted Decision Trees . . . . . . . . . . . . . . . . . 54

7.2.1 Training Samples and Variables . . . . . . . . . . . . . . . . . . . . . . . . 54
7.2.2 Training Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
7.2.3 Monte Carlo BDT Performance . . . . . . . . . . . . . . . . . . . . . . . . 60
7.2.4 QCD Multijet BDT Performance . . . . . . . . . . . . . . . . . . . . . . . . 62

7.3 Combination of Tau ID and BDT Classifier Output . . . . . . . . . . . . . . . . . . 65
7.3.1 Control Regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
7.3.2 Signal Regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
7.3.3 Validation Region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

8 Measuring the ZZ → 4τ Cross Section 73
8.1 Profile Likelihood Fit Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
8.2 Systematic Uncertainties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

8.2.1 Tau ID Uncertainties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
8.2.2 Further Uncertainties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
8.2.3 Pruning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

8.3 Fit Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
8.3.1 Asimov Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
8.3.2 ATLAS Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

8.4 Interpretation in the Standard Model . . . . . . . . . . . . . . . . . . . . . . . . . . 84

9 Conclusion 87

Bibliography 89

A Detailed List of Used Monte Carlo Samples 97

B Input Variable Distributions for the BDT Training 101

C Full Ranking Tables of the Input Variables for the BDT Training 109

D BDT Overtraining Results for Different Hyperparameter Setups 113

vi



E Pre-Fit Event Yield Tables 119

F Post-Fit Event Yield Tables 123

List of Figures 125

List of Tables 129

vii





CHAPTER 1

Introduction

Humans did always try to understand and describe scientific phenomena by creating models based on
their assumptions or experimental observations. They quickly came to the conclusion that science
itself is very likely to be infinite, as already stated by the German explorer Alexander von Humboldt [1]:

hello "Jedes Naturgesetz, das sich dem Beobachter offenbart, läßt auf ein höheres, noch
unerkanntes schließen." hello

Starting with the discovery of the electron in 1897 [2], the field of atomic, nuclear and particle
physics was developed, accompanied by further revolutionary theories like Einstein’s special relativity
(1905) [3][4], the Bohrmodel (1913) [5] or the Schrödinger equation (1926) [6] as one of the foundations
of quantum mechanics. Nowadays, the Standard Model (SM) of particle physics formulated in the
1960’s summarizes the current knowledge in this field of physics (cf. chap. 2). Its predictions have
been tested over many decades in experiments using high-energy particle colliders (cf. chap. 3) and
most of them were found to be in very good agreement with the observations. In 2012, finally the
last particle predicted by the Standard Model was found with the discovery of the Higgs boson at
CERN [7]. However, the SM does not give an answer to all questions in particle physics. For example,
it does not include a description of the gravitational force or the possible existence of dark matter
in the universe and also the origin of the non-zero masses of neutrinos, which are predicted to be
massless in the Standard Model, is beyond its scope.
Apart from these distinct hints for physics exceeding the theory of the SM, there are also some
processes within it which have not been measured yet. One of them is the Z Z → 4τ decay, where the
Z boson is one of the exchange particles of the weak interaction. Albeit it is described by the Standard
Model, such a final state with four charged leptons is quite exotic since it can be produced by hardly
any other SM process and thus also could be sensitive to possible beyond Standard Model (BSM)
physics, e.g. to heavy resonances decaying into two on-shell Z bosons. As the cross section of the
Z Z → 4τ process is expected to be very small, a best possible reconstruction and identification of the
short-lived τ-leptons emerging from the decay as well as their discrimination from simultaneously
produced background objects in the detector is crucial. For that purpose, the features of boosted
decision trees (cf. chap. 4), which are a commonly used type of multivariate classifiers in high
energy particle physics, are combined with the power of a new identification method for multi-tau
events (cf. chap. 5) developed and evaluated on the hh→ 4τ process in [8]. Instead of treating each
τ-lepton on its own, events of interest are selected based on a multiplied probability in which the
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Chapter 1 Introduction

information obtained from the single taus is merged. However, despite its unique final state structure,
the Z Z → 4τ channel suffers from a large hadronic background originating from QCD jets which are
misidentified as τ-leptons. For the estimation of this background, a data driven technique is adapted
from [8] and further extended in chapter 6. Subsequently, an event selection for the Z Z → 4τ channel
is designed which exploits the potential of combining the introduced tau identification method with
the classification power of boosted decision trees (cf. chap. 7). This selection is then used in chapter 8
to perform a profile likelihood fit in order to measure the Z Z → 4τ cross section compared to the
Standard Model prediction, including the effects of systematic uncertainties. Finally, the obtained
results are summarized in chapter 9 and an outlook towards further possible studies is given.
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CHAPTER 2

The Standard Model

The Standard Model of particle physics describes the elementary particles of our universe and the
fundamental forces acting between them. Many of its parameters have beenmeasured with impressively
high precision at the end of the last century, e.g. with the Large Electron-Positron (LEP) collider at
CERN [9], before the SM was finally completed with the discovery of the Higgs boson in 2012 [7]. Up
to now, the Standard Model predictions are in very good agreement with experimental data collected
over many decades and represent one of the largest successes of modern physics [10]. Section 2.1
gives a quick overview of the particles and forces in the SM, followed by a short explanation of the
underlying concepts of electroweak unification in section 2.2 and quantum chromodynamics in section
2.3. The Z boson and its properties are summarized in section 2.4, before the Higgs mechanism is
introduced in section 2.5. Finally, the description is completed with the properties of τ-lepton in
section 2.6 which will be of particular interest for the analysis presented in this thesis.

2.1 Particles and Fundamental Forces

In the Standard Model, there are three forces (electromagnetic, weak and strong) acting on particles
by the exchange of spin-1 vector bosons, also called force carriers, which are summarized in table
2.1. The additional fourth force, gravity, is not included in the model since its relative strength for
elementary particles is many orders of magnitude lower than those of the other forces. The mass of the
exchange boson directly affects the range of the corresponding interaction. Photons are massless which
leads to an infinite range of the electromagnetic force where only the interaction strength decreases
with rising distance between two particles. In contrast to that, the force carriers of the weak interaction
have comparably high masses of mW = 80.385 GeV and mZ = 91.1876 GeV (cf. tab. 2.1) resulting
in an interaction range of only ≈ 10−3 fm. Being the exchange particle of the strong interaction, the
gluon is massless again. But since it carries color charge itself (unlike the photon which is electrically
neutral), it has the possibility to interact with other gluons. The combination of this behavior with the
theory of color confinement1 limits the effective range of the strong interaction. Particles participating
in this interaction are called hadrons [11].

1 "Free" particles always need to be color neutral. For distances of more than ≈ 1 fm there is a sufficient amount of energy
in a two-particle system to create quark-antiquark pairs from the vacuum which form color neutral hadrons again.

3



Chapter 2 The Standard Model

Interaction Exchange particle Coupling to Mass [GeV]
electromagnetic photon (γ) electric charge q 0

strong 8 gluons (g) color charge (red, green, blue) 0
weak W± and Z boson weak isospin IW 80.385 / 91.1876

Table 2.1: The exchange particles of the different interactions in the Standard Model and their properties. From
[11] chap. 13, masses from [11] chap. 12.1.

Figure 2.1: The Standard Model of particle physics. The three generations of fermions (quarks & leptons) as
well as the vector (or gauge) bosons and the Higgs boson including their mass, spin and electric charge are
shown. Image from [12].

In addition to these bosons, there are 13 other elementary particles predicted by the Standard Model
shown in figure 2.1 which differ in their quantum numbers (e.g. electric charge, flavor, baryon or
lepton number). Those are namely the quarks, leptons and the Higgs boson which occurs as excitation
of the Higgs field (cf. sec. 2.5). Quarks belong to the group of fermions, i.e. are spin- 1

2 particles and
take part in all SM interactions since they carry electric and color charge as well as an weak isospin
unequal to zero. Leptons, being fermions too, only interact weakly and, in case of the charged leptons,
also electromagnetically. The Higgs boson couples exclusively to non-massless particles [11].
The fermions of the Standard Model are split in three generations. The first one contains the up and
the down quark, which form the proton and the neutron2, the electron and the electron neutrino. Apart
from the last one, these particles represent the elementary building blocks of all visible matter. The
higher generation particles differ in their flavor and mass from their first generation partners, but all
others quantum numbers are equal. They are unstable and naturally do not occur on earth but can be
produced in collisions of high energy particles, e.g. in a particle accelerator. Finally, for each quark

2 The single constituents of the proton are labeled as partons in the later part of this thesis.

4



2.2 Electroweak Interaction

and lepton an antiparticle exists. It has the same mass as the corresponding particle, but opposite
quantum numbers [11].

2.2 Electroweak Interaction

Quantum Electrodynamics

Quantum Electrodynamics (QED) is the quantum field theory3 of the electromagnetic interaction and
should be introduced very briefly here. Calculated from time-ordered perturbation theory, it describes
fermion interactions of e.g. the type a + b→ c + d which take place by the exchange of a particle X .
In QED, this mediator X is the photon γ, given by the free photon field [10]

Aµ = ε
(λ)
µ ei( ®p · ®x−Et) (2.1)

where ε(λ) denotes the four-vector for the polarization state λ. For a real photon, the polarization
vector needs to be transverse to the propagation direction, resulting in polarization states of [10]

ε(1) = (0, 1, 0, 0) or ε(2) = (0, 0, 1, 0) (2.2)

assuming a movement in z-direction. As it can be inferred from above, the fundamental interaction
always occurs between two spin- 1

2 fermions and a single photon. Therefore, QED vertices which
connect more than three particles are not allowed and all possible Feynman diagrams are based on this
three-particle vertex. In QED processes, each of these vertices contributes a factor of

αem =
e2

4π
≈

1
137

(2.3)

to the interaction matrix element where αem is the dimensionless electromagnetic coupling constant
[10]. An example for such a Feynman diagram is depicted in figure 2.2, showing electron-positron
scattering at tree level (also called Bhabha scattering), i.e. without taking loop effects into account.

e+

e−

e+

e−

γ

(a) s-channel

e+ e+

e− e−

γ

(b) t-channel

Figure 2.2: Feynman diagrams of the Bhabha scattering process, split into s-channel (annihilation) and t-channel
(scattering) [14].

3 For a more detailed introduction of quantum field theory concepts see [10] or [13].
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Chapter 2 The Standard Model

Weak Interaction

In contrast to QED and QCD (cf. sec. 2.3), the weak interaction is mediated by massive spin-1
bosons and is the only Standard Model interaction which does not conserve parity4. These properties
require the weak interaction to have a different form compared to QED and QCD. Classifying physical
quantities and interactions according to table 2.2, the latter interactions fall into the category of vector
current interactions with matrix elements being invariant under Lorentz transformations (see [10] for
a more detailed explanation). Demanding this invariance for the weak interaction as well, it needs to
have a form built from a linear combination of vector (V) and axial vector (A) currents, jµV and jµ

A
, to

still allow for the violation of parity [10]:

jµ ∝ gV jµV + gA jµ
A
. (2.4)

Here, gV and gA denote the vector and axial vector coupling constants, respectively. The relative
strength of the parity violating part of the matrix element compared to the part which conserves parity
follows as [10]:

gVgA

g2
V + g

2
A

. (2.5)

This allows for the conclusion that parity is conserved for either gV or gA being zero, while it is
maximally violated if |gV | = |gA|. Experimental results show that the charged weak interaction
mediated by the W boson seems to fulfill this last criterion, leading to a maximally parity violating
V − A structure. As a direct consequence, only left-handed chiral5 particle and right-handed chiral
antiparticle states participate in the weak charged-current [10].

Quantity/Interaction type Parity Components Gauge boson spin
Scalar + 1 0

Pseudoscalar - 1 0
Vector - 4 1

Axial vector + 4 1

Table 2.2: Different Lorentz-invariant currents are shown. Each of them has a unique combination of behavior
under the action of the parity operator and the spin of the exchange particle of the interaction. Information
merged from [10] chap. 11.2, tab. 11.1 and chap. 11.3, tab. 11.2.

Electroweak Unification

Particle physicists were always seeking for a unified theory describing all fundamental particles and
their interactions. A large success in this desire of unification was the development of a theory by
Glashow, Salam and Weinberg (GSW) in the 1960’s which combined electromagnetism and weak
interaction into a single picture for the first time and was awarded with the Nobel Prize in 1979 [15].
The charged-current weak interaction is invariant under SU(2)L local phase transformations, where L

4 The action of the parity operator P̂ causes spatial inversion with respect to the origin of the coordinate system, i.e.
®x → −®x.

5 The left- and right-handed chiral projection operators PR =
1
2 (1 + γ

5
) and PL =

1
2 (1 − γ

5
) allow for the decomposition

of any Dirac spinor into a left- and a right-handed part. Here, the γ5-matrix is given by γ5
= iγ0γ1γ2γ3 where γ j with

j = 0, 1, 2, 3 denotes the Dirac matrices [10].
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2.3 Quantum Chromodynamics

denotes the action on only left-handed particles as explained at the end of the last section. In order to
fulfill this local gauge invariance, three gauge fields need to be introduced, corresponding to the gauge
bosons W (1), W (2) and W (3). The physical W bosons are then given by the linear combinations [10]:

W±µ =
1
√

2

(
W (1)µ ∓W (2)µ

)
. (2.6)

Since experiments have proven that the neutral Z boson couples to left- and right-handed chiral particle
states, matching the Z boson with the remaining W (3) field, which might be an obvious solution, is not
correct. Instead, with the Z boson and the photon both being particles with an electric charge of zero,
the U(1) gauge symmetry of the electromagnetic interaction can be replaced with a new U(1)Y local
gauge symmetry. U(1)Y then gives rise to a new gauge field Bµ which again couples to a new kind of
charge, called weak hypercharge Y . It is defined by [10]:

Y = 2
(
Q − I(3)W

)
(2.7)

where Q is the electric charge and I(3)W the third component of the weak isospin. The photon field Aµ
and the Z boson can then be expressed as linear combinations of W (3)µ and Bµ with a weak mixing
angle θW [10]:

Aµ = +Bµ cos
(
θW

)
+W (3)µ sin

(
θW

)
(2.8)

Zµ = −Bµ sin
(
θW

)
+W (3)µ cos

(
θW

)
. (2.9)

θW further links the electromagnetic coupling αem with the weak one αW by [10]

sin2
(θW ) =

αem
αW
=

e2

g2
W

≈ 0.23 (2.10)

where gW denotes the weak coupling constant. Measurements of sin2
(θW ) yield an average result of

sin2
(θW ) = 0.23146 ± 0.00012 which is in good agreement with the theoretical prediction [10].

2.3 Quantum Chromodynamics

The quantum field theory of the strong interaction is called Quantum Chromodynamics. It is non-
abelian, invariant under SU(3) local gauge transformations and introduces a new quantum number
named "color", which is always conserved. The generators of the symmetry group have the form of
3× 3 matrices, requiring three color states (red, green, blue) and the respective anti-colors as well [10]:

r = ©­«
1
0
0

ª®¬ , g =
©­«
0
1
0

ª®¬ , b = ©­«
0
0
1

ª®¬ . (2.11)

Overall, there are eight generators which can be identified with the eight physical gluons already
mentioned in table 2.1. Carrying different combinations of color and anti-color, they form an octet of

7



Chapter 2 The Standard Model

colored states [10]:

r ḡ, gr̄, r b̄, br̄, gb̄, bḡ,
1
√

2
(rr̄ − gḡ) ,

1
√

6
(rr̄ + gḡ − 2bb̄)

As a result, only color-charged particles can couple to gluons and participate in the strong interaction.
Thus, this behavior also allows for gluon self-interactions (in contrast to QED where two photons can
not couple to each other). The naive expectation would now be to observe single quarks and gluons in
nature which then carry color and, in case of the quarks, fractional electric charge. But this has never
been the case yet and is explained by the (not analytically proven) hypothesis of color confinement
which was already shortly mentioned in section 2.1. The attractive interactions between the virtual
gluons, which are exchanged between two bound quarks, lead to a squeezing of the color field to the
form of a tube. The energy stored in this field rises with the distance between the quarks in a linear
way, making it impossible to separate them. Instead, this energy is used to create new quark-antiquark
pairs from the vacuum which then rearrange with the initial quarks and form colorless hadrons again.
Color confinement further limits the composition of bound hadronic states to either qq̄ (mesons), qqq
(baryons) or q̄q̄q̄ (antibaryons). Combinations of qq̄ and qqq (called pentaquarks) are theoretically
allowed, but have not been observed yet [10].
Another feature making QCD unique compared the electromagnetic, weak or even unified electroweak
theory is its coupling constant αS which varies with the energy scale. This behavior splits QCD into
two parts which have to be treated differently. In the regime of low momentum transfer, |q | ≈ 1 GeV,
perturbation theory can not be used (since αS = O(1) is large) and other techniques have to be explored.
The second part, typically referred to as asymptotic freedom, is reached for |q | > 100 GeV with αS
decreasing to ≈ 0.1 and allows for the application of perturbation theory again [10].

2.4 The Z Boson

2.4.1 Properties and Decay

The discovery of the Z boson by the experiments UA1 and UA2 at CERN in 1983 [16][17] in the
decay channels Z → e+e− and Z → µ+µ− successfully confirmed the predictions made by Glashow,
Salam and Weinberg years before. With a mass of mZ = (91.1876 ± 0.0021)GeV and a width of
ΓZ = (2.4952 ± 0.0023)GeV [18] it can decay into various combinations of fermions and antifermions
(except for top quarks since mt > mZ ) which are listed in table 2.3. The large difference between the
hadronic and leptonic branching fractions is caused by the color charge carried by the quarks, allowing
for a decay into an either rr̄, gḡ or bb̄ quark-antiquark pair. In contrast to the weak charged-current
interaction, which is mediated by the W boson, the Z , representing the weak neutral current, couples
to left- and right-handed chiral particle states, although the couplings are not equal. This effect is due
to the mixing of the Bµ and W (3)µ fields where the first one comes from the U(1)Y symmetry of the
electromagnetic interaction whose coupling is not affected by the particles chirality. The couplings of
the Z to left- and right-handed chiral states are given by [10]

cL = I(3)W −Q sin2
(θW ) and cR = −Q sin2

(θW ) (2.12)

with Q being the charge of the fermion the Z couples to.
Consequently, the Z and the photon both couple to all flavours of fermions and one can replace
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2.4 The Z Boson

Decay mode BR

e+e− (3.3632 ± 0.0042)%
µ+µ− (3.3662 ± 0.0066)%
τ+τ− (3.3696 ± 0.0083)%

νe,µ,τ ν̄e,µ,τ (20.000 ± 0.055)%
Hadrons (69.911 ± 0.056)%

Table 2.3: The different decay modes of the Z boson and their branching ratios. The branching ratio BR is
defined as the partial decay width Γj into a certain final state j divided by the total width ΓZ of the Z boson.
Data from [18].

the γ in each QED Feynman diagram with a Z . Nevertheless, their different masses result in an
energy-dependence of the matrix element for such a process. This behavior has been used at the LEP
collider at CERN in the 1990’s for extensive studies of the Z boson and its properties. Considering the
s-channel annihilation process e+e− → Z → qq̄, the whole center-of-mass energy

√
s is transferred to

the intermediate state particle Z/γ. While for
√

s � mZ the QED process mediated by the photon
dominates, the couplings to γ and Z become similar for

√
s � mZ , resulting in both processes needed

to be taken into account. In the range between (
√

s ≈ mZ ) the interaction is dominated by the Z boson,
as shown in figure 2.3. The contribution of the pure e+e− → Z → qq̄ process to the measured cross
section σ then follows a so-called Breit-Wigner distribution which is given by [10]:

σ ∝
1(

s − m2
Z

)2
+ m2

ZΓ
2
Z

. (2.13)

In addition, the measurement of the Z resonance provides another interesting possibility of testing the
Standard Model predictions, namely the determination of the number Nν of neutrino families which
can directly be obtained from the full width at half maximum (FWHM = ΓZ) of the resonance peak
[10]:

Nν =
ΓZ − 3Γll − Γhadrons

Γ
SM
νν

. (2.14)

Here, Γll is the partial decay width into a single flavor of charged leptons, Γhadrons the decay width into
all quark final states and ΓSMνν = 167 MeV the prediction of the Standard Model for the decay width of
the Z boson into a νν̄ pair. From the recorded data, one finds Nν = 2.9840 ± 0.0082 which is in good
agreement with the SM prediction of NSM

ν = 3 [10].

2.4.2 ZZ Diboson Production

At the Large Hadron Collider (LHC), which is the successor of the LEP accelerator at CERN and
is introduced in chapter 3, Z bosons can also be produced in pairs. Measurements of this diboson
production allow for further testing of many SM predictions made by electroweak and QCD theories
since any major deviations would give a hint to beyond Standard Model physics [19]. The production
cross section has been measured by the ATLAS experiment (cf. sec. 3.2) at

√
s = 8 TeV to be
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Chapter 2 The Standard Model

Figure 2.3: Cross section measurements in the e+e− → qq̄ channel in the energy region near the Z resonance
performed by LEP and earlier experiments. In addition, the pure QED contribution is visualized by a dashed
line. Image from [10].

7.1+0.5
−0.4 (stat.) ± 0.3 (syst.) ± 0.2 (lumi.) pb [20]. From figure 2.4 it can be found that this value is of

about four orders of magnitude lower than the total cross section for single Z boson production. In the
SM, Z Z production can either occur quark- or gluon-initiated, where the latter mode is suppressed
compared to the first one due to its loop-structure as shown in the Feynman diagrams in figure 2.5.
Some BSM theories also predict the existence of triple gauge couplings which could give rise to
another Z Z boson production channel as visualized in figure 2.6 and would increase the cross section
in regions of high energy scale interactions. Such couplings are forbidden in the Standard Model since
they would violate the SU(2)L × U(1)Y symmetry of the unified electroweak interaction introduced in
section 2.2 [19].

Figure 2.4: Standard Model total production cross section measurements of different particle states involving
gauge bosons and top quarks done by the ATLAS experiment during run 1 and 2 of the LHC. Image from [21].
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Z

Z

(a) Quark-initiated

g

g

Z

Z

(b) Gluon-initiated

Figure 2.5: Leading-order Feynman diagrams for SM Z Z production in pp-collisions [14].

q

q̄

Z

Z

Z/γ∗

Figure 2.6: Example Feynman diagram for BSM Z Z production including a triple gauge coupling [14].

2.5 Higgs Mechanism

2.5.1 Electroweak Symmetry Breaking and the Higgs Field

In the Standard Model, the fundamental fermions and massive gauge bosons gain their masses by
an interaction with the so-called Higgs field and a spontaneous breaking of the SU(2)L × U(1)Y
electroweak symmetry. Particle states are then described by excitations of this field. Nowadays, this
theory is known as the Higgs mechanism [22] [23].
In order to generate the masses of the three massive electroweak gauge bosons, the minimal SM Higgs
model requires four degrees of freedom which are provided by two complex scalar fields. These
further need to account for the charges of the gauge bosons, resulting in one field being charged while
the other one is neutral [10]:

φ =

(
φ+

φ0

)
=

1
√

2

(
φ1 + iφ2
φ3 + iφ4

)
. (2.15)

The respective Lagrangian is then given by [10]

L = (∂µφ)
†
(∂µφ) − V(φ) (2.16)

where the Higgs potential V(φ) reads [10]:

V(φ) = µ2φ†φ + λ(φ†φ)2 , λ > 0 . (2.17)

Demanding the parameter λ to be positive ensures that the potential has a finite minimum, but its
position and the potential form further depend on µ2. While the minimum occurs at φ = 0 for positive
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Chapter 2 The Standard Model

values of µ2, there are two of them at the positions [10]

φ = ±ν = ±

������
√
−µ2

λ

������ (2.18)

for µ2 < 0, as visualized in figure 2.7. This behavior results in a vacuum state of the field of either
φ = +ν or φ = −ν unequal to zero and is called spontaneous symmetry breaking [10].

(a) Two-dimensional sketch of the potential for µ2 > 0 (left)
and µ2 < 0 (right). The position of the minimum or minima,
respectively, depends on the sign of µ2. Image from [24]. hello

(b) Three-dimensional sketch of the
potential for µ2 < 0. The position of
the ground state is marked by the blue
ball while the orange one denotes the
origin of the coordinate system in Re(φ)
and Im(φ). Image from [25].

Figure 2.7: The potential V(φ) = µ2φ†φ + λ(φ†φ)2 for a complex scalar field φ.

The masses of the gauge bosons can then be calculated from the first term in equation 2.16, but first
the partial derivative ∂µ needs to be replaced with an appropriate covariant derivative Dµ to ensure to
not violate the SU(2)L × U(1)Y local gauge symmetry of the electroweak model [10]:

∂µ → Dµ = ∂µ + igW ®T · ®Wµ + ig′
Y
2

Bµ . (2.19)

Here, gW , Wµ, Y and Bµ are defined as introduced in section 2.2 and g′ denotes the coupling constant
of the electromagnetic U(1)Y symmetry. Further is ®T = 1

2 ®σ where ®σ is a vector composed of the
Pauli matrices σ1, σ2 and σ3. Applying this covariant derivative to equation (2.16) and calculating
(Dµφ)

†
(Dµφ) (see [10] for details) finally yields the gauge boson masses of [10]:

mW =
1
2
gW ν , mA = 0 and mZ =

1
2
ν

√
g2
W + (g

′
)
2 . (2.20)

Thus, the W and Z boson acquire mass through the Higgs mechanism while the photon remains
massless. The couplings of the gauge bosons to the Higgs field scale linearly with the boson mass,
i.e. ∝ mW and ∝ mZ for the massive bosons, respectively, and zero for the photon. The vacuum
expectation value ν of the Higgs field can directly be obtained from equation (2.20) and yields a value
of [10]:

ν = 246 GeV . (2.21)
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2.6 The τ-Lepton

Beside the gauge bosons, also the fermions of the Standard Model acquire their mass through the
Higgs mechanism. Their so-called Yukawa couplings gf to the Higgs field are given by [10]

gf =
√

2
m f

ν
(2.22)

where m f denotes the mass of the fermion. As a consequence, higher mass particles couple more
strongly to the Higgs field than lighter ones do.

2.5.2 The Higgs Boson

The Higgs boson h physically occurs as an excitation of the Higgs field and is a neutral scalar spin-0
particle. Its mass is predicted by the Standard Model as mh =

√
2λν2 and has been measured to be

(125.10 ± 0.14)GeV [26]. At the LHC, Higgs bosons are mainly produced by either gluon-gluon
fusion (ggF) or vector boson fusion (VBF), as shown in figure 2.8. Given that the Higgs boson’s
coupling to the gauge bosons and fermions increases with the mass of the respective particle, the
Higgs always prefers to decay into the most massive particles that are accessible while taking energy
conservation into account. The mass-dependent branching ratios of the Higgs boson are depicted in
figure 2.9 and, for a mass of mh = 125 GeV, summarized in table 2.4. Decays into WW or Z Z are
only possible if one gauge boson is produced virtual, i.e. off-shell, which is marked with a little star
behind the particle. Although photons and gluons do not have any mass, the Higgs boson can decay
into such final states through loops of virtual top quarks or W bosons [10].

h

g

g

t

t

t

(a) Gluon-gluon fusion

h

q

q

q

q

V
V

(b) Vector boson fusion

Figure 2.8: The two dominant Higgs boson production modes at the LHC. Gluon-gluon fusion has a much
larger cross section, while vector boson fusion allows for an easier detection due to the signature of two forward
jets [14].

2.6 The τ-Lepton

The τ-lepton is the third generation partner of the electron and concurrently the heaviest lepton. Due
to a high mass of mτ = (1.77682 ± 0.00016)GeV it decays rather quickly and only has a short lifetime
of ττ = (2.903 ± 0.005) × 10−13 s [27]. In contrast to electrons or muons, its mass further allows the
tau to either decay into lighter leptons or into different combinations of charged and neutral pions.
The dominant decay channels are depicted in figure 2.10. In this analysis, hh and Z Z decays into four
τ-leptons will be considered, where either all four or three taus further decay hadronically and no or
one tau leptonically, respectively. The full hadronic decay mode is then referred to as 4h0l while the
channel including a light lepton is denoted with 3h1l.
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Chapter 2 The Standard Model

Figure 2.9: Branching ratios of the Higgs boson
into possible final states depending on its mass
MH . The uncertainty of the branching ratio is
visualized by the thickness of the respective band.
Image from [28].

hello

Decay mode BR

bb̄ 57.8%
WW∗ 21.6%
gg 8.6%
τ+τ− 6.4%

cc̄ 2.9%
Z Z∗ 2.7%
γγ 0.2%

Table 2.4: The dominant decay modes of the Stand-
ard Model Higgs boson and their branching ratios.
Data from [10].

Figure 2.10: The dominant decay modes of the τ-lepton and their branching ratios. Tau decays are separated into
final states containing charged leptons (leptonic) and those without (hadronic). The hadronic decays are further
discriminated by the number of charged pions in the decay products, referred to as prong (p). Image from [29].
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CHAPTER 3

Experimental Setup

Since our universe is only built from the Standard Model’s first generation charged particles, other
fermions or gauge bosons have to be created artificially if their properties should be studied. For
many decades now, physicists use particle accelerators for that purpose. Today, they either collide two
particle beams or one beam with a fixed target and use large detector instruments to precisely measure
the particles created in these collisions. For a fixed beam energy, the collision of two beams results in
a higher center-of-mass energy available for particle creation than the fixed target setup, making it the
favorable design of most currently operated high energy accelerators.

3.1 The Large Hadron Collider

The Large Hadron Collider (LHC) is a circular particle accelerator with a circumference of approx-
imately 27 km, located at the European Organization for Nuclear Research (CERN) near Geneva,
Switzerland. It accelerates protons which then collide with a center-of-mass energy of currently
√

s = 13 TeV. Additionally, there are special data taking periods with heavy ion beams. Along the
accelerator, four large detectors are placed in order to study the properties of the particles created in
these collisions and to search for new particles predicted in theories and models beyond the Standard
Model. The structure of the LHC including its pre-accelerators is depicted in figure 3.1.
After achieving an energy of 450GeV in the Super Proton Synchrotron (SPS), the protons are
injected in bunches into the LHC. One bunch contains a total of 1.2 × 1011 protons while the beam
consists of 2808 bunches with a time spacing of 25 ns. This results in an instantaneous luminosity of
L = 1.2 × 1034 cm−2 s−1 [30] (for the year 2017) which has been increased over the years of operation
multiple times and should also be further enhanced in the future (High-Luminosity LHC, [31]). The
luminosity is an important parameter for such collider experiments since it is directly linked to the
number of events N occurring of a certain physical process with cross section σ [11]:

N = σ · Lint = σ ·

∫
L dt . (3.1)

The accelerator ring is built up of two almost circular vacuum tubes where the two protons beams
are accelerated to their maximum energy of 6.5 TeV before they circulate for a few hours in the ring.
Since the LHC is a synchrotron, the beam particles only gain energy when passing one of at total
eight radio frequency cavities per turn. In the remaining revolution time, they are bent in magnetic
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fields created by 1232 large main dipole and 392 quadrupole magnets in order to stay at the desired
circular orbit. In such an accelerator, the energy loss per turn due to synchrotron radiation decreases
with higher particle mass and hence is much lower for protons or heavy ions than e.g. for electrons.
Therefore, massive particles are a more suitable choice when high center-of-mass energies should be
reached at which many particle physicists hope to find hints for new physics beyond the theory of the
Standard Model [30] [32].

Figure 3.1: Setup of the accelerator complex at CERN including the different experiments. Protons gain energy
in four pre-accelerators (LINAC 4, BOOSTER, PS, SPS) before being injected into the LHC. Heavy ions use
LINAC 3 and LEIR instead, followed by PS and SPS as for protons. Image from [33].

3.2 The ATLAS Detector

The ATLAS (A Torodial LHC ApparatuS) detector [34] is the largest detector which has ever been
built for a particle accelerator. It has a forward–backward symmetric cylindrical form with a diameter
of 25m, a length of 44m, weighs 7 000 t and is built as a multipurpose detector. As shown in figure
3.2, its subsystems are wrapped around the interaction point at the center and cover almost the entire
solid angle. The different components and the used coordinate system are explained in more detail in
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the following subsections [35].

Figure 3.2: The ATLAS detector: the pixel detectors and other systems for reconstruction of the particle
tracks are located at the center, surrounded by a homogeneous magnetic field created by superconducting
magnets which bend the particles and therefore allow for the measurement of their momentum. The adjacent
electromagnetic and hadronic calorimeters measure the energy of the particles through their interaction with the
detector material. The muon systems at the outer end complete the detector, they measure precisely the tracks
of created muons which do not deposit any significant amount of energy in the calorimeters. Image from [36].

3.2.1 ATLAS Coordinate System

The ATLAS coordinate system is depicted in figure 3.3. Its origin lies exactly at the position of the
nominal collision point. The particle beams are moving in +z and −z direction, while x- and y-axis
define the transverse detector plane with positive x showing into the direction of the center of the
LHC and positive y pointing upwards. In addition, the polar angle θ is given as the angle between
particle track and beam axis whereas the azimuthal angle φ is measured in the transverse plane around
the beam axis [34]. Defining the pseudorapidity as

η = − ln tan(θ/2) (3.2)

the three-dimensional distance measure can be described by the observable ∆R:

∆R =
√
∆η2
+ ∆φ2 . (3.3)

Since particles created in the collision can carry an arbitrary amount of momentum and energy in
z-direction, only their transverse components pT and ET are of interest for the measurement process.
Assuming natural units with ~ = c = 1, both quantities describe the same information and usually
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Figure 3.3: Coordinate system of the ATLAS detector. The positive x-axis points to the center of the LHC,
the positive y-axis upwards and the z-axis follows the direction of the beam line. The azimuthal angle in the
transverse plane around the z-axis is given by φ while θ describes the polar angle between the particle track and
the beam line. Image from [38].

only pT is used as event observable which is then given by [34]:

pT =
√

p2
x + p2

y . (3.4)

With the initial momentum of the colliding particles in x- and y-direction being zero, one can then
make use of momentum conservation and define the missing transverse energy Emiss

T as the magnitude
of the negative vector sum of the momenta of all particles detected in a collision [37]:

Emiss
T =

�����−∑
i

pT,i

����� . (3.5)

3.2.2 Triggers

In order to be able to select interesting events of a variety of physics processes, a highly efficient
triggering system with sufficient background rejection is required, especially for objects with low
transverse momentum pT. At the design luminosity of 1034 cm−2 s−1, proton-proton collisions occur
with a rate of approximately 1GHz but the current available technology limits the data recording
rate to a value close to 200Hz. The required rejection factor of 5 × 106 can easily be calculated
and is achieved by a three-level trigger system. The Level-1 trigger (L1) decreases the data rate to
approximately 75 kHz by using a subset of the whole detector information. Basing on that it decides
to either further process the event or to reject it. After that follow the Level-2 (L2) trigger and the
event filter which finally reduce the data rate to about 200Hz and usually are called the high-level
trigger [34].
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3.2.3 Tracking & Vertexing in the Inner Detector

The inner detector (ID) is the measurement instrument closest to the collision point and therefore
needs to deal with a huge number of particle tracks, namely approximately 1000 every 25 ns within
the accessible pseudorapidity range of η < 2.5. A combination of pixel and silicon microstrip
(SCT) trackers embedded in a 2 T axial magnetic field followed by straw tubes in the Transition
Radiation Tracker (TRT) offers the necessary fine detector granularity which allows for high-precision
measurements of particle momenta and vertex positions [34]. It is depicted in figure 3.4.

Figure 3.4: Overview of the ATLAS inner detector (ID). It consists of three major components, starting with the
silicon pixel detectors closest to the interaction point, followed by the semiconductor tracker (SCT) and the
Transition Radiation Tracker (TRT). Image from [39].

The pixel detector has approximately 80.4 × 106 readout channels and each track usually crosses
three of its layers which are segmented in R − φ and z. Each pixel sensor has a minimum size of
50 × 400 µm2 in R − φ × z achieving an intrinsic precision of 10 µm (R − φ) and 115 µm in z (barrel)
or R (end-cap), respectively [34].
In the subsequent SCT, each track hits eight strip layers corresponding to four space points. The barrel
region is equipped with 40mrad stereo strips which measure R and φ as well as the difference of both
quantities with one set of strips in each layer parallel to the z-axis. For the end-cap, the stereo strips
are supplemented by a radially running set of strips instead. The average strip pitch is about 80 µm
and the intrinsic precision achieves values of 17 µm in R − φ and 580 µm in z (barrel) or R (end-cap),
respectively. Overall, the SCT consists of approximately 6.3 × 106 readout channels [34].
The TRT offers only a measurement of R − φ, but therefore each track typically leaves 36 hits in the
detector which allows for tracking up to |η | < 2.0. Its straw tubes with a diameter of 4mm provide an
intrinsic precision of 130 µm per straw. The TRT has 351 000 readout channels [34].
Built in this way, the inner detector allows for high-precision measurements of R − φ and z of particle
tracks. The first subsystem further enables impact parameter determination and tagging of heavy-flavor
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quark jets as well as of τ-leptons. The momentum measurement is performed by both the pixel
detectors and the TRT straw tubes where in the latter the lower precision per point is compensated by
an overall larger amount of measurements and measured track length. Furthermore, the TRT provides
the possibility of electron identification by the detection of transition radiation photons [34].

3.2.4 Calorimetry

The energy which a particle looses due to interaction with the detector material is measured in the
calorimeters. If the particle gets completely stopped in the material, all of its energy is deposited in
the calorimeter clusters. The ATLAS detector contains an electromagnetic calorimeter built of lead
and liquid argon (LAr) and a hadronic one which are both separated into a barrel and an end-cap part
again and cover the range up to |η | < 4.9. They are illustrated in figure 3.5 [34].

Figure 3.5: Overview of the ATLAS calorimeters. The electromagnetic barrel and both calorimeter end-caps
work with liquid argon (LAr). An also LAr based forward calorimeter, the hadronic tile barrel and the tile
extended barrels complete the detector design. Image from [40].

The inner region of the electromagnetic calorimeter, which matches the η-coverage of the inner detector,
provides excellent energy determination of electrons and photons creating showers by interaction
with the detector material. The outer part has a coarser granularity but still allows for adequate jet
reconstruction and measurements of missing transverse energy Emiss

T [34].
Hadronic calorimetry of strongly interacting particles is performed in overall three different calorimeters.
The tile calorimeter made of steel and scintillating tiles surrounds the electromagnetic barrel and
is segmented in three layers. Including the extended barrel, it covers an η-region up to |η | < 1.7.
Two separate wheels per side built the hadronic end-caps which are directly placed behind the
electromagnetic end-cap calorimeters, using liquid argon in combination with copper plates. They
have a small overlap with the tile as well as with the forward calorimeter in order to decrease the
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material gap in the transition area between the components. The forward calorimeter finally also
covers the regions along the the beam axis and further reduces the radiation background in the adjacent
muon spectrometers [34].

3.2.5 Muon System

Since muons barely interact with the detector material, they deposit no significant amount of energy
in the calorimeters. In addition to the measurement performed in the inner detector, their tracks are
measured again in over 5 000 muon chambers at the outer parts of the ATLAS detector. Those are
equipped with large superconducting toroid magnets, separate trigger instruments and high-precision
tracking chambers covering a region of up to |η | < 2.7. Due to their large size, they are well visible in
figure 3.2. The measurement of particle coordinates and track curvature is mainly performed by 1 150
Monitored Drift Tubes and 32 additional Cathode Strip Chambers with higher granularity in the outer
η-region. Triggering is done with Resistive Plate Chambers in the the barrel and Thin Gap Chambers
in the end-caps for a region of up to |η | < 2.4 [34].

3.3 Object Reconstruction at ATLAS

Identifying the different particles created in a proton-proton collisions at the LHC is a key requirement
for the further analysis of all physical processes taking place in the collision. Hence, there is a need for
dedicated reconstruction and identification algorithms for a variety of particle types. In the following
subsections, a short overview of the used methods for jets (3.3.1), light leptons and photons (3.3.2)
and missing transverse energy (3.3.3) is given. Identification of hadronically decaying τ-leptons in
ATLAS is of special importance for this thesis and will therefore be treated separately in chapter 5.

3.3.1 Jets

Jets are collimated particle beams of color charged quarks and gluons which are created by the strong
force in a collision and emerge from the interaction point in a huge amount. Since in the Standard
Model free particles are not allowed to carry color charge, they recombine to color neutral hadrons
after very short timescales again. An example of a two-jet event is depicted in figure 3.6. Hadrons in a
jet usually have a comparably low momentum of approximately 300MeV [41] perpendicular to the jet
axis. The total jet energy is given by the energy of the quark from which the jet originates. In order to
determine this energy, one thus needs to reconstruct as many of the created hadrons as possible and
assign them to the jet [41].
In ATLAS, jet reconstruction starts with three-dimensional topological clusters which group together
calorimeter cells. Those with a signal-to-noise ratio of at least 4σ serve as seed clusters which are then
iteratively expanded over all adjacent cells with a minimum ratio of 2σ. At the end of this process, all
direct neighboring cells are added to the cluster in addition. This searching procedure further includes
a splitting step, in which all cells are checked for local energy content maxima. If such a maximum is
found, the cluster is split into two separate ones for which the iteration process starts over again. The
final criteria for a reconstructed cluster are an energy equal to the energy sum of its single cells, a
mass of zero and the point from which the jet originates has to match the collision point of the initial
proton beams. After calibration (see [42]), jets are then built using the anti-kt algorithm [43] and
further processed by taking pile-up, jet origin and jet energy corrections into account [42][44].
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Figure 3.6: Typical two-jet event in the CMS detector resulting from a proton-proton collision. The particle
beams enter the detector from bottom left and top right, respectively, and collide at the center, i.e. from where
the green tracks emerge. The reconstructed jets are visible as red and blue cones crossing the detector plane.
Image from [45].

3.3.2 Leptons & Photons

In contrast to jets and hadronically decaying τ-leptons, light leptons and photons can be reconstructed
as isolated objects in the detector which makes their identification easier compared to objects with many
tracks and cluster hits. Leptonically decaying taus (τ− → l−ντ ν̄l where l = e, µ) are reconstructed
as light leptons as well, since the neutrinos in the decay products do not interact with the detector
material and therefore can not be detected directly.

Electrons & Photons

Reconstruction of electrons and photons in the central region (|η | < 2.5) is mainly based on information
from shower shape variables in the electromagnetic calorimeter and on energy leakage in the hadronic
calorimeter. The electron identification is further improved by making use of track quality variables
and information about the matching between track and cluster position. For the forward region
(2.5 < |η | < 4.9) which is not equipped with any tracking instruments, only cluster and shower shape
information can be used for discrimination against hadrons. The number of defined working points1 is

1 Each fixed working point corresponds to a certain signal efficiency and background rejection factor. Both quantities are
not independent from each other, i.e. increasing the signal efficiency usually results in a lower background rejection (and
vice versa).
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three for electrons (loose, medium, tight) while for photons only two (loose, tight) exist. Finally, the
electromagnetic energy scale is further tuned using information from well known Z → ee decays [42].

Muons

Muons in the ATLAS detector are reconstructed by combination of the track and momentum
information provided independently by the inner detector and the muon spectrometers. This method
yields an efficiency of more than 95% while the achieved momentum resolution is about 3% over a
wide pT range and increases to 10% at a pT of 1 TeV [42].

3.3.3 Missing Transverse Energy

Missing transverse energy (MET) reconstruction again starts from topological clusters cells but also
from identified muons. The same calibration method as for jets is used and gets further combined with
the calibration of all physics objects in each final state. All clusters which could not be assigned to any
reconstructed object are now collected, building the MET soft term. For a given event, the Soft Term
Vertex Fraction (STVF) is then defined as the quotient of the pT sum of all tracks from the hard-scatter
vertex which could not be matched to jets and all tracks from all vertices which could not be matched
to jets. Afterwards, the MET soft term is rescaled by this STVF, event-by-event. Furthermore, MET
performance and relevant systematic uncertainties determined from data-simulation agreement of the
MET distribution in leptonic W and Z decays are taken into account for reconstruction [42].

3.4 Event Generation & Monte Carlo Simulation

In order to allow for the comparison of recorded data with the theoretical predictions of the Standard
Model, a good modeling of the underlying physics processes is required. For that purpose, Monte
Carlo simulations are used which can be divided in two main steps. First, the physics process of
interest is modeled by an event generator while afterwards a virtual detector algorithm simulates the
interaction of the ATLAS detector with the created particles. The first part can further be split in three
steps which are shortly summarized below and depicted in figure 3.7:

• The actual hard collision of two partons (one from the colliding protons each) with a large
momentum transfer can be described by perturbation theory. Nevertheless, this part is often
only simulated in leading order because higher order contributions are difficult to calculate [46].

• After the two-parton collision, so-called parton showers are created by processes of the strong
interaction (gluon radiation, quark-antiquark creation from radiated gluons and more). They
are simulated by an algorithm which scales, starting from the hard scattering process, the
momentum transfer down to low energy scales, taking color confinement into account [46].

• The hadronization is the transition process from the partonic (color charged particles) to the
hadronic final state in which only color neutral particles exist. Since lattice QCD, which is
the only theoretical ansatz for the description of this transition, is formulated in Euclidean
space-time and thus can not be applied to e.g. the time-evolution of partons into hadrons, only a
few models for this step exist. The most prominent ones are the Lund string model [47] and the
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cluster model (see [46] for more information). In the latter, all single gluons first annihilate into
quark-antiquark pairs from which then color neutral clusters are formed [46].

For the generation of events used in this thesis, there are three relevant Monte Carlo generators, all
starting from the initial proton-proton collision:

• PYTHIA 8 [48] is a new C++ version of the PYTHIA general purpose generator including new
physics models. Used as default generator in ATLAS, it starts with the hard scattering process
which is calculated in lowest order QCD. Afterwards, further QED and QCD radiation in a
shower approximation as well as underlying event activity is added. PYTHIA 8 offers a good
mix of power and speed and is often used together with other generators for a variety of final
states [49].

• Sherpa [50] is another multi purpose generator using parts of PYTHIA 8, but gives better
performance for final state with a large number of isolated jets since it does not use a pure
QCD showering algorithm as PYTHIA 8 does. In addition, it works with a further developed
underlying event generation, based on the PYTHIA 8 version [49].

• Powheg [51] which is based on the MC@NLO generator [52] but produces only events with
positive weight, is a more specialized generator for production of top quark events since it
models their pT distribution in a better way than e.g. PYTHIA 8 does. As stated by the name, it
calculates the hard scattering processes at next to leading order in QCD perturbation theory
[49].

Subsequently, the response of the ATLAS detector to these generated events is simulated. In order
to do so, a copy of the detector is built in GEANT4 [53] including the whole detector configuration,
misalignments and other distortions.
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3.4 Event Generation & Monte Carlo Simulation

Figure 3.7: Hadron-hadron collision in a particle accelerator simulated by a Monte Carlo event generator. The
large red dot at the center denotes the hard collision which is surrounded by a tree-like, also red structure
representing the parton showers created by bremsstrahlung effects. The violet ellipse below shows a second
hard collision of two partons. The light green blobs mark the transition of the colored parton state into the
color neutral hadronic final state, which is followed by the decay processes of the hadrons (dark green bullets).
Finally, the radiation of low energetic photons is depicted in yellow. Image from [54].
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CHAPTER 4

TMVA & Boosted Decision Trees

TMVA (Toolkit for MultiVariate Analysis) [55] offers a bunch of different multivariate classification
and regression algorithms, integrated in the ROOT environment [56]. Section 4.1 gives a short
overview of the training process using supervised learning [57] techniques, followed by the evaluation
procedure in section 4.2. Afterwards, the MVA method of boosted decision trees, which is used
for classification of signal and background events in the later part of this thesis, is introduced in
section 4.3.

4.1 Training using the TMVA Factory

The first part of such a classification analysis is the training of the multivariate methods that should
be used for discrimination. For that purpose, a TMVA Factory object is created which handles all
necessary interaction between the user and the algorithms. It provides member functions for the
selection of datasets for the training procedure, registration of training variables and booking of the
MVA methods. First, the input events get split into a training and a test set, including the possibility of
setting additional event weights. Since the treatment of events with negative weights as generated by
some Monte Carlo generators can cause problems in the process, they are often ignored or the absolute
value of the weight is used for training. By doing the event splitting in a randomized way, the test
set allows for a cross check of the training performance after the training process which should be
approximately equal on both datasets. If that is not the case, an effect of "overtraining" occurs where
the used method (in the most extreme case) does not learn the characteristic features and properties of
the different datasets (which are useful for classification), but basically memorizes the single events.
This effect often appears when the number of degrees of freedom in the setup is too low, resulting in
some methods being more susceptible for it than others. For boosted decision trees, the parameter
which needs to be tuned in order to overcome overtraining usually is the number of nodes in the tree
(see also section 4.3). Since with such a behavior the MVA method would not be applicable to a real
analysis, this cross check is very important [55].
When all the inputs are specified, each method is trained, tested and evaluated before the factory creates
method-specific weight files and a ROOT output file which contains the training results. Furthermore,
it also provides a list of the input variables ranked by their discrimination power for the different
methods [55]. An example workflow of the whole training procedure is graphically illustrated in the
left part of figure 4.1.
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Figure 4.1: The left side shows an example for the training step using the TMVA Factory. Initialized and called
by a user script (can be C++, Python, ROOT or similar), the factory object first reads the training variables
(need to be in form of a TFormula), sets up the training and test ROOT trees and books the specified MVA
methods with the given options. Then it trains, tests and evaluates all methods, creates the method-specific
weight output files and stores further results in the ROOT target file which can be named by the user.
A sketch of the subsequent application step is depicted on the right side. In analogy to the factory object before,
now a TMVA Reader object is created which evaluates the different MVA methods on the analysis samples and
classifies their events as signal- or background-like. The list of variables added to the reader needs to match the
one from the training step, but the list of MVA methods does not need to, as long as a weight file for the desired
method exists. Afterwards, in the event loop each event is evaluated with respect to the booked methods and the
classifier output distributions are filled. Image from [55].

4.2 Evaluation using the TMVA Reader

In the second step, which is performed independently from the first one, the training results are
evaluated on the events of the analysis data samples (with unknown composition) by the TMVA
Reader object. First, the variables from the training step and the desired MVA methods need to
be registered. For this purpose the weight files produced at the end of the training step are used.
Afterwards, for each method a classifier output variable can be created and is then filled by looping
over all events in the analysis data samples [55]. The workflow of the evaluation step is shown in the
right part of figure 4.1. In the generated classifier distributions, signal- and background-like events
usually tend to peak at different positions which can be nicely seen in the example given in figure 4.2.
Therefore, they can then be used as discriminating variables in the further analysis like other event
variables (multiplicities, pT, Emiss

T , . . . ) to optimize e.g. the signal-to-background ratio in a certain
event channel or to build phase space regions which are enriched with either signal or background
events, as it will be done in chapter 7 of this thesis.
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4.3 Decision Trees

Figure 4.2: Example for a BDT classifier distribution from the LHCb experiment at CERN. Background events
peak at a classifier value slightly smaller than −0.1 while signal-like events show a peak at approximately 0.3,
resulting in a good separation between both samples. The distribution of the test events for both samples
is superimposed on the training distribution and shows good agreement as well as hardly any indication of
overtraining. Image from [58].

4.3 Decision Trees

Adecision tree [55][59] is, compared to othermachine learning techniques like neural networks [60][61],
a relatively simple algorithm which can be used in particle physics for different classification tasks.
Section 4.3.1 shortly describes the working principle of a single decision tree, while section 4.3.2
explains the expansion to a whole forest of decision trees, called boosting, as well as the two most
common boosting algorithms AdaBoost and GradientBoost.

4.3.1 Basics

The basic principle of a decision tree is, as it might be inferred from its name, a repeated yes/no
decision taken on a single variable at each node, leading to a tree-like structure with several "leaves"
representing phase space hypercubes containing in majority either signal- or background-like events,
as depicted in figure 4.3. Starting from the root node, for each yes/no decision all training variables are
scanned with a certain step width over their whole range to find the variable xi and cut value ci which
gives the best separation power between signal and background at the current node. This procedure is
iterated until the maximum tree depth or minimum number of events in a leaf specified by the user
is reached. In order to allow for a more useful scanning procedure, the input variables usually are
transformed to a Gaussian distribution before [55].
There exist different splitting criteria (see [55], section 8.13.3 for more information) but since they
all lead to a similar performance, only the default criterion used by TMVA, called Gini Index, is
introduced here. It is defined by p · (1 − p) where p denotes the purity of the subset of events at the
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Chapter 4 TMVA & Boosted Decision Trees

Figure 4.3: Sketch of a simple decision tree. Starting from the root node, the data sample gets split into signal-
(S) and background-like (B) subsets until a stopping criterion is fulfilled. At each node, the variable xi and cut
value ci yielding the best separation between S and B is chosen. Image from [55].

given node, i.e.
Nsignal
Ntotal

. This leads to a criterion maximum at p = 0.5 which represents a subset with
an equal number of signal and background events. Because a cut separating a pure background subset
is as desirable as one yielding only signal events, the criterion is symmetric with respect to both event
classes and falls off to zero for p→ 0 and p→ 1 [55].
Although this simple setup can already provide good results in classification problems, the tree-like
structure has a major disadvantage, namely its instability to statistical fluctuations in the training
sample. In case of a node where two variables yield similar separation power, a statistical fluctuation
might result in the one variable to be chosen while without these fluctuation the other one would have
been used for the split decision. The closer to the root node such a fluctuation occurs, the larger the
impact on the decision tree since the whole following node structure including the used variables and
cut values can be different in both cases [55].

4.3.2 Boosting

In order to minimize the effect of these statistical fluctuations, the single decision tree can be expanded
to a whole forest of trees, typically a few hundred. An event is then classified as signal or background
based on the majority of votes of the forest trees. All decision trees are trained successively on the
same data samples where after the training of each tree a boosting is applied which basically modifies
the weight of certain events in the samples to compensate for the statistical fluctuations. Hence, the
final result then is a weighted mean of the decision trees in the forest. This procedure can significantly
improve the separation performance compared to a single decision tree, but on the other hand the
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4.3 Decision Trees

possibility of an easy schematic interpretation of the tree gets lost [55]. The two most common
boosting algorithms for decision trees which are also used in this analysis are shortly explained below.

Adaptive Boost

The adaptive boost (AdaBoost) is the most frequently used boosting algorithm for classification
problems. The first tree in the forest is trained using the nominal event weights for each sample but for
all remaining trees the weights are modified. For each subsequent tree, all events misclassified in the
previous tree get an additional boost weight α which is calculated from the rate err of wrong classified
events in the tree before as follows [55]:

α =
1 − err
err

. (4.1)

Afterwards, a renormalization is applied to the remaining events to keep the total sum of weights in
each sample constant. Defining the output of an individual classifier as h(x) = +1 for signal and −1
for background, respectively, with x being the tuple of input variables, the boosted event classification
yBoost(x) can be written as [55]:

yBoost(x) =
1

Ncollection
·

Ncollection∑
i

ln
(
αi

)
· hi(x) . (4.2)

In this equation, it is summed over all classifiers in the collection. Small values of yBoost(x) indicate
a background-like event while signal events tend to have a large yBoost(x). The loss function L
representing the deviation between the model response F(x) and the true value y determined from the
training sample (see [62] for a general short introduction) is here given by

L(F(x), y) = e−F(x)y (4.3)

where F(x) is assumed to be a weighted sum of parametrized base functions f (x; am) which are called
the "weak learners" [55]:

F(x; P) =
M∑
m=0

βm f (x; am); P ∈ {βm; am}
M
0 . (4.4)

The boosting is then carried out by minimizing the loss function L. Doing so, AdaBoost yields a very
good performance on weak classifiers, i.e. single decision trees with a depth of not larger than 2-3
which makes it a good choice for the setup of this analysis.

Gradient Boost

The shortcoming of an exponential loss function as used for the AdaBoost is its instability with respect
to mislabelled data points or outliers, leading to a decreased performance for setups with large noise.
The GradientBoost algorithm therefore aims to tackle this issue with the choice of the slightly more
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robust binomial log-likelihood loss function instead [55]:

L(F(x), y) = ln
(
1 + e−2F(x)y

)
. (4.5)

For this loss, the minimization of the boosting algorithm needs to be done using a steepest-descent
approach. For that purpose first the current gradient of the loss function is calculated, thereafter
a regression tree is built whose leaf values are tuned in a way that they match the mean value of
the gradient in the different regions defined by the structure of the tree. The set of decision trees
minimizing the loss function is then obtained by iteration of this process [55].
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CHAPTER 5

Multi-Tau Event Identification

As already stated in chapter 3, the reconstruction and identification of hadronically decaying τ-
leptons is of special importance for the investigation of a 4τ final state as performed in this analysis.
Consequently, dedicated methods are required to separate true tau events from those faked by QCD
multijet or other background processes (referred to as fake taus). Section 5.1 describes the "classic"
identification approach used in ATLAS, while section 5.2 shortly introduces a new identification
method for multi-tau events developed in [8] which is based on multiplied probabilities. All text
explanations given in that section originate from this reference. Moreover, some plots from [8] have
been reproduced for this chapter, but they might look slightly different due to some settings not being
exactly equal and should only serve as qualitative illustration. Further detailed information concerning
the development procedure and expected event yields can also be found in [8].

5.1 Tau Lepton Identification in ATLAS

Reconstruction

Due to its short lifetime of ≈ 10−13 s [27], the τ-lepton decays rather quickly and needs to be
reconstructed from its visible decay products (referred to as τhad-vis) in the detector. Furthermore, the
decay length of 87 µm [63] leads to a displacement of the tau decay vertex (TV) compared to the
primary collision point. Jets reconstructed by the anti-kt algorithm [43] with a distance parameter of
R = 0.4 are used as seeds for the τhad-vis reconstruction in combination with calorimeter cluster cells
(as described in section 3.3.1), if they fulfill pT > 10 GeV and |η | < 2.5. Then, the TV is identified
from an algorithm evaluating all tau candidate tracks in the region ∆R < 0.2 around the jet seed
direction and summing up their transverse track momenta. The vertex with the largest matched pT
fraction is chosen to be the TV. Track candidates further need to satisfy pT > 1 GeV, at least two
hits in the pixel detector and a minimum of seven hits in the pixel detector and the subsequent SCT
combined. The reconstruction efficiency for 1-prong and 3-prong tau leptons depending on their
truth visible transverse momentum is depicted in figure 5.1. This plot only considers tau candidates
which fulfill the final requirements of pT > 20 GeV, |η | < 2.5 and η outside of the transition region of
1.37 < |η | < 1.52 between the inner detector and the electromagnetic calorimeter [64].
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Figure 5.1: Efficiency for reconstruction of all charged tracks stemming from the tau decay for 1-prong and
3-prong taus as a function of truth τhad-vis pT. Image from [64].

Identification

Since reconstruction of tau candidates on its own does not provide a significant rejection against
hadronic background, this has to be achieved in an additional step. ATLAS uses boosted decision
trees or recurrent neural networks [65] for that purpose. In this analysis, the BDT approach is chosen
where the single trees are trained on Z/γ∗ → ττ (signal) and di-jet (background) events for 1-prong
and 3-prong decays separately. The discriminating variables used for the training process are based on
the reconstructed tracks as well as on the cluster information from the calorimeters and are further
corrected to account for pile-up effects. They (and their description) are directly taken from [64], can
be also found in [8] and are listed below:

• Central energy fraction ( fcent): Fraction of the calorimeter transverse energy deposited in
the region ∆R < 0.1 with respect to all energy deposited in the region ∆R < 0.2 around the
τhad-vis candidate. It is calculated by summing the energy deposited in all cells belonging to
TopoClusters with a barycenter in these regions, calibrated at the electromagnetic energy scale.

• Leading track momentum fraction ( f −1
leadtrack): The transverse energy sum, calibrated at the

electromagnetic energy scale, deposited in all cells belonging to TopoClusters in the core region
of the τhad-vis candidate, divided by the transverse momentum of the highest-pT charged particle
in the core region.

• Track radius (R0.2
track): pT-weighted ∆R distance of the associated tracks to the τhad-vis direction,

using only tracks in the core region.

• Leading track IP significance (|Sleadtrack |, 1-prong only): Absolute value of the transverse
impact parameter of the highest-pT track in the core region, calculated with respect to the TV,
divided by its estimated uncertainty.

• Fraction of track-pT in the isolation region ( f trackiso , 1-prong only): Scalar sum of the pT of
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5.1 Tau Lepton Identification in ATLAS

tracks associated with the τhad-vis candidate in the region 0.2 < ∆R < 0.4 divided by the sum of
the pT of all tracks associated with the τhad-vis candidate.

• Maximum ∆R (∆RMax, 3-prong only): The maximum ∆R between a track associated with
the τhad-vis candidate and the τhad-vis direction. Only tracks in the core region are considered.

• Transverse flight path significance (Sflight
T , 3-prong only): The decay length of the secondary

vertex (vertex reconstructed from the tracks associated with the core region of the τhad-vis
candidate) in the transverse plane, calculated with respect to the TV, divided by its estimated
uncertainty.

• Track mass (mtrack, 3-prong only): Invariant mass calculated from the sum of the four-
momentum of all tracks in the core and isolation regions, assuming a pion mass for each
track.

• Fraction of EM energy from charged pions ( f track-HAD
EM ): Fraction of the electromagnetic

energy of tracks associated with the τhad-vis candidate in the core region. The numerator is
defined as difference between the sum of the momentum tracks in the core region and the sum
of cluster energy deposited in the hadronic part of each TopoCluster associated with the τhad-vis
candidate. The denominator is the sum of the cluster energy deposited in the electromagnetic
part of each TopoCluster associated with the τhad-vis candidate.

• Ratio of EM energy to trackmomentum ( f EMtrack): Ratio of the sum of cluster energy deposited
in the electromagnetic part of each TopoCluster associated with the τhad-vis candidate to the sum
of the momentum of tracks in the core region.

• Track-plus-EM-system mass (mEM+track): Invariant mass of the system composed of the
tracks and up to two most energetic EM clusters in the core region, where EM cluster energy
is the part of TopoCluster energy deposited in the presampler and first two layers of the EM
calorimeter. The four-momentum of an EM cluster is calculated assuming zero mass and using
TopoCluster seed direction.

• Ratio of track-plus-EM-system to pT (pEM+track
T /pT): Ratio of the τhad-vis pT, estimated

using the vector sum of track momenta and up to two most energetic EM clusters in the core
region to the calorimeter-only measurement of τhad-vis pT.

Figure 5.2 exemplary shows the f EMtrack variable for 1-prong and 3-prong taus, while the resulting tau
identification scores are depicted in figure 5.3. The identification efficiency can then be defined as the
fraction of 1-prong (3-prong) hadronic tau decays which are reconstructed as 1-track (3-track) τhad-vis
candidates and also pass the BDT selection criteria. Multiplying this value with the pT-dependent
reconstruction efficiency from the previous section finally yields the combined tau signal efficiency. In
order to make this signal efficiency independent from pT again, the cut values on the tau identification
scores need to be chosen as a function of pT as well. Therefore, it is not possible to provide a fixed cut
value on the score distribution to always obtain the same signal efficiency. This problem is usually
solved by a transformation of the score in a way that it directly represents the identification efficiency
of τhad-vis candidates. The transformed score τjetBDTtrans is running from 0 (jet-like) to +1 (tau-like). A
value of e.g. τjetBDTtrans = 0.4 means that 40% of the reconstructed taus do not exceed this value, resulting
in a signal efficiency of 60% [64].
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(a) 1-prong (b) 3-prong

Figure 5.2: Distribution of the f EMtrack BDT training variable used for tau identification, split in 1-prong and
3-prong decays. Tau events are shown in red, while the black curves represent jet events. Image from [64].

(a) 1-prong hello (b) 3-prong

Figure 5.3: Tau identification score obtained from the BDT for tau (signal) and jet (background) events for
1-prong (left) and 3-prong (right) decays, respectively. Image from [64].

Tau identification in ATLAS uses three different working points, labeled loose, medium and tight,
corresponding to a certain identification efficiency (and transformed BDT score) each. They are
summarized in table 5.1 together with the additional, rarely used very loose working point [64]. While
choosing one of them results in good signal efficiencies for many ATLAS analyses (which mostly
do not investigate final states with more than two taus), such a fixed working point does not yield a
sufficient performance for the identification of a four tau final state as considered in this thesis. The
low number of expected events for such a diboson decay channel would be further decreased by the
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requirement that each of the four τ-leptons would have to pass the BDT score corresponding to the
selected working point [8]. Thus, a new tau identification method for multi-tau events in the hh→ 4τ
channel has been developed in [8] which is briefly described in the next section and will be used in
this analysis as well.

Working Point Signal efficiency Background rejection
1-prong 3-prong 1-prong 3-prong

Tight 60% 45% 40 400
Medium 75% 60% 20 150
Loose 85% 75% 12 61

Very loose 95% 95% 5.3 11.2

Table 5.1: Identification efficiencies of τhad-vis candidates and corresponding background rejection achieved
with the BDT for the different defined tau working points. Taken from [65].

5.2 Multiplied Probability Method

The main idea of a better identification algorithm of multi-tau events is to not require the single taus
to fulfill a certain working point anymore. Instead, the decision whether an event is identified as
a four-tau event is made based on the combined τjetBDT identification score information from the
τ-leptons provided in the previous section, which can be motivated from figure 5.4 quite well. It
shows the τjetBDT score distribution of the hh→ 4τ signal and two possible background processes,
split into truth and fake taus. While there is a considerable amount of truth taus for the signal, the
backgrounds have only a moderate to vanishing contribution of such events and are dominated by fake
taus. Nevertheless, there is also a non-negligible fraction of fake tau events for the signal process. The
requirement of a fixed working point for all four τ-leptons would now lead to two possible problems:

• For the signal process, there is a high chance for at least the fourth tau to not exceed the necessary
τjetBDT score of a medium or even loose working point. Consequently, a significant fraction of
hh→ 4τ events might be lost, although three of four taus are reconstructed very well and have
a relatively high score.

• For the background, there is still a considerable number of events in the region of medium
τjetBDT scores, i.e. |τjetBDT | . 0.7, since the absolute number of background events exceeds
those of signal events by far. Hence, such events with four medium score taus would be accepted
as long as every single tau exceeds the cut value given by the chosen working point, even if its
τjetBDT score is really close to the threshold.

In order to overcome these problems, a score combining the information from the single taus needs
to have two important properties. First, it should not reject events in which the majority of taus is
reconstructed very well and only one (or maybe two) τ-leptons have a medium or even low τjetBDT

score. On the other hand, it needs to provide rejection power against events which are dominated
by medium score taus and thus are more background-like. For that purpose, a new quantity τprob is
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(a) hh→ 4τ signal process (b) Z → ττ background process (c) tt̄ background process

Figure 5.4: τjetBDT score distribution of different physics processes for an integrated luminosity of 3 000 fb,
split into truth and fake taus. For the signal process (a) the fraction of truth tau events is approximately 75%.
Background processes producing two truth taus as Z → ττ (b) show a moderate amount of truth taus, while in
a process like tt̄ production (c) almost all taus are faked by jets.

defined in the following way:

τprob =
N truth

(
τjetBDT

)
N truth

(
τjetBDT

)
+ N fake

(
τjetBDT

) . (5.1)

Given that N truth and N fake are the numbers of truth and fake taus for a certain τjetBDT value, respectively,
τprob thus can be interpreted as the probability of a tau candidate to be a truth tau. Figure 5.5 shows
the distribution of τprob as a function of τjetBDT for the signal and different background processes. As
equation 5.1 directly depends on the numbers of truth and fake taus in the single τjetBDT bins, one
can expect the distributions to differ significantly from each other, based on the amount of truth taus
which usually emerge from the corresponding process. The plot confirms this expectation.
Furthermore, the impact of the sorting order of the four tau leptons with respect to several quantities
(pT, η, τ

jetBDT, 1- or 3-prong) on the τprob distribution has been studied in broad detail in [8]. For
each sorting algorithm, the taus are separated by the application of cuts which split the events into
different phase space regions in the sorting variable, e.g. bins in pT. The highest significance gain
S/
√

S + B with S being the number of signal and B the number of background events could be achieved
with a combination of the τprob variable and the prong-based sorting method [8]. This result can be
explained by the fact the τjetBDT scores introduced in section 5.1 are already defined separately for
1-prong and 3-prong taus, while they are relatively flat with respect to most other observables. A
better performance of the prong-based sorting method compared to the other ones might therefore be
somehow expected [8].
The new variable used for discrimination of truth-tau events against τ-leptons faked by jets is now
constructed as the product

∏
τ
prob
i of the single tau probability scores τprob defined in equation (5.1).

Figure 5.6 shows its separation power on a Sherpa ```` event sample (cf. tab. A.6). It can be nicely
seen that the base-10 logarithm of the designed probability product yields a large separation between
events with many and those with less truth taus. Although the discrimination performance of truth
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from fake tau events, compared to a cut on every single τjetBDT score, does not increase significantly
for the hh→ 4τ signal sample (cf. fig. 5.7(a)), a large gain can be observed for background events,
as exemplary shown for the tt̄ process in figure 5.7(b). Furthermore, the method of multiplied
probabilities also exceeds the "classic" τjetBDT score cut-based approach in terms of significance.
For a signal loss of 61% (corresponding to the requirement of four taus fulfilling the loose working
point), the expected significance can be doubled [8]. Hence, cutting on the tau probability product
seems to be very suitable for the separation of signal from background events in multi-tau final states.
Consequently, it will also be used in the analysis performed in this thesis.
hello

Figure 5.5: The probability value τprob as function
of τjetBDT shows large differences in the distribu-
tion for the different physics processes.

hello
Figure 5.6: Qualitative separation power of the
tau probability product for multi-tau events with
different numbers of truth taus, exemplary shown
for a Sherpa ```` sample. Events with a high
number of truth taus peak at values close to zero,
while fake-enriched events accumulate at larger
negative values.

hello
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(a) hh→ 4τ signal process (b) tt̄ background process

Figure 5.7: The plots show the rejection power against fake-tau events as a function of truth-tau signal
efficiency (ROC curve) for different physics processes and tau identification methods. The "classic" approach,
corresponding to a cut on the τjetBDT score of every single tau candidate, is shown as a dashed black line, while
the solid red curve shows the performance for the method of multiplied probabilities. While no significant
difference can be observed for the signal process, the probability-based cut clearly outperforms the "classic"
approach when being applied on the tt̄ background process.
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CHAPTER 6

Data Samples & Background Estimation

Given the identification method for multi-tau events presented in chapter 5, the following sections will
now focus on the general analysis setup. The analysis is performed on LHC run 2 2017 data with
an integrated luminosity of 46.9 fb−1, recorded with the ATLAS detector at a center-of-mass energy
of 13 TeV. At first, section 6.1 gives an overview of observables used later on in the analysis, before
in section 6.2 the signal samples for the hh → 4τ and Z Z → 4τ processes, which are modeled by
Monte Carlo simulations, are briefly introduced. Afterwards, the relevant backgrounds for a 4τ final
state are discussed in section 6.3, followed by the applied preselection requirements and resulting data
modeling in section 6.4. Finally, the estimation of background events with τ-leptons exclusively faked
by jets and its further improvement are treated in the sections 6.5 and 6.6.

6.1 Observable Definitions

In order to allow for a better understanding of the plots shown in the next sections and chapters, first
the most frequently used and not self-explaining observables are explained below:

• mττ: Mass of the ditau system formed by the respective τ-leptons. The tau candidates are
sorted with respect to their τjetBDT score, i.e. τ1 is always the tau with the highest τjetBDT score.

• ∆Rττ: Three-dimensional distance measure between the given τ-leptons.

• Nτ
tracks: Number of charged tracks in the tau decay products.

• log
(

∏

τprobi=1-3/4

)

: Probability product of three or four taus, respectively. If there is no index
"i=1-3" or "i=1-4" added to the name of the observable or if the index is "i=1-3,4", the 3-tau
product is chosen for events from the 3h1l channel while the 4-tau product is used for the
remaining events from the 4h0l channel.

• mτ1τ2τ3τ4
: Invariant mass of all four (4h0l) or three tau candidates and the light lepton (3h1l).

They form two ditau systems which again build the di-Higgs (chap. 6) or di-Z (chap. 7 & 8)
system.

• mlow/high
ττ : With four taus, there are two possibilities to combine one positively charged and

one negatively charged tau each to a ditau system. Thus, one can differentiate between one
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system where the taus are assigned correctly and one where the wrong taus are combined1. The
observable denotes the mass of the ditau system with correctly assigned τ-leptons and the lower
or higher mass of the two systems, respectively.

• mlow/high, false
ττ : Mass of the ditau system with falsely assigned τ-leptons and the lower or higher

mass of the two systems, respectively.

• ∆Rlow/high
ττ : Distance measure between the two taus in the ditau system with correctly assigned

τ-leptons and the lower or higher ∆R value, respectively.

• ∆Rlow/high, false
ττ : Distance measure between the two taus in the ditau system with falsely assigned

τ-leptons and the lower or higher ∆R value, respectively.

•
∑

pT(lep1−4, 3h1l): Scalar sum |pT(τ1)|+ |pT(τ2)|+ |pT(τ3)|+ |pT(`)| of the three tau candidates
and the light lepton which form the two ditau systems in the 3h1l channel.

6.2 Signal Processes

In the Standard Model, a final state with four truth τ-leptons originating from not more than two
particles can only be produced from diboson decays, either from twoHiggs or Z bosons. Both processes
have a very small cross section (cf. tab. A.1 & A.6) and suffer from a large background exceeding
the expected signal event yields by many orders of magnitude. The hh → 4τ process has already
been used in the previous chapter to demonstrate the power of the method of multiplied probabilities
for tau identification and will further serve as a representative signal for the background estimation
techniques shown in the subsequent sections. Chapter 7 and 8 then focus on the discrimination of
Z Z → 4τ events against their background and a measurement of the cross section of this process.

The hh → 4τ Process

As stated in table 2.4, 6.4% of all produced Higgs bosons decay into a pair of τ-leptons. The
probability for a di-Higgs decay into four taus is thus given by (6.4 %)2 = 0.41 %. Although there
are other final states with much higher branching ratios including b-quarks or vector bosons, like
hh→ bb̄ττ or hh→ WW∗ττ, they all come with a significant larger hadronic background than the
4τ state. Hence, the hh→ 4τ channel might be a suitable choice despite its small cross section and
the identification method for multi-tau events introduced in section 5.2 is a key to probe the potential
of this channel.
According to the possibility of a leptonic or hadronic decay for each of the four τ-leptons (cf. fig. 2.10),
the hh→ 4τ channel can be further split into different sub-channels which are depicted in figure 6.1.
In the most frequent case with a probability of 38%, three taus decay hadronically while the fourth
one decays into a light lepton and the additional neutrinos. Consequently, this channel is labeled
3h1l. It is followed by the 2h2l (31%) and the 4h0l (18%) channels. The two remaining final states
only occur with a probability of at total 13%. In order to make the best possible use of the tau
1 Of course a differentiation between the correct and false assigned combinations is only possible using truth-level
information. On reconstruction level, the pairing is done based on the minimization of the distance ∆R between the
possible tau pairs (cf. [8], sec. 6.3). The "false" combination in the following thus refers to the case where the tau
candidates are paired opposite to the combination resulting from the minimum distance approach.
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6.3 Monte Carlo Background Processes

Figure 6.1: Possible sub-channels for the hh → 4τ process and their branching ratios. They are labeled
according to their number of hadronically (h) and leptonically (l) decaying taus. Image from [8].

identification method of multiplied probabilities, only the 4h0l and 3h1l channels will be investigated
in this analysis2. The used signal sample has been generated with MC@NLO [52] while the particle
showering was simulated with Herwig [66]. Further details can be found in table A.1 in appendix A.

The ZZ → 4τ Process

In comparison to the Higgs boson, the branching ratio of the Z into two τ-leptons is only 3.4% (cf.
tab. 2.3), resulting in a probability of 0.12% for a Z Z decay into four taus. Nevertheless, the tau
branching ratios of course remain unchanged, so that figure 6.1 applies to the Z Z → 4τ channel as
well. Thus, the analysis towards the measurement of the cross section of this process in chapter 7 and
8 will also be restricted to the 4h0l and 3h1l sub-channels.
Since there was no exclusive Z Z → 4τ data sample available with the start of the analysis, it had to
be constructed separately. For that purpose, a ```` sample generated with the Sherpa generator [50]
is used which contains Standard Model processes with four leptons in the final state. The hh→ 4`
propagator has been deactivated for the simulation here in order to ensure that the Z Z decay is the only
process in the sample resulting in a final state with four correlated truth τ-leptons. Then, a Z Z → 4τ
sample can be easily cut out from this ```` sample by requiring at least three or four truth hadronic
tau candidates for the 3h1l and 4h0l channel, respectively. All remaining events which do not fulfill
this requirement are grouped into a new ```` sample which contributes to the background processes
described in section 6.3.

6.3 Monte Carlo Background Processes

The outstanding characteristic of the final state chosen for this analysis is the production of four
τ-leptons. As explained before, the Standard Model background processes in the 4τ channel mostly
come up with at least one tau faked by a jet or light lepton. In the most signal-unlike case, all four taus
are produced by QCD interactions and can be completely uncorrelated. The estimation of this special
QCD multijet background, which usually can not be taken from Monte Carlo simulations but has to
2 The 2h2l channel is also further contaminated by hh→ WW∗ττ events whose cross section is a lot larger than the one of
the hh→ 4τ process.
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be modeled directly from the recorded data, will be discussed separately in section 6.5. The main
other physical processes contributing to the expected background are briefly explained below, detailed
information concerning the used data samples can be found appendix A:

• V + Jets includes different processes of single vector boson production, i.e. W or Z bosons
which then decay into a charged lepton and a neutrino or two charged light leptons, respectively.
In that case, the leptons are misidentified as taus and additional jets fake the existence of two
more τ-leptons.

• In all Higgs background processes a single Higgs boson decays into ττ, where further taus
either stem from additional vector boson and top quark decays or are faked by light leptons and
QCD jets.

• Another background is coming from Z → ττ decays, where again the two remaining taus are
faked by jets.

• Production of multiple vector bosons, referred to asMultiboson from now on, decaying into
taus, falsely reconstructed light leptons or jets is an important background as well. Di- and
triboson processes decaying into different combinations of leptons and jets contribute to this
background.

• The t t̄ background includes decays of two top quarks with additional jets or light leptons
misidentified as τ-leptons again.

• The same final state can be produced by single top decays together with light leptons or the
decay of an additional vector boson.

In order to estimate the impact and expected event yields of these different processes, a truth-level
study has been carried out in [8] for an integrated luminosity of 3 000 fb−1. After application of a
few simple cuts (cf. tab. 4.1 there), the dominant background contribution for the 4τ final state is
expected to come from Higgs and multiboson processes and a significance of S/

√
S + B = 1.94 for

the hh → 4τ channel can be reached. However, the picture looks different on reconstruction level
since the underlying truth information from the Monte Carlo simulations can not be exploited there.
Thus, the next section will focus on how to choose some suitable preselection cuts which on the one
hand reduce the expected background but do not reject too many of the rare signal events.

6.4 Preselection

The starting point of this analysis in terms of datasets are the so-called DAOD3 files on which already
a few cuts are placed. These cuts for the used derivations HIGG4D2 and HIGG4D3 are summarized
in table 6.1. While for HIGG4D2 at least one tau candidate and light lepton is demanded, HIGG4D3
requires two tau candidates and additionally has a light lepton veto. Thus, these derivations basically
3 Experimental data recorded with the ATLAS detector is first stored in Analysis object data (AOD) type files. Since their
size usually is about a few petabytes, they are shrunk for the analysis of a certain physics process. The result of this
procedure are Derived AODs (DAOD) files with a size in the order of terabyte which in a next step are again slimmed to a
few gigabyte. This last step is carried out with the xTauFramework [67] which produces so-called n-tuples in form of a
ROOT tree [8].

44



6.4 Preselection

represent the 3h1l and 4h0l sub-channels of the analysis, respectively. Due to the very small expected
signal yields compared to the overall background, further preselection cuts are kept as loose as possible.
In the step of n-tuple production, all tau candidates are (in addition to the DAOD cuts) required to
have a transverse momentum of at least 20GeV, either one or three charged tracks in the tau core
region and must lie in the accessible η-region of the detector. On analysis level, finally exactly four
charged leptons are demanded from which two must have electric charge +1 and two −1. According
to the 3h1l and 4h0l analysis sub-channels, which are treated together, the number of light leptons is
restricted to be ≤ 1. The combination of these two cuts automatically ensures the existence of 3 or 4
tau candidates in the respective sub-channels. These cuts are summarized in table 6.2 and complete
the applied preselection requirements.

Derivation HIGG4D2 HIGG4D3

Object related Nτ ≥ 1 , Ne + Nµ ≥ 1 Nτ ≥ 2 , Ne + Nµ = 0
Momentum related pτT ≥ 23 and (pµT ≥ 12 or peT ≥ 15)

pτ1
T ≥ 33 and pτ2

T ≥ 23
(cut values in GeV) or pτT ≥ 18 and (pµT ≥ 18 or peT ≥ 22)
Object identification

e = Medium or µ = Good τ1 = Loose or τ2 = Loose
related

Tau related Nτ
tracks = 1 or 3 , |qτ | = 1 N

τ1,2
tracks ∈ [1, 8] , |qτ1,2

| = 1

Table 6.1: The two different DAOD types used in this analysis and the requirements on a event to be accepted for
the certain derivation sample are shown. Taken from [8], tab. 4.2.

Application step Cut criteria

N-tuple production
pτT > 20 GeV , Nτ

tracks = 1, 3 ,
|ητ | < 2.5 , |ητ | < [1.37, 1.52] ,
all τcand from same vertex

Analysis level qi: 2+2- , Nlep ≤ 1

Table 6.2: Preselection cuts placed on top of the DAOD cuts shown in table 6.1. They only require certain
properties for an object to be a tau candidate and select the desired 3h1l and 4h0l analysis sub-channels.
However, the charge requirement is suspended for the data driven fake estimation procedure described in the
sections 6.5 and 6.6. Taken from [8].

The corresponding cutflow histogram is depicted in figure 6.2(a), while figure 6.2(b) and 6.2(c) show
the resulting background modeling for some representative observables. Due to their large cross
section, the background is dominated by tt̄ and single top events. The largest truth-level backgrounds,
i.e. Higgs and multiboson processes, only give a low contribution to the background on reconstruction
level. Furthermore, a large difference between the background expectation and the recorded data is
visible. This leads to the conclusion that there is a significant background contribution exclusively
from QCD multijet processes which have not been taken into account yet. Since such events can not
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Chapter 6 Data Samples & Background Estimation

be described by perturbation theory and hence can not be simulated in Monte Carlo simulations, a
data driven estimation technique for this background is introduced in the next section.

(a) (b) (c)

Figure 6.2: In (a) the cutflow histogram to table 6.2 is shown. The application of the chosen cuts on the given
n-tuples can reduce most of the backgrounds by roughly one order of magnitude. Unfortunately, the loss of some
signal events is unavoidable. The remaining plots show the resulting background estimation in comparison with
the recorded data on preselection level (b) and after a cut on ∆Rττ (c). A large discrepancy can be observed.

6.5 Data Driven Estimation of Fake Taus from QCD Multijet Processes

The data driven estimation technique for QCD multijet events used in this analysis has also been
developed in [8] and is based on exploiting information from phase space regions with unphysical
charge combinations4. For the signal processes hh → 4τ and Z Z → 4τ four correlated taus are
expected from which two have positive and the other two negative electric charge. On the other
hand, many of the background processes in the 4τ channel produce only two correlated τ-leptons
(e.g. h → ττ, Z → ττ or tt̄ decays) and in multijet events, the taus faked by QCD jets are usually
not correlated at all. For such completely uncorrelated objects, the tau charges are expected to be
distributed with a 1 : 4 : 6 : 4 : 1 ratio along the different charge regions, according to the binomial
distribution. Table 6.3 shows the observed ratios for the signal processes, expected background and
recorded data. The data seems to fulfill the binomial expectation, which justifies the assumption that
the events in the unphysical data charge regions are mainly QCD multijet events with four uncorrelated
τ-leptons. However, the picture looks different for the background processes. In most of them, two
taus directly stemming from the mother particle decay should be correlated while the remaining two
are faked and might be uncorrelated with respect to the first two and to each other. The corresponding
binomial expectation for the inner charge regions 3+1-, 2+2- and 1+3- would thus read 1 : 2 : 1 and is
quite well represented in the observed event yields.
Under the assumption that the QCD multijet events do not differ in their properties along the different
charge regions, their number in the 2+2- region can now be estimated from the event yields in the
other regions. Therefore, at first the Monte Carlo prediction has to be subtracted from the recorded
data in each of the four regions. At this point, it has to be stated that this is only a valid approach if the
4 For four taus with charge +1 or −1 each they read 4+0-, 3+1-, 1+3- and 0+4-, while 2+2- denotes the physical charge
region.
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6.6 Advanced Data Driven Fake Tau Background Estimation

Cut hh→ 4τ Z Z → 4τ Higgs Z → ττ Diboson V + Jets tt̄ Data
4+0- 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
3+1- 23.5 20.7 82.1 16.6 9.9 8.8 8.5 4.4
2+2- 164.5 84.5 175.4 30.3 17.6 15.9 15.3 6.6
1+3- 24.0 21.2 77.5 15.2 8.9 7.4 8.4 4.1
0+4- 1.0 1.0 0.9 0.8 0.8 0.7 1.0 0.9

Table 6.3: The tau charge ratios for the signal processes, different backgrounds and the recorded data is shown.
They are all normalized to their event yields in the 4+0- channel. The 1 : 4 : 6 : 4 : 1 ratio expected from the
binomial distribution for four uncorrelated objects is only roughly fulfilled for data. The asymmetry towards the
positive charge regions is caused by the positive charges of the initially colliding protons in the beams. Taken
from [8].

subtracted part is small compared to the overall number of events in the regions. This condition will
be of interest in section 6.6 again. Afterwards, the remaining number of events in the outer 4+0- and
0+4- regions is averaged and multiplied by a factor of six (according to the binomial distribution),
serving as the first part of the fake estimation for the physical charge region. In a next step, the same
events are taken as a starting point again, but now their number is quadruplicated and subtracted from
the averaged expectation in the 3+1- and 1+3- regions. The result is then scaled up according to the
1 : 2 : 1 ratio for two correlated objects and added to the first part obtained from the 4+0- and 0+4-
regions. This sum is finally used as estimation for the number of QCD multijet events in the 2+2-
region.
Figure 6.3 shows the outcome of this procedure. It can be nicely seen that, within the statistical
uncertainty, the data is now in good agreement with the background prediction for different observables.
The left plot furthermore demonstrates the separation power of the designed tau probability product.
While the signal peaks close to a value of zero, the background predominantly accumulates at large
negative values. Background processes with two truth τ-leptons like h → ττ and Z → ττ peak at
intermediate values, as expected. Further plots and more detailed studies concerning the estimation
procedure can also be found in [8] and indicate a good data-to-model agreement beyond preselection
level as well. Hence, this data driven technique seems to be a good choice for the estimation of the
QCD multijet background in the 4τ channel.

6.6 Advanced Data Driven Fake Tau Background Estimation

As described in the previous section, a key requirement for the data driven fake estimation technique
to be a valid approximation is that the number of subtracted Monte Carlo simulation events is small
compared to the data in the respective unphysical charge regions. Luckily, the distributions of the
multijet and Monte Carlo backgrounds are very similar in their shape for most observables, but there
is one exception. Looking at figure 6.3(a) again, the tau probability product has been designed in
a way to separate multi-truth tau events from fake tau events as best as possible. Thus, events with
a high amount of fake taus mainly populate the left half of the plot while there are almost no such
events for probability values close to zero. Therefore, it might happen for this phase space region,
that the number of Monte Carlo events in a single bin is not small compared to the data, leading to
large statistical fluctuations in the fake estimation. Figure 6.4 displays this behavior. The result of the
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(a) (b) (c)

Figure 6.3: The result of the data driven fake estimation from unphysical charge regions is depicted for different
observables on preselection level. All three plots show a very good agreement between the totally expected
background and the recorded data. In (a), the discrimination power of the tau probability product designed in
section 5.2 is clearly visible. Figure (b) can be directly compared to figure 6.2(b) where no QCD multijet fakes
have been considered. The right plot (c) shows the distribution of the number of jets containing b-quarks which
will be of interest in chapter 7 again.

multijet fake estimation introduced in section 6.5 is compared with a different approach where only
Monte Carlo events with three or four, respectively, truth-matched τ-leptons are subtracted during the
estimation procedure. This additional requirement on the subtracted events ensures that their number
is also small compared to the data events with unphysical charges in the probability product bins close
to zero which then leads to a more robust fake estimation. As the fraction of events fulfilling this
requirement is very low with respect to the total amount of Monte Carlo events, nearly the whole
expected background is then estimated by this data driven technique, as shown in figure 6.5 and 6.6.
Nevertheless, it is still modeled very well and a good agreement with the data in the 2+2- region can
be observed.
However, at this point it has to be noted that of course the notation is changed. The background
denoted as "Fakes" in the plots does not contain pure QCD events anymore, but additionally all events
previously taken from Monte Carlo simulations which have at least one tau faked by a jet or light
lepton are included. The remaining events summarized in the other background processes are only of
the order of single events, their expected yields are shown in table 6.4. Furthermore, the following
processes are completely estimated data driven and fall out of the Monte Carlo background:

• Z → ee + Jets (3h1l & 4h0l channel)

• Z → µµ + Jets (3h1l & 4h0l channel)

• V + Jets (4h0l channel, TChannel processes, cf. tab. A.5)

• Z → ττ (4h0l channel)

• Single top (4h0l channel) .

This background estimation will now be used in the further analysis chapters 7 and 8 where a setup
allowing for a measurement of the cross section of the Z Z → 4τ process is developed.
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6.6 Advanced Data Driven Fake Tau Background Estimation

(a) Usual Monte Carlo event subtraction (b) Truth-matched Monte Carlo event subtraction

Figure 6.4: The distribution of the fake tau background and the Z Z → 4τ process in the tau probability product
is shown. Additionally, a veto on the existence of b-jets in the event is applied. The left plot (a) shows the result
of the estimated multijet background if all Monte Carlo events in each unphysical charge region are subtracted
from the recorded data during the estimation procedure. As the number of data events in bins close to zero
can be very low, the subtraction might lead to negative fake estimates there. In the right plot (b) an alternative
approach is taken, as the requirement of three or four, respectively, truth-matched taus is placed on the Monte
Carlo fraction being subtracted. It can be nicely seen that this additional criterion helps to stabilize the fake
estimation technique in regions with relatively high tau probability product scores.

(a) (b) (c)

Figure 6.5: The result of the advanced fake tau estimation for the observables from figure 6.3 is shown. Nearly
the whole visible background is now predicted by the data driven estimation technique but the agreement
between data and model is still very good and differs only slightly from the previous results.
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(a) (b) (c)

Figure 6.6: Logarithmic visualization of the results shown in figure 6.5. The remaining contributions with
truth-matched taus from the different background processes are visible, although they are very small. All events
with not three or four truth-matched taus, respectively, are part of the data driven estimated fake background
colored in gray.

Process / Channel 3h1l 4h0l Total
V + Jets 0.05 ± 0.05 0 0.05 ± 0.05
Higgs 3.95 ± 0.82 1.12 ± 0.41 5.07 ± 0.92

Z → ττ 1.95 ± 0.50 0 1.95 ± 0.50
Multiboson 0.88 ± 0.09 0.05 ± 0.01 0.93 ± 0.09

tt̄ 20.31 ± 1.92 0.25 ± 0.25 20.56 ± 1.93
Top 0.30 ± 0.30 0 0.30 ± 0.30
Fakes 381151.19 ± 1797.29 569412.81 ± 2176.78 950564 ± 2823

Table 6.4: Event yields of the different background processes resulting from the advanced data driven fake
estimation on preselection level. Only 0.003% of the background events are still modeled by Monte Carlo
simulations, all remaining events are estimated with the data driven technique.
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CHAPTER 7

Event Selection in the ZZ → 4τ Channel

In the previous chapters, the tau probability product as a powerful tool for identification of multi-tau
events (chap. 5) and a data driven fake tau background estimation method based on using information
from unphysical charge regions (chap. 6) have been introduced. For that purpose, a hh→ 4τ sample
was used to model a 4τ final state. The main aim of this thesis is now to validate these methods
on a Standard Model process. Thus, this and the next chapter focus on how to use them to perform
a measurement of the Z Z → 4τ cross section. At first, the results of a simple cut-based approach
using the tau probability product are shown in section 7.1, while section 7.2 presents a more complex
multivariate approach with boosted decision trees in order to further enhance the separation of signal
and background events. In section 7.3, the obtained BDT classifiers are finally combined with the
information provided by the tau probability product to construct signal and control regions for a profile
likelihood fit (cf. chap. 8).

7.1 Cut-Based Approach

As described in section 6.2, the 4τ channel suffers from a large hadronic background whereas the
expected number of Z Z → 4τ signal events is very low. Consequently, it must be ensured to not
loose too many of these events when trying to design a phase space region from which later the
Z Z → 4τ cross section can be obtained. Hence, only two cuts are placed in order to construct such
a signal region. Figure 7.1(a) shows the distribution of the number of jets containing b-quarks for
signal, background and data. As the Z Z decay does not produce any b-quarks, one would expect the
signal process to mainly populate the first bin of the plot. This behavior can indeed be observed. In
contrast to that, especially tt̄ events with three or four truth-matched tau candidates and the fake-tau
background produce final states with a number of b-jets unequal to zero. Therefore, a requirement of
Nb-jets = 0, referred to as b-veto in the following, can already reject a large fraction of the expected
background events while hardly any signal events are lost. In figure 7.1(b) the distribution of the
tau probability product with an b-veto applied is depicted. Similar to the hh→ 4τ process studied
in chapter 6, it also yields a high separation power between the fake background and the Z Z → 4τ
signal, although the overlap of signal and the background with truth-matched taus is larger compared
to the di-Higgs process.
The resulting events yields for different log

(∏
τ
prob
i=1-3,4

)
cut values are summarized in table 7.1 while
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(a) (b)

Figure 7.1: Distributions of the different cut variables used to enhance the signal-to-background separation in
the Z Z → 4τ channel. Subfigure (a) shows the distribution of the number of b-jets. While the majority of
signal events does not produce any b-jets, the fake-tau background has a quite large fraction of events in the
region Nb-jets , 0. In (b), the tau probability product is depicted after placing the requirement of Nb-jets = 0. A
good separation between the fake-tau enriched background and the Z Z → 4τ signal can be observed.

figure 7.2 exemplary shows the distribution of the invariant mass of the 4τ system after the application
of the cuts. The effect of the b-veto can be determined by comparison with table 6.4 where the yields
on preselection level were given. The dominating fake background can be reduced by roughly 36%
and also the largest Monte Carlo simulated process, tt̄ can be halved, although it is already very small
in terms of absolute events compared to the fakes. The further columns show the impact of different
cuts on the tau probability product. As it has been designed for that purpose, the rejection against the
fake-tau background is very high and with increasing cut values, the remaining background mainly
consists of only Higgs and multiboson events in addition. This observation is visible in figure 7.2 as
well and matches the results of the truth-level study performed in [8] which was shortly mentioned
in section 6.3. The depicted 4τ invariant mass distributions show a peak at a value slightly below
200GeV. As the Z boson has a mass of around 91GeV, one would expect the di-Z invariant mass
(which is equal to the mass of the 4τ system) to peak close to 180GeV, if the Z bosons are produced
at rest. But since the neutrinos from the tau decays can not be reconstructed in the detector, the visible
invariant mass is expected to be shifted to a lower value. This behavior can not be observed directly in
the plots since the binning had to be chosen quite coarse in order to have enough statistics in each bin,
but the result roughly confirms the expectation. Albeit the achievable significance S/

√
S + B rises

with the choice of higher cut values on log
(∏

τ
prob
i=1-3,4

)
(cf. tab. 7.1 again), the loss of signal events

is unavoidable and limits the performance that can be achieved with this cut-based event selection.
Therefore, a more complex approach with boosted decision trees is presented in the next section which
results in a better signal-to-background separation.
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Process / Cut b-veto log
(∏

τ
prob
i=1-3,4

)
> −2.0 log

(∏
τ
prob
i=1-3,4

)
> −1.5 log

(∏
τ
prob
i=1-3,4

)
> −1.15

Z Z → 4τ 13.36 ± 0.32 5.85 ± 0.27 4.20 ± 0.25 2.97 ± 0.22
V + Jets 0.05 ± 0.05 0 0 0
Higgs 3.54 ± 0.82 2.55 ± 0.71 2.22 ± 0.71 1.54 ± 0.58

Z → ττ 0.97 ± 0.40 0.08 ± 0.06 0 0
Multiboson 0.74 ± 0.08 0.54 ± 0.06 0.46 ± 0.06 0.37 ± 0.05

tt̄ 9.68 ± 1.30 0.33 ± 0.17 0 0
Top 0 0 0 0
Fakes 606289 ± 2236 405 ± 44 82.83 ± 20.52 19.95 ± 9.90
Data 607814 ± 780 405 ± 20 99 ± 9.95 31 ± 5.57

S/
√

S + B 0.017 0.287 0.443 0.635

Table 7.1: Event yields of the Z Z → 4τ signal, the background processes and recorded data after the cumulative
application of a b-veto and different log

(∏
τ
prob
i=1-3,4

)
cuts. Cutting on log

(∏
τ
prob
i=1-3,4

)
reduces the fake-enriched

background drastically and the larger the cut value is, the higher is the background rejection which can be
achieved. Even after the application of the cuts there is good agreement between background prediction and
data within the statistical uncertainty. The last row additionally shows the resulting significance S/

√
S + B after

each cut.

(a) b-Veto, log
(∏

τ
prob
i=1-3,4

)
> −2.0 (b) b-Veto, log

(∏
τ
prob
i=1-3,4

)
> −1.5 (c) b-Veto, log

(∏
τ
prob
i=1-3,4

)
> −1.15

Figure 7.2: Invariant mass distribution of the 4τ system after the application of a b-veto and different cuts on
log

(∏
τ
prob
i=1-3,4

)
. As expected, the number of background events decreases with an increasing cut value and only

the fakes estimated from data as well as Higgs and multiboson events yield a non-vanishing contribution to the
remaining background.
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7.2 Multivariate Approach using Boosted Decision Trees

Beside neural networks, boosted decision trees are a common tool in high energy physics analyses to
classify events either as signal- or background-like. Already a forest of a few simple trees can lead
to a considerable improvement in the separation between these two event classes. In this analysis,
two independent forests are trained and evaluated to discriminate the Z Z → 4τ signal from the
expected background. The training setup and the resulting separation performance are described in
the subsequent subsections.

7.2.1 Training Samples and Variables

Although nearly the whole background for the 4τ channel is estimated with a data driven method, it still
consists of different underlying physical processes. Taking a look back at figure 6.3, the contribution
of heavy particle decays to the total background is roughly 33% and is dominated by tt̄ or single
top quark events. The remaining fraction originates from QCD multijet processes which then are
misidentified as τ-leptons. Since the jets in the latter events might be completely uncorrelated and
are exclusively produced by the strong interaction, their kinematic and other physical properties are
expected to differ from those of the tau candidates being produced in heavy particle decays. Thus, two
independent forests of decision trees are set up and trained in order to separate Z Z → 4τ events from
the multijet and top quark-enriched background, respectively. Each forest is build up of 400 decision
trees with a maximum depth of 3 and minimum node size of 5%. For each single tree, AdaBoost and
GradientBoost, which were introduced in section 4.3.2, are used for boosting. The available events are
split based on their event number into training and test events. The training sample consists of those
events with an even event number, while events with an odd number are taken for testing. For the
training procedure, they all are reweighted to the absolute value of their nominal weight. This ensures
that events with negative weights do not affect the training in a detrimental way. Table 7.2 summarizes
these parameters for the BDT training. Furthermore, the samples for the training have to be chosen.
The decision tree for separation of signal from QCD multijet events (referred to as fake or multijet
BDT with classifiers BDT (Fakes) using AdaBoost and BDTG (Fakes) using GradientBoost) is trained
on data events from the unphysical charge regions (i.e. 4+0-, 3+1-, 1+3- and 0+4-) as they directly
represent the properties of the multijet fakes. The second decision tree (referred to Monte Carlo BDT
with classifiers BDT (MC) and BDTG (MC)) uses all background events in the 2+2- region generated
by Monte Carlo simulations as training input, i.e. those samples specified in appendix A, except for
the hh → 4τ sample and the fraction of events in the ```` sample serving as Z Z → 4τ signal (cf.
section 6.2). Additionally, a b-veto is placed on all training events. The idea of this requirement has
already been motivated in section 7.1 and ensures that the decision trees focus on the determination of
more complex event properties and correlations between single observables. The resulting numbers of
training and test events for both trees are summarized in table 7.3.
After all these parameters are fixed, the training variables for the decision trees need to be selected. A
careful optimization has been performed and the results are given below. At first, the whole BDT
setup is intended to be independent from the tau identification method introduced in section 5.2. This
ensures that the classifier outputs provided by the decision trees are orthogonal to the log

(∏
τ
prob
i=1-3,4

)
observable and can be later combined with it for the measurement of the Z Z → 4τ cross section.
Therefore, only kinematic variables like the pT of tau candidates, invariant masses of ditau systems
or distances in φ, η or R between reconstructed objects are considered for the training. Any tau
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7.2 Multivariate Approach using Boosted Decision Trees

Ntrees 400
Tree depth 3

Min. node size 5%
Boost types AdaBoost, GradientBoost

Training events Nevent even
Test events Nevent odd
Event weight |nominal weight|

Transformations I, P, G, D

Table 7.2: General training parameters of the boosted decision trees used for discrimination of the Z Z → 4τ
signal against its background. They have been optimized based on the performance of the GradientBoost which
will turn out to yield a better separation than AdaBoost does (cf. sec. 7.2.3 and 7.2.4). The transformation
abbreviations mean Identity, PCA (Principal Component Analysis), Gaussianisation and Decorrelation.

track-related information has to be left out since it is already used in the tau identification procedure,
albeit many of these variables would yield a higher separation power than the majority of the kinematic
ones. The training variable optimization was started from the same set of more than 170 variables
for both trees, from which at the end the subsets yielding the best separation performance on each
training sample have been chosen. These subsets include 45 variables for the Monte Carlo BDT
and 34 for the fake BDT. Before the training process, these variables are transformed by the TMVA
Factory (cf. sec. 4.3.1) according to the transformations set in the training parameters. In this
analysis, the transformations are an identity transformation followed by the principal component
analysis (PCA), a Gaussian transformation and finally a decorrelation transformation. Some exemplary
input variable distributions for both BDTs resulting from the application of all transformations are
depicted in the figures 7.3 and 7.4. The largest separation power in the shown variables for the multijet
BDT is provided by the transformed MET significance1 (fig. 7.3, top left), but also ∆ητ1τ3

indicates
a different distribution for signal and background events. The other distributions look quite similar
for both classes of events. However, this does not imply that the BDT performs bad because in
addition to the 1-dimensional distributions plotted here, it also considers two- and higher dimensional
correlations between the different variables. For the Monte Carlo BDT, this feature seems to be even
more important, as figure 7.4 reveals a large overlap between the signal and background histograms
for almost all variables. This behavior might be somehow expected since these processes should be
more similar in their physical properties than the signal compared to QCD multijet events produced
by the strong interaction. Hence, the input variable plots give already a first hint towards possible
performance differences between both decision trees which are covered in the next sections. For the
sake of completeness, the remaining training variable distributions can be found in appendix B.

7.2.2 Training Results

TMVA itself already provides a lot of different output information which allows for the optimization of
the BDT training. Using them is important, because any improvement of the training procedure might
directly result in a better signal-to-background separation in the classifier output. The information
mainly considered for that purpose in this analysis is the ranking of input variables created by TMVA in
1 The MET significance is a measure for the probability that an observed MET value is consistent with a fluctuation from
zero because of detector-related limitations like finite measurement resolution [68].
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Monte Carlo BDT
Training Nsig = 6893, Nbackg = 481316
Testing Nsig = 6645, Nbackg = 481574

Fake BDT
Training Nsig = 6893, Nbackg = 562830
Testing Nsig = 6645, Nbackg = 562383

Table 7.3: Number of training and test events of the boosted decision trees used for discrimination of the
Z Z → 4τ signal against its background.

4− 2− 0 2 4 6

Met significance (Gauss_Deco)

0

0.1

0.2

0.3

0.4

0.5

0
.2

7
7

 
 

/  
(1

/N
) 

d
N

Signal

Background

U
/O

­f
lo

w
 (

S
,B

):
 (

0
.0

, 
0

.0
)%

 /
 (

0
.0

, 
0

.0
)%

Input variable’Gauss_Deco’­transformed : Met significance

6− 4− 2− 0 2 4 6

 (Gauss_Deco)
2

τ
1

τ
η∆

0

0.1

0.2

0.3

0.4

0.5

0
.3

1
2

 
 

/  
(1

/N
) 

d
N

U
/O

­f
lo

w
 (

S
,B

):
 (

0
.0

, 
0

.0
)%

 /
 (

0
.0

, 
0

.0
)%

2
τ

1
τ

η∆Input variable’Gauss_Deco’­transformed : 

4− 2− 0 2 4 6

 (Gauss_Deco)
3

τ
1

τ
η∆

0

0.1

0.2

0.3

0.4

0.5

0
.3

1
8

 
 

/  
(1

/N
) 

d
N

U
/O

­f
lo

w
 (

S
,B

):
 (

0
.0

, 
0

.0
)%

 /
 (

0
.0

, 
0

.0
)%

3
τ

1
τ

η∆Input variable’Gauss_Deco’­transformed : 

6− 4− 2− 0 2 4 6 8

 (Gauss_Deco)  [rad]
2

τ
1

τ
)αcos(

0

0.1

0.2

0.3

0.4

0.5

0
.3

6
1

 r
a

d
 

/  
(1

/N
) 

d
N

U
/O

­f
lo

w
 (

S
,B

):
 (

0
.0

, 
0

.0
)%

 /
 (

0
.0

, 
0

.0
)%

2
τ

1
τ

)αInput variable’Gauss_Deco’­transformed : cos(

4− 2− 0 2 4 6

 (Gauss_Deco)  [rad]
3

τ
1

τ
)αcos(

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0
.2

9
6

 r
a

d
 

/  
(1

/N
) 

d
N

U
/O

­f
lo

w
 (

S
,B

):
 (

0
.0

, 
0

.0
)%

 /
 (

0
.0

, 
0

.0
)%

3
τ

1
τ

)αInput variable’Gauss_Deco’­transformed : cos(

4− 2− 0 2 4 6 8

 (Gauss_Deco)
2

τ
1

τR∆

0

0.1

0.2

0.3

0.4

0.5

0.6

0
.3

0
7

 
 

/  
(1

/N
) 

d
N

U
/O

­f
lo

w
 (

S
,B

):
 (

0
.0

, 
0

.0
)%

 /
 (

0
.0

, 
0

.0
)%

2
τ

1
τR∆Input variable’Gauss_Deco’­transformed : 

Figure 7.3: Exemplary input variable distributions after application of all transformations mentioned in table 7.2
of the decision tree trained for discrimination of the Z Z → 4τ signal against QCD multijet events. The signal
histograms are colored in blue while the background is depicted in red. Especially the plots in the top left and
top right corner show a visible separation between both classes of events.
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Figure 7.4: Exemplary input variable distributions after application of all transformations mentioned in table 7.2
of the decision tree trained for discrimination of the Z Z → 4τ signal against Monte Carlo background events.
The color code is equal to figure 7.3, but a comparison with this figure shows a generally larger overlap between
signal and background distributions for the Monte Carlo BDT.

combination with the area under the ROC (Receiver Operating Characteristic) curve which visualizes
the resulting background rejection as a function of signal efficiency. For each trained classifier, TMVA
evaluates the importance of each single input variable with respect to all splitting nodes and trees and
gives a score to it. These scores can not be interpreted numerically in a direct way, but the higher
the score, the more often the variable is used for the separation of signal and background events in
the training process. Thus, starting from a very large set of variables, the training efficiency can be
improved by basically removing one variable after another from the training until the performance
does not increase anymore because the tree gets to less information. This performance is evaluated
by the area under the ROC curve (AUC) which is also directly calculated after the training step. At
this point it is important to further check for the effect of overtraining to ensure that the performance
achieved on the training sample is similar to the one on the test sample and represents the whole
dataset.
The classifier-specific top-ranked variables for both decision trees are summarized in table 7.4 and 7.5,
while the full rankings including all variables of the final selection are listed in appendix C. For the
Monte Carlo BDT, it is found that the sum of transverse momenta of the tau candidates considering
only the 3h1l channel2 and the missing transverse momentum play the most important role in the
training process when using AdaBoost, followed by the difference in η between the MET and the jet
with the third-highest pT

3 (if existing). In the case of using GradientBoost, the variables with the

2 The fourth tau candidate τ4 refers to the tau with the lowest τjetBDT score in the 4h0l channel, whereas it is defined as the
charged lepton for events in the 3h1l channel.

3 In contrast to the tau candidates, which are sorted with respect to their τjetBDT score, the reconstructed jets are numbered
according to their transverse momentum, i.e. jet1 is the leading-pT jet, jet2 the subleading-pT one, etc.
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Chapter 7 Event Selection in the Z Z → 4τ Channel

highest importance are distances in φ between the leading jet and the third or fourth tau candidate,
respectively, as well as ∆φ of both ditau systems with falsely assigned tau candidates. The training
of the QCD multijet BDT mainly benefits from the different distributions in the transverse missing
momentum and the MET significance, which could already be expected from e.g. the top left plot in
figure 7.3. Similar to the Monte Carlo BDT, the distance in φ between the leading jet and the fourth
tau candidates is an important separation variable here, too.

Rank Variable Importance
1

∑
pT(lep1−4, 3h1l) 3.410 × 10−2

2 pMet
T 3.169 × 10−2

3 ∆ηMet, Jet2 3.025 × 10−2

4 ∆φmin((τ2τ4),Met) 2.863 × 10−2

5 ∆Rhigh
ττ 2.735 × 10−2

6 ∆φτ1τ3
2.595 × 10−2

7 ∆φMet,τ4
2.567 × 10−2

8 mlow
ττ 2.548 × 10−2

9 ∆φmin((τ1τ3),Met) 2.542 × 10−2

10 Met significance 2.510 × 10−2

(a) BDT (MC)

hello

Rank Variable Importance
1 ∆φJet1,τ4

2.908 × 10−2

2 ∆φ(τ1τ3),(τ2τ4)
2.856 × 10−2

3 ∆φJet1,τ3
2.754 × 10−2

4 ∆Rlow
ττ 2.678 × 10−2

5 ∆φ(τ1τ2τ3τ4),τ4
2.663 × 10−2

6 ∆ηMet,τ4
2.640 × 10−2

7 ∆φτ1τ3
2.626 × 10−2

8 ∆ητ3τ4
2.580 × 10−2

9 ∆φMet,τ4
2.578 × 10−2

10 ∆ηJet1,τ3
2.558 × 10−2

(b) BDTG (MC)

Table 7.4: Classifier-specific top-10 ranked input variables for the training of the Monte Carlo BDT.

Rank Variable Importance
1 pMet

T 5.837 × 10−2

2 Met significance 5.585 × 10−2

3 ∆φJet1,τ4
4.507 × 10−2

4
∑

pT(lep1−4, 3h1l) 4.455 × 10−2

5 ∆ητ1τ3
3.535 × 10−2

6 ∆Rhigh
ττ 3.396 × 10−2

7 ∆φMet,(τ1τ2τ3τ4)
3.293 × 10−2

8 mlow
ττ 3.284 × 10−2

9 pT(τ1τ2τ3τ4) 3.273 × 10−2

10 ∆φMet,τ4
3.246 × 10−2

(a) BDT (Fakes)

hello

Rank Variable Importance
1 pMet

T 4.600 × 10−2

2 Met significance 4.569 × 10−2

3 ∆ητ1τ3
3.506 × 10−2

4 ∆φJet1,τ4
3.457 × 10−2

5 ∆ηMet,τ4
3.450 × 10−2

6 ∆Rlow
ττ,false 3.443 × 10−2

7 ∆ητ3τ4
3.389 × 10−2

8 cos(α)τ1τ3
3.378 × 10−2

9 ∆φMet,τ4
3.368 × 10−2

10 ∆Rhigh
ττ 3.285 × 10−2

(b) BDTG (Fakes)

Table 7.5: Classifier-specific top-10 ranked input variables for the training of the QCD multijet BDT.
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7.2 Multivariate Approach using Boosted Decision Trees

The results of the overtraining check are visualized in figure 7.5 and figure 7.6, table 7.6 additionally
displays the corresponding numerical values. As explained above, in the ideal case the histograms for
both the training and the test sample should look the same for signal and background, respectively.
While this is indeed visible for the background in all plots, there are some deviations for the signal
events and the mismatching is a lot larger for the Monte Carlo BDT than for the multijet BDT. The
main reason for the occurrence of this effect is assumed to be the low number of signal events for the
training procedure, which was limited to approximately 13 500 whereas a few 100 000 events were
available for the background. It has been mentioned in chapter 4, that in such a case the decision tree
might not reveal the connections between the input variables but "memorizes" single events. Of course
this is an extreme case, however it might convey the idea of what is going on there. This problem can
usually be tackled by making the decision tree more simple in its structure. Since the tree depth is
already quite low (depth 3), the complexity has mainly been managed via the minimum node size
parameter, which was varied between 2% and 20%. Finally, a value of 5% was chosen (cf. tab. 7.2).
In general, it has been found that the effect of overtraining decreases with a rising minimum node
size. On the other hand, the increase of this parameter has negative consequences for the separation
between signal and background events in the classifier output. This behavior can be seen very well
in appendix D, where the outcome of the overtraining check for all classifiers and different sets of
hyperparameters is visualized. Consequently, a compromise had to be found between these effects and
the classification performance whose results are discussed in the next subsections.
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Figure 7.5: BDT classifier output distributions for the different combinations of signal/background and
training/test sample for the Monte Carlo BDT (overtraining check). Ideally, both histograms of one color should
be identical. While this is well fulfilled for the background, the signal shows differences between training and
test sample for both classifiers.
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Figure 7.6: BDT classifier output distributions for the different combinations of signal/background and
training/test sample for the QCD multijet BDT (overtraining check). Compared to the Monte Carlo BDT
(fig. 7.5), the agreement in the background is very good again, and also the signal histograms for the test
sample match the ones of the training sample much better. Additionally, the general overlap between signal and
background is smaller here, i.e. the multijet BDT performs better than the Monte Carlo BDT does.

Classifier
εtestsig (εtrainsig )

@εbackg = 0.01 @εbackg = 0.10 @εbackg = 0.30
BDT (MC) 0.085 (0.096) 0.417 (0.438) 0.747 (0.754)
BDTG (MC) 0.065 (0.080) 0.364 (0.403) 0.678 (0.701)
BDT (Fakes) 0.323 (0.321) 0.735 (0.734) 0.907 (0.907)
BDTG (Fakes) 0.310 (0.313) 0.720 (0.720) 0.902 (0.902)

Table 7.6: Signal efficiency comparison between training and test sample at fixed background efficiencies for the
different BDT classifiers (overtraining check). The numbers for the multijet fake BDT show better agreement
and thus less overtraining effects than those for the Monte Carlo BDT.

7.2.3 Monte Carlo BDT Performance

The Monte Carlo BDT has been designed to separate the Z Z → 4τ signal from the background events
with truth-matched τ-leptons as well as from the top-enriched Monte Carlo fake tau background.
Its classifier output distributions are depicted in figure 7.7. They show a reasonable separation
between signal and both type of background events. Monte Carlo background events with at least
three truth-matched taus are better separated from the signal as the fake tau events. Nevertheless,
since the top-enriched events faking τ-leptons are estimated data driven and therefore also part of the
background labeled as "Fakes" here, the BDT provides also some rejection power against the blue
histogram. The large fluctuations in the red Monte Carlo background histograms can be explained
by the low statistics in those samples. Remembering the results of table 6.4, only approximately
30 background events are not estimated using the data driven method but are directly taken from
Monte Carlo simulations. The use of the full run 2 dataset with an integrated luminosity of 139 fb−1
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7.2 Multivariate Approach using Boosted Decision Trees

(a) BDT (MC) (b) BDTG (MC)

Figure 7.7: Normalized classifier output distributions of the Monte Carlo BDT, split up into their performance
on the data driven estimated fakes and the remaining background taken from Monte Carlo simulations. In both
plots the separation of the Monte Carlo events colored in red is slightly better than those of the fakes depicted in
blue. The large statistical fluctuations in the red distributions are caused by the low number of events in the
Monte Carlo samples which is in the order of 30 (cf. tab. 6.4).

would probably further enhance the BDT performance at this point. In a next step, a ROC curve can
be directly constructed from the obtained classifier distributions. For that purpose, each of them is
scanned from its minimum to maximum value with a fixed cut step width of 0.04 (corresponding
to 50 data points for a classifier range from -1 to 1). At each of these points, the requirement of a
classifier score higher than the current cut value is placed and the resulting number of signal and
background events is calculated. The ROC curve then displays the resulting background rejection as a
function of the remaining signal efficiency. For the Monte Carlo BDT it is visualized in figure 7.8.
In the left plot, the performance is shown for the classifiers being evaluated only on the background
events taken from Monte Carlo simulations (red histograms in fig. 7.7), as this is what they have
been trained for. In that case, AUC values of 0.782 for the AdaBoost and 0.778 for the GradientBoost
are obtained. These values are in agreement with the results in table 7.6 where also the AdaBoost
classifier yielded higher signal efficiencies at fixed background rejections than the one which uses
GradientBoost. However, when being evaluated on the total background (right plot in fig. 7.8), the
BDTG (MC) classifier performs better than the BDT (MC) does. The comparison of the AUC values
reads 0.798 (BDT (MC)) vs. 0.803 (BDTG (MC)). This leads to the assumption that the GradientBoost
has a much higher rejection power against especially the multijet fakes which dominate the total
background, compared to the AdaBoost. Hence, only the BDTG (MC) classifier is used in the further
analysis. Nevertheless, the AUC values of the other tested hyperparameter setups are summarized in
table 7.7 for comparison. As already expected from the observations made in the previous section, the
performance drops with decreasing tree depth and increasing minimum node size.
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(a) Evaluation on the Monte Carlo background only. (b) Evaluation on the total background.

Figure 7.8: ROC curves evaluating the performance of the Monte Carlo BDT classifiers on different backgrounds.
The left plot (a) shows a larger fluctuation, especially in the GradientBoost classifier, which is again caused by
the low absolute number of events in this background sample. The curves in the right plot (b) are more stable
since there the evaluation is performed on the total background. The area under the curve, going towards 1 for
an ideal classifier, is around 0.8 for both classifiers in both plots.

Min. Node Size
Tree depth

2 3 5
2% 0.775 0.794 0.816
5% 0.774 0.798 0.807
10% 0.768 0.785 0.785
20% 0.735 0.740 0.740

(a) BDT (MC)

Min. Node Size
Tree depth

2 3 5
2% 0.792 0.807 0.809
5% 0.791 0.803 0.803
10% 0.774 0.790 0.791
20% 0.741 0.747 0.747

(b) BDTG (MC)

Table 7.7: AUC values of the BDT (MC) and BDTG (MC) classifiers evaluated on the total background for
different hyperparameter setups. The values get worse with decreasing tree depth and increasing minimum
node size. The result for the finally chosen setup is highlighted in bold font.

7.2.4 QCD Multijet BDT Performance

In contrast to the Monte Carlo BDT, the main task of the QCD multijet BDT is the separation of the
expected signal from the fake tau events produced exclusively by the strong interaction. As larger
differences in the physical properties between such events are assumed compared to the Monte Carlo
background, the multijet BDT should also yield an even better separation performance than the Monte
Carlo BDT does. The obtained results are depicted in figure 7.9. Indeed, both event classes are
separated very well and the BDT power becomes particularly visible in the BDTG (Fakes) classifier.
Albeit the distributions are quite flat with respect to the Monte Carlo background colored in red, i.e.
the overlap of this sample with the signal histogram is large, this behavior is no disadvantage because
those events can be handled with the BDT discussed in the previous section. Consequently, the ROC
curve, which can be found in figure 7.10, looks also much better compared to the Monte Carlo BDT.
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(a) BDT (Fakes) (b) BDTG (Fakes)

Figure 7.9: Normalized classifier output distributions of the QCD multijet BDT, split up into their performance
on the data driven estimated fakes and the remaining background taken from Monte Carlo simulations. While
the black and red histograms have a large overlap, the fakes in blue are very well separated from the signal
events.

(a) Evaluation on the data driven background only. (b) Evaluation on the total background.

Figure 7.10: ROC curves evaluating the performance of the QCD multijet BDT classifiers on different
backgrounds. As the contribution of the fakes to the total background is extremely close to 100%, hardly any
difference between both plots can be seen. The area under the curve is of around 0.9 for the two classifiers and
therefore much better compared to the Monte Carlo BDT, as expected.
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Here, it does not make any large difference for the result whether the BDT (Fakes) and BDTG (Fakes)
classifiers are only evaluated on the fakes or on the total background, as both are approximately equal
in absolute numbers. The AUC values for the evaluation against all background events are given
by 0.897 (BDT (Fakes)) and 0.909 (BDTG (Fakes)). Again, the procedure has been repeated for
different hyperparameter setups and the results are summarized in table 7.8. A similar behavior as
for the Monte Carlo BDT is observed. For a better overview, the values obtained from the different
decision trees for the finally chosen setup are again summarized in table 7.9. In contrast to figure 7.8,
where both classifiers yielded a similar performance, the GradientBoost now clearly outperforms
the AdaptiveBoost in the separation of signal from the total background. Therefore, again the BDTG
(Fakes) classifier is chosen for the further analysis procedure and is used together with the BDTG (MC)
and log

(∏
τ
prob
i=1-3,4

)
variables in the next section 7.3 in order to construct different phase space regions

for the profile likelihood fit carried out in chapter 8.

Min. Node Size
Tree depth

2 3 5
2% 0.882 0.900 0.918
5% 0.883 0.897 0.911
10% 0.879 0.892 0.898
20% 0.851 0.852 0.852

(a) BDT (Fakes)

Min. Node Size
Tree depth

2 3 5
2% 0.898 0.910 0.911
5% 0.897 0.909 0.912
10% 0.892 0.901 0.904
20% 0.864 0.868 0.868

(b) BDTG (Fakes)

Table 7.8: AUC values of the BDT (Fakes) and BDTG (Fakes) classifiers evaluated on the total background for
different hyperparameter setups. The values get worse with decreasing tree depth and increasing minimum
node size. The result for the finally chosen setup is highlighted in bold font.

Classifier
Evaluation on

Monte Carlo only Fakes only Total background
BDT (MC) 0.782 - 0.798
BDTG (MC) 0.778 - 0.803
BDT (Fakes) - 0.897 0.897
BDTG (Fakes) - 0.909 0.909

Table 7.9: AUC values of the trained BDT classifiers evaluated on the different backgrounds. Those of the
multijet BDT outperform the ones of the Monte Carlo BDT by far.
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7.3 Combination of Tau ID and BDT Classifier Output

In the previous section, two boosted decision trees have been trained independently for the discrimina-
tion of the Z Z → 4τ signal against the Monte Carlo and QCD multijet background. For the training,
only kinematic variables have been used so that the classifier outputs can now be combined with the
tau probability product in order to set up different phase space regions for a fit of the Z Z → 4τ cross
section. Additionally, the Nb-jets observable is used for that purpose, whose capability was already
motivated in section 7.1. The idea is now to define the fit regions by binning in Nb-jets and both BDT

classifiers and perform the fit in the log
(∏

τ
prob
i=1-3,4

)
variable. Overall, there are three control regions

(CR), two signal regions (SR) and one validation region (VR) constructed which are depicted in
figure 7.11. The corresponding selection criteria for events in these regions can be found in table 7.10.
Except for one control region controlling the top-enriched background, a b-veto requirement is placed
on all regions. For the BDTG (MC) classifier, only a very soft splitting value of −0.8 is chosen since
this already rejects most of the background with at least three truth-matched τ-leptons and also a
considerable fraction of the fake tau events stemming from heavy particle decays (cf. fig. 7.7). In
contrast to that, the BDTG (Fakes) distribution is divided into three parts with splitting values at 0.3
and 0.8. The "low" region of BDTG (Fakes) < 0.3 contains the majority of QCD multijet events,
whereas the signal regions are further split into one with a classifier value between 0.3 and 0.8 and
one with a value higher than 0.8. Additionally, a validation region is constructed which needs to fulfill
the requirement of BDTG (Fakes) > 0.3 as well but of course differs from the signal regions in its
BDTG (MC) classifier values.
The resulting background composition of the single fit regions is depicted in 7.12. For a better
visualization in the pre-fit plots, the fakes are further split into the fraction produced by QCD multijet
processes (gray) and the other part stemming from heavy particle decays predicted with the data
driven method (orange). Although this procedure requires a different implementation of the τ-fake
estimation, it should be noted that it does not change the overall number of expected background
events. From the top left plot (a) it can be found that the used BDT classifiers perform quite well
with respect to the background they have been trained on. The overwhelming majority of the QCD
fakes is separated into the respective control regions, although also a small fraction contaminates the
signal regions. The b-quark enriched CR hardly contains any QCD events, which is important in
order to control the dominant Monte Carlo background processes tt̄ and single top production. In the
signal regions (cf. (b)), ratios in S/

√
B of ≈ 0.02 and ≈ 0.05 can be reached which is already a good

result if one compares the number of signal and background events to the preselection level where the
background yields were many orders of magnitude higher than those of the signal sample. Subfigures
(c) and (d) show the data-to-model agreement in the different fit regions for all events being summed
up to one bin. The modeling for the control regions looks very good, whereas in the signal regions the
number of background events seems to be slightly underestimated. The single regions are further
investigated with respect to their log

(∏
τ
prob
i=1-3,4

)
distributions in the following subsections.
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hello

Figure 7.11: The fit regions of the profile likelihood fit for the measurement of the Z Z → 4τ cross section are
shown. They are constructed by binning the events in Nb-jets and the BDTG (MC) and BDTG (Fakes) classifier
outputs. At total, there are three control regions (light blue & violet enriched with tau fakes, green enriched
with tt̄ events), two signal regions (orange & red) and one validation region (dark blue) which is not considered
in the fit. Created with [69].

Label Short label Type
Selection

Nb-jets BDTG (MC) BDTG (Fakes)
bVeto, MCLow, FLow CRMCLowFLow CR = 0 < −0.8 < 0.3
bVeto, MCHigh, FLow CRMCHighFLow CR = 0 ≥ −0.8 < 0.3
bEnr, MCLow, Fgm09 CRTop CR > 0 < −0.8 > −0.9
bVeto, MCHigh, FMed SRMCHighFMed SR = 0 ≥ −0.8 ≥ 0.3 & < 0.8
bVeto, MCHigh, FHigh SRMCHighFHigh SR = 0 ≥ −0.8 ≥ 0.8
bVeto, MCLow, FMed+ VRMCLowFMed+ VR = 0 < −0.8 ≥ 0.3

Table 7.10: Labeling and selection criteria of the fit regions depicted in figure 7.11. The label color is equal (or
similar) to the color of the corresponding region in the illustration. In Nb-jets and BDTG (MC) a split in two
parts each is done, while the BDTG (Fakes) classifier is, at least partially, divided into three phase space regions.
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hello

(a)

(c)

(b)

(d)

Figure 7.12: In (a), the background composition of the different fit regions is shown. In contrast to the plots
in the previous sections, the data driven estimated fakes are now divided into their fraction originating from
QCD multijet processes (gray) and the Monte Carlo events with faked τ-leptons (orange). The background
contribution from the remaining samples is very low and therefore not visible here. As desired, the multijet
fakes mainly accumulate in the regions with a low BDTG (Fakes) value. Additionally, (b) displays the signal
fraction S/

√
B in each fit region. While it is close to zero for the control and validations regions, values of

≈ 0.02 and ≈ 0.05 are reached for the signal regions. Finally, the absolute event yields as well as the agreement
between the estimated background and the recorded data for the different regions can be seen in (c) and (d). It is
found to be very good, especially in the three control regions.

hello
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7.3.1 Control Regions

As their name implies, control regions are intended to control the shape and event yields of the
different backgrounds relevant for the chosen analysis channel. They are usually constructed for each
background and should contain as less events originating from other physical processes as possible. A
separate norm factor is then determined for the events in each CR and propagated to the signal regions
afterwards. However, in a combined maximum likelihood fit, all bins in all regions are considered
simultaneously, so that the notation "control region" only refers to a background-enriched region
without a significant signal contribution.
According to the used data driven estimation technique introduced in section 6.6, the background in
this setup has only two main important contributions which dominate the expected event yields by far.
Therefore, there are just three CRs constructed, from which two (CRMCLowFLow, CRMCHighFLow) are
used to control the agreement between QCD multijet fakes and data while the third one (CRTop) serves
as a control region for the large tt̄ fraction in the remaining, also data driven estimated background.
Their resulting distributions in the log

(∏
τ
prob
i=1-3,4

)
observable are depicted in figure 7.13.

(a) CRMCLowFLow (b) CRMCHighFLow (c) CRTop

Figure 7.13: The distribution of the log
(∏

τ
prob
i=1-3,4

)
observable is presented for the three constructed control

regions. In all of them, the data-to-model agreement is found to be very good, only the last bins show some
larger deviations. Nevertheless, they are still within the uncertainty band which also increases due to the low
number of events in this phase space region.

A good agreement of data and model can be observed over a wide variable range. For log
(∏

τ
prob
i=1-3,4

)
values close to zero, the statistics are very limited and there are some deviations between the expected
and measured event yields, but still within the uncertainty band. The shape of all three regions looks
quite similar, only the fraction of the QCD fakes in CRTop is significantly smaller than in the other two
regions. Furthermore, the gray and orange distributions have their maximum value in the left half of
the log

(∏
τ
prob
i=1-3,4

)
range, while the events with at least three truth-matched τ-leptons visualized in

the other colors tend to have higher log
(∏

τ
prob
i=1-3,4

)
values. This also confirms the expectations and

matches the results from e.g. figure 7.1(b).
The actual background composition of the orange histogram in the CRTop region can only be checked

68



7.3 Combination of Tau ID and BDT Classifier Output

qualitatively. For that purpose, the QCD fake estimation procedure presented in section 6.5 is used
again, where additionally a truth-matched veto is placed on the background events taken from Monte
Carlo samples. Afterwards, the obtained distribution is scaled to the total number of events in the
CRTop region. Figure 7.14 shows the result of this procedure together with the distribution where no
rescaling is done. Most importantly, the plots reveal that the background is extremely dominated by tt̄
and single top events which is desired in order to be able to estimate a reliable scale factor for this
part of the background. It also shows a difference between the cases when the rescaling to the CRTop
region event yield is applied and when it is not. In the first case, an excess of the predicted background
over data is observed whereas in the second plot the agreement is better except for the bins close to the
maximum of the distribution. However, this visualization can only be interpreted qualitatively and the
deviations do not play any role for the further analysis.

(a) No rescaling (b) Rescaling included

Figure 7.14: Qualitative pre-fit background composition in the CRTop region constructed with the fake estimation
method presented in 6.5 and the application of an additional truth-matched veto on the events taken from Monte
Carlo simulation. In the left plot, an excess of the predicted background over the recorded data in nearly the
whole variable range can be observed. Hence, the right plot might serve as a more closer approximation as the
distribution is rescaled to the total number of events in the CRTop region. Nevertheless, the tt̄ and single top
purity in the region seems to be close to 100%.

7.3.2 Signal Regions

In contrast to the CRs, the signal regions should contain the majority of Z Z → 4τ events in order to
allow for a precise determination of the observed signal strength compared to the Standard Model
expectation. In this analysis, two signal regions are defined which differ in their requirement in the
BDTG (Fakes) variable. Hence, one region consists of Z Z → 4τ events which have a very high BDTG
(Fakes) value, while the other one contains events with only a medium classifier score (cf. tab. 7.10).
The result is depicted in figure 7.15. Although the agreement between the predicted background and
recorded data is not as good as for the control regions presented in the previous section, it is still found
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to be within the given statistical uncertainty. The shape of the two dominant backgrounds is very
similar to the one in the CRs, however the absolute number of background events is much lower. In
the last bin of each plot, the expected signal contribution can be seen on top of the stacked background
for the first time. This demonstrates the power of the developed event selection, remembering the
expected background on preselection level which was many orders of magnitude higher than the
number of signal events.

(a) SRMCHighFMed (b) SRMCHighFHigh

Figure 7.15: The distribution of the log
(∏

τ
prob
i=1-3,4

)
observable is presented for the two constructed signal

regions. Compared to the control regions, the data-to-model agreement is slightly worse but still within the
uncertainty band for most of the bins. The events with faked τ-leptons again accumulate at lower log

(∏
τ
prob
i=1-3,4

)
value, whereas in the last bin of each plot a visible signal contribution can be seen.

7.3.3 Validation Region

Finally, the fit region setup is completed with one validation region. Such regions need to be orthogonal
to the other fit regions and are used to determine the accuracy of the background scale factors obtained
from fitting the data in the control regions. Thus, the VRs are not fitted themselves, but the results
from the fit in the other regions is propagated to them. Figure 7.16 shows the distribution of the
log

(∏
τ
prob
i=1-3,4

)
observable in the validation region defined according to table 7.10. From all of these

regions, the VR yields the worst data-to-model agreement. Especially in the first and last two bins,
the mismodeling becomes visible which also the reason for this regions to be not included in the fit
performed in chapter 8. In addition to the pre-fit plots presented in the last subsections, detailed event
yield tables for the single fit regions can be found in appendix E.
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Figure 7.16: The distribution of the log
(∏

τ
prob
i=1-3,4

)
observable is presented for the constructed validation

region. Significant deviations between expected background and recorded data can be seen. Furthermore, the
uncertainty band is quite large in the first and last bins.
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CHAPTER 8

Measuring the ZZ → 4τ Cross Section

In the last chapter, two forests of boosted decision trees were trained and evaluated to enhance the
separation of Z Z → 4τ signal events from the expected background. The obtained multivariate
classifiers have been used to construct different phase space regions which are either enriched with
signal events or not. These regions then can be taken as input for a profile likelihood (PLH) fit which
finally yields a result for the observed Z Z → 4τ cross section compared to the Standard Model
prediction. For that purpose, TRExFitter [70] is used which is an ATLAS internal framework for
binned template profile likelihood fits. The method of a PLH fit is briefly introduced in section 8.1.
Afterwards, section 8.2 gives an overview of the systematic uncertainties included in this analysis,
before the fit results are presented in section 8.3. The chapter is concluded with section 8.4, where the
obtained results are interpreted in the context of the Standard Model.

8.1 Profile Likelihood Fit Procedure

In most high energy particle physics analyses, the experimenters aim to measure one or more certain
physical quantities, referred to as parameters of interest (POI). This analysis has only one POI, which
is the Z Z → 4τ signal strength µ(Z Z → 4τ). It is defined such that µ = 1 represents the Standard
Model expectation, µ = 2 twice the expectation and so on, while a value of µ = 0 means that the
process does not occur at all. Now, one wants to find an estimator for this parameter of interest which
approximates its true value. A common way to do that is to use the so-called maximum likelihood
method [71]. Assuming that the signal and background predictions in each bin of a phase space region
depend on parameters (µ, θ), a binned global likelihood function can be constructed in the following
way [72]:

L (n|µ, θ) =
∏

i∈ bins
P

(
ni |µ · Si(θ) + Bi(θ)

)
. (8.1)

The number of observed events in the bin i is denoted with ni , whereas P states the Poisson distribution
of the signal plus background prediction S + B in the bin i. The desired result is then simply the
value of the POI µ which maximizes the likelihood function. However, beside the pure statistical
uncertainty there are usually also systematic uncertainties which take the imperfect knowledge of
certain model parameters into account, e.g. the resolution in data and mismodeling resulting from
it. Since these systematic effects have a direct impact on the S and B predictions in the single bins,
they need to be included in the likelihood as well. The idea is to treat them as "constrained" nuisance
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parameters (NP), defined as θ = θ0
± ∆θ with θ0

= 0 and ∆θ = 1 fixed by convention. Hence, the
effect of a systematic j on the prediction x in bin i is defined for θ = −1 and θ = +1 and is inter-
or extrapolated for any other value of θ. It is then implemented in the likelihood as an additional
constraint, i.e. a probability density function (usually a Gaussian G, so that ±θ refers to one Gaussian
standard deviation), resulting in [72]:

L

(
n, θ0
|µ, θ

)
=

∏
i∈ bins

P
(
ni |µ · Si(θ) + Bi(θ)

)
×

∏
j∈ syst

G

(
θ0
j |θ j,∆θ j

)
. (8.2)

Beside systematic uncertainties, further free parameters for particular S or B components can be
included in the likelihood. They are called normalization (or norm) factors k and act on a component
as B(θ, k) = k · B(θ). Last, there is an additional nuisance parameter for the statistical uncertainty
originating from the limited number of Monte Carlo events used to predict the number of signal and
background events in each bin. These NPs in form of Poisson priors are independent from each
other and are named "gammas" γ. Having the likelihood for one phase space region defined, one
can now take the likelihood product of the single regions to obtain the function describing the whole
analysis space, as long as the regions are orthogonal, i.e. do not overlap in the events they contain.
The determination of the estimators for the POI and all nuisance parameters is then done by carrying
out a N-dimensional likelihood maximization (or negative-log likelihood minimization). If the best-fit
values for the norm factors differ from their pre-fit assumption, the background prediction in the fit
regions might change compared to the pre-fit state. Furthermore, the fit can constrain single nuisance
parameters from the statistical power of the data, resulting in a reduced uncertainty on the background
expectation [72], or pull1 them.

8.2 Systematic Uncertainties

One of the goals of the analysis performed in this thesis is to validate the multi-tau event identification
method developed in [8] and described in section 5.2 on a Standard Model process. Therefore,
especially the impact of tau efficiency related scale factors2 and systematic uncertainties on the
multiplied probability method is of interest. However, this treatment is not trivial and is therefore
briefly explained in the following.

8.2.1 Tau ID Uncertainties

As introduced in section 5.1, the "classic" tau identification approach used in ATLAS requires each
tau candidate to fulfill one of the working points very loose, loose, medium or tight. Therefore, the
systematic uncertainties related to the tau ID also are only defined for these fixed inclusive working
points and using them with the identification method of multiplied probabilities is technically not
possible correctly. In order to tackle this problem, two options have been tested. The first possibility
is to use the systematic of the loose working point for all events and truth-matched tau candidates, as
the majority of them is not expected to fulfill more than exactly this working point in terms of the
τjetBDT score. The second option would be to evaluate for event by event which working point the tau
1 A pull corresponds to a deviation from the prior pre-fit value of the NP after the fit.
2 These scale factors correspond to an efficiency correction between Monte Carlo simulation and data which is applied to
each τ-lepton and then changes by a certain factor for each systematic variation.
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candidate would hypothetically fulfill and then use the corresponding systematic uncertainty. Figure 8.1
exemplary compares the resulting distributions of the tau_ID_eff_SYST systematic containing different
detector effects which need to be taken into account (see later in this section) for the CRMCHighFLow
region. Neither in their shape nor in their absolute normalization a significant difference is visible.
However, since it is more intuitive to use for each tau candidate and event the uncertainty related to
the working point the tau fulfills in terms of its τjetBDT score, the second of the discussed options is
chosen for the further fit procedure.
In this analysis, pT-dependent systematic uncertainties on the recurrent neural network (RNN)
based offline tau identification efficiency and the tau trigger identification efficiency are considered.
Furthermore, a prong-dependent uncertainty on the tau energy scale as well as a η-dependent
uncertainty on the correction factor for the probability of misidentifying an electron as a hadronic
τ-lepton decay are taken into account. These values are usually measured by tag-and-probe analyses
in the Z → τµτhad and Z → ee decay channels (see [73] for more detailed information), their current
values can be found in [74] and [75]. Additionally, the tau_ID_eff_SYST systematic mentioned already
above includes different detector effects which need to be treated correlated, especially uncertainties
concerning jet, muon and MET reconstruction and identification.

(a) Fixed loose tau working point (b) Variable tau working point

Figure 8.1: Distribution of the tau_ID_eff_SYST systematic uncertainty in the CRMCHighFLow region for the two
different approaches of using them with the multiplied probability tau identification method. In the shape hardly
any difference can be observed and in their normalization they also differ only on the level of approximately 1%.

8.2.2 Further Uncertainties

Beside the tau systematics discussed in the previous section, no further instrumental uncertainties
are included at the current state of the analysis. However, there is one more systematic representing
the uncertainty in the data driven fake tau estimation considered and also the scale factor for the
few remaining background events taken from Monte Carlo simulations is not implemented as a free
norm factor in the fit, but as systematic uncertainty instead. Therefore, each of the two systematics is
defined with an overall up and down shift. For the one acting on the Monte Carlo background, named
NP_MC, the variation is chosen to be 100% since their absolute number compared to the data driven
estimated events is very small and also a variation of +1 or −1 would not lead to a significant change
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in the total number of estimated background events. This gives the fit the possibility to constrain the
uncertainty itself in the best possible way. A reasonable prior variation for the fake tau estimation
systematic (NP_Fakes) can be motivated from table 6.3. For data, the expectation from the binomial
distribution for the ratio of events in the unphysical charge regions is 1 : 4 : 6 : 4 : 1. The observed
ratio deviates from that as 1.0 : 4.4 : 6.6 : 4.1 : 0.9, corresponding to a value of approximately
10%. Since it is more likely that this deviation is underestimated than that it is overestimated, another
5% are added to the prior which is finally set to 15% for as well the up as the down variation. The
resulting distributions of these two nuisance parameters is exemplary shown for the CRMCLowFLow
region in figure 8.2. Albeit the prior shift was chosen quite large, the visible variations are only in the
order of a few percent. The most noticeable difference for both nuisance parameters is the width of
their statistical error band which is way larger for NP_MC than for NP_Fakes and originates from the
very low number of events in the remaining Monte Carlo background on which the NP_MC systematic
acts. After the application of a smoothing procedure, the ratio of the deviation from nominal and
nominal itself is nearly constant for both systematics.

(a) NP_MC (b) NP_Fakes

Figure 8.2: Distribution of the NP_MC and NP_Fakes nuisance parameters in the CRMCLowFLow region. Both
do not show any conspicuous behavior, although the statistical error band in NP_MC is much broader than for
NP_Fakes, caused by the very low number of events. The effect of the smoothing procedure (dashed line before,
solid line after) can be nicely seen in the ratio plot at the bottom of each figure.

8.2.3 Pruning

Usually, there is a large number of systematic uncertainties which need to be included in the likelihood
function, increasing the complexity and also the computing time of the performed fit. Therefore, it
is useful to check the impact of these nuisance parameters before to make the fit procedure more
efficient. In this setup, a comparably small value of 0.1% has been chosen for the lower threshold
defining when a nuisance parameter is dropped, for both shape and normalization systematics. The
result of the pruning process for the given systematics introduced in the last subsections is depicted in
figure 8.3. It can be seen that only for the signal sample a few nuisance parameters are kept. In all
other cases, the corresponding effects are too small so that either the shape of the systematic is dropped
and only the absolute normalization is kept, or it is dropped completely. Hence, the uncertainties on
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the tau identification efficiencies and other related effects do not have a large impact on the method
of multiplied probabilities. After this last check and performance optimization step, finally the fit
can be carried out by minimizing the negative-log likelihood function (using theMinuit2 minimizer
implemented in ROOT [56]). The results are shown in the next section.

Figure 8.3: Result of the pruning applied to all defined nuisance parameters. The tau ID systematics are only
applied to samples with truth-matched τ-leptons, i.e. to all except for the data driven estimated fakes. The
nuisance parameters NP_MC and NP_Fakes act only on the respective sample. Only a few systematics survive
the pruning process, in most of the case either their shape is dropped and only the normalization is kept or
they are dropped completely. This is especially true for the pT-dependent uncertainty on the tau identification
efficiency. The different regions read from left to right: CRMCLowFLow, CRMCHighFLow, CRTop, SRMCHighFMed
and SRMCHighFHigh.

8.3 Fit Results

8.3.1 Asimov Data

In order to test the technical functionality of the chosen setup, first a S + B fit over all defined control
and signal regions on Asimov data is performed. Such an Asimov dataset is constructed from the
respective sum of predicted signal and background events in each bin. Consequently, one expects
the fit results for the POI and all nuisance parameters to be equal to their nominal value, i.e. one
for the Z Z → 4τ signal strength and zero for each NP. If the obtained results deviate from these
values, this might indicate that something is not working properly. Furthermore, the fit on Asimov
data can already give some hints about the expected order of magnitude of the errors on the POI
and the nuisance parameters, the correlations between them and possible constraints on certain NPs.
While in the pre-fit plots shown in section 7.3 the processes contributing to the fakes and Monte Carlo
background samples were visualized separately, they are now treated together again for the fit. In
the fakes sample the QCD multijet events as well as those from heavy particle decays are contained,
both at least once faking the signature of a hadronically decaying τ-lepton. The remaining underlying
events with only truth-matched taus are merged into a combined MC background sample. Figure 8.4
shows the values of µ(Z Z → 4τ) and all nuisance parameters as well as the correlations between
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(a) hello

(b)

(c)

Figure 8.4: The results from the fit on Asimov data are shown. In (a), the correlations between the POI and the
nuisance parameters exceeding the set threshold of 10% are visible. A small correlation between µ(Z Z → 4τ)
and NP_MC can be observed. Subfigures (b) and (c) depict the best fit result for the POI and all nuisance
parameters, respectively. As expected, always the nominal value is returned. The upper and lower errors on
the POI are approximately 200%, but the upper one is larger than the lower one. The plot of the nuisance
parameters indicates that only NP_Fakes can be constrained very well.

them resulting from the fit. The POI is measured to be 1.00+2.53
−1.88. This result matches the expectation

for the case when the data in each bin is exactly the sum of predicted signal and background events.
The error on µ(Z Z → 4τ) is relatively large and is assumed to mainly originate from the low number
of expected signal events and the in general low statistics in the signal-enriched bins in both SRs
(cf. fig. 7.15 again). The best fit result for each nuisance parameter is its nominal value, i.e. zero,
too. Nevertheless, it can already be observed that, in contrast to all other parameters, the NP_Fakes
uncertainty can be constrained very well from the large amount of fake tau background events. Hence,
it is also hardly correlated to any other nuisance parameter. However, there is a small correlation
between µ(Z Z → 4τ) and NP_MC. This can be explained as follows. As the NP for the dominating
fakes is constrained very well, and there are only two more parameters which can be considerably
varied in the fit, each change in one of them immediately results in a change of the second one in
the opposite direction as well. The effect of this constraint can additionally be seen in figure 8.5
where the summary plots of the pre-fit and post-fit state for the single fit regions are compared. Albeit
the fit does not cause any modification in the expected background and signal events, it can though
significantly reduce the total uncertainty not only in the control and signal regions, but also in the
validation region which did not enter the fit. From the obtained results the expected upper limit on
µ(Z Z → 4τ) at a confidence level of 95% can be calculated using the CLs method [76][77]. Table
8.1 summarizes the outcome of this calculation. The Z Z → 4τ process is expected to be excluded
above a signal strength of 5.162 times the Standard Model expectation at a confidence level of 95%.
In the next section, this fit procedure is repeated using real data recorded by the ATLAS detector.
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(a) Pre-fit

(c) Pre-fit

(b) Post-fit

(d) Post-fit

Figure 8.5: The data-to-model agreement in the different fit regions between the pre-fit and post-fit state is
compared for the fit on Asimov data. As expected, no difference in the upper part of each plot is observed.
Nevertheless, the fit can reduce the total uncertainty in the ratio of Asimov data and predicted background.

Exp. limit Exp. limit - 1σ Exp. limit + 1σ Exp. limit - 2σ Exp. limit + 2σ
5.162 3.719 8.119 2.77 12.73

Table 8.1: The expected upper limit on µ(Z Z → 4τ) and the ±1σ and ±2σ values calculated from Asimov data
are shown. With the currently available statistics, a limit of 5.162 times the Standard Model expectation can be
set on the Z Z → 4τ signal strength at a confidence level of 95%.
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8.3.2 ATLAS Data

After the results of the fit on Asimov data presented in the last subsection already gave some hints
towards possible constraints on single nuisance parameters, the order of magnitude of the error on the
POI and the upper limit on µ(Z Z → 4τ) one can expect, the profile likelihood fit is now performed
on the data recorded by the ATLAS detector in 2017 with an integrated luminosity of 46.9 fb−1.
Figure 8.6 shows the obtained results for the Z Z → 4τ signal strength, the nuisance parameters and the
correlations between them. The numerical values are additionally given in table 8.2. Different things
can be seen. First, the fitted value of µ(Z Z → 4τ) is −0.49+2.25

−1.59 and thus negative. This result can be
explained as follows. Looking back to figure 7.13, the predicted background in the two last bins seems
to be underestimated (except for the last bin in the CRMCHighFLow region). Since the estimated fake
background is fixed extremely well by the remaining bins in all regions, this underestimation in the last
bins can only be compensated by scaling up the MC background (i.e. everything except for the gray
and orange distributions in figure 7.13). As in the signal regions (cf. fig. 7.15) already a lower number
of data events is recorded in the last bins than the background which is predicted, the only possibility
to account for the increased MC background is then to scale down the signal distribution accordingly,
resulting in a negative signal strength µ(Z Z → 4τ). Second, a significant pull, i.e. deviation from
the nominal value, for NP_MC can be observed. This exactly matches the behavior which has been
described before. Furthermore, very small pulls for NP_Fakes and tau_ID_eff_SYST can be seen, but
their effect is negligible. The third consequence is the non-vanishing correlation between the signal
strength and NP_MC, occurring due to the same reason as the nuisance parameter pull.

(a) hello

(b)

(c)

Figure 8.6: The results from the fit on ATLAS 2017 data with an integrated luminosity of 46.9 fb−1 are shown.
In (a), the correlations between the POI and the nuisance parameters exceeding the set threshold of 10% are
visible. Again, a small correlation between µ(Z Z → 4τ) and NP_MC can be observed. Subfigures (b) depicts
the best fit result for the POI. The obtained Z Z → 4τ signal strength is negative, but the Standard Model
expectation of µ = 1 still lies within the error range which is slightly reduced compared to the Asimov fit. In
(c), the resulting values for the nuisance parameters are given. Similar to figure 8.4(c) the NP_Fakes parameter
can be constrained quite well. Additionally, the plot now indicates a very small pull, i.e. deviation from the
nominal value, for tau_ID_eff_SYST and NP_Fakes as well as a significant one for NP_MC.
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Parameter Fit value Upper error Lower error
µ(Z Z → 4τ) -0.487 +2.248 -1.593

tau_ID_eff_SYST 0.0013 +0.9934 -0.9934
tau_ID_eff_3p, pτT ≥ 40 GeV 0.0003 +0.9933 -0.9933
tau_ID_eff_3p, pτT 30-40GeV 1.27 × 10−6 +0.9933 -0.9933
tau_ID_eff_3p, pτT 25-30GeV −4.38 × 10−6 +0.9934 -0.9934
tau_ID_eff_3p, pτT 20-25GeV −3.55 × 10−5 +0.9933 -0.9933
tau_ID_eff_1p, pτT ≥ 40 GeV 0.0005 +0.9933 -0.9933
tau_ID_eff_1p, pτT 30-40GeV −8.16 × 10−7 +0.9933 -0.9933
tau_ID_eff_1p, pτT 25-30GeV 0.0002 +0.9933 -0.9933
tau_ID_eff_1p, pτT 20-25GeV 9.49 × 10−7 +0.9933 -0.9933

NP_MC 0.278 +0.841 -0.841
NP_Fakes 0.016 +0.013 -0.013

Table 8.2: Resulting post-fit values of the POI and the nuisance parameters using ATLAS 2017 data. Only
NP_Fakes can be constrained, the errors on all other parameters are quite large. For further explanations see
figure 8.6.

In addition to understanding these effects, also the fit results for the gammas, which take the finite
Monte Carlo statistics in each bin into account, need to be checked. They are shown in figure 8.7. For
comparison, the gammas obtained from the fit on Asimov data are depicted, too. In the left plot it can
be seen that most of them are very close to their nominal value of one. Nevertheless, especially for
the last bin in the different regions some nuisance parameter pulls can be observed. In these cases,
the statistical uncertainty on the gamma is also quite large which is assumed to originate from the
low event yields in the respective bins. The gammas obtained from the fit on Asimov data show
uncertainties in a similar order of magnitude, albeit the result for the values themselves is always
equal to one, as expected when the data in each bin corresponds to the sum of predicted signal and
background events. Hence, these results do not show any conspicuous behavior and look consistent.
In a next step, post-fit plots of the data-to-model agreement in the different fit regions can be produced.
They are given in figure 8.8. In the total background hardly any difference compared to the pre-fit
state is visible. But comparing the plots with figures 7.13, 7.15 and 7.16, it can be seen that the signal
contribution vanished completely and the number of predicted MC events increased. This behavior
reflects the results presented in figure 8.6. It should be noted at this point, that the post-fit effect of the
gammas is not propagated to the plots. Furthermore, the total uncertainty in the single bins is reduced
significantly through the fit. This applies to the validation region as well which even was not part of
the fit at all.
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Hello

(a) ATLAS data (b) Asimov data

Figure 8.7: The plots show the best fit values for the gammas which take the effect of finite Monte Carlo statistics
in the background prediction for the single bins into account. In (a), the result for the fit on ATLAS data is
depicted. Except for a few cases, the values are very close to their nominal value of one. Pulls and larger errors
mostly occur for the last bin in the different regions. Subfigure (b) states the results of the fit on Asimov data
from the previous subsection for comparison. Albeit the gammas all yield their nominal value, the behavior in
their errors is similar to the case using real data. The bin numbers in each region are sorted in descending order,
i.e. the last bin is given first and the first one last.

Hello
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(a) CRMCLowFLow

(d) VRMCLowFMed+

(b) CRMCHighFLow

(e) SRMCHighFMed

(c) CRTop

(f) SRMCHighFHigh

Figure 8.8: The post-fit data-to-model agreement in the different fit regions for the fit on ATLAS 2017 data is
shown. Additionally, the pre-fit background sum is visualized as a dashed blue line. Hardly any differences in
the total background compared to the pre-fit state can be observed. However, there is no signal contribution in
the plots anymore as the best fit value for µ(Z Z → 4τ) is negative.

Lastly, the impact of the single nuisance parameters on the uncertainty of the POI can be investigated.
Therefore, for each NP four fits are performed where the parameter is fixed to the following
configurations:

• pre-fit value + pre-fit uncertainty

• pre-fit value − pre-fit uncertainty

• post-fit value + post-fit uncertainty

• post-fit value − post-fit uncertainty .

The "impact" on µ(Z Z → 4τ) is then calculated as the difference between the signal strength resulting
from each of these four fits and µ(Z Z → 4τ) obtained in the nominal fit (fig. 8.6). The results are
visualized in figure 8.9. For none of the tau ID related systematic uncertainties a visible impact on the
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value of the POI can be observed. The same applies to NP_MC. The Z Z → 4τ signal strength only
changes if the NP_Fakes parameter is set to its pre-fit value minus the pre-fit uncertainty. In that case
it seems that the lower number of background events resulting from this shift is compensated with an
increase of signal events. These observations confirm the expectations already made in the pruning
step, namely that the systematic effects are dominated by the background estimation procedure while
tau identification uncertainties only play a minor role.

Figure 8.9: The plot shows the impact of the different nuisance parameters on the signal strength µ(Z Z → 4τ).
Only setting the NP_Fakes parameter to its pre-fit value minus its uncertainty has a visible effect on the POI.

8.4 Interpretation in the Standard Model

In order to finally interpret the results presented in the previous section in the context of the Standard
Model, the expected but also the observed upper limit on the Z Z → 4τ signal strength can be
calculated. Therefore, again the CLs method [76][77] is used. Table 8.3 summarizes the results of
this calculation. The signal hypothesis is expected to be excluded for values of µ(Z Z → 4τ) larger
than 5.488 times the Standard Model expectation at a confidence level of 95%. In contrast to that, the
observed upper limit is given by 5.078 × µSM(Z Z → 4τ).
Furthermore, the expected p-value and significance can be obtained. When testing a hypothesis H1
with the presence of signal (i.e. µ(Z Z → 4τ) > 0) against one H0 without signal (µ(Z Z → 4τ) = 0),
the likelihood ratio L(H0)/L(H1) is the best possible discriminator. For the profile likelihood method,
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Exp. limit Exp. limit - 1σ Exp. limit + 1σ Exp. limit - 2σ Exp. limit + 2σ Obs. limit
5.488 3.955 8.762 2.946 13.8 5.078

Table 8.3: The expected upper limit on µ(Z Z → 4τ), the ±1σ and ±2σ values and the observed limit calculated
from ATLAS 2017 data are shown. With the currently available statistics, a limit of 5.488 times the Standard
Model expectation can be set on the Z Z → 4τ signal strength at a confidence level of 95%. The observed limit
is 5.078 × µSM(Z Z → 4τ).

this ratio is adjusted to be [72]:

λ(µ) =
L(µ, ˆ̂θµ)

L(µ̂, θ̂)
. (8.3)

While in the numerator L is maximized for a given µ (so-called "conditional likelihood"), the
denominator denotes the "unconditional likelihood". The test statistics can then be defined as [72]

tµ = −2 ln λ(µ) , q0 =

{
−2 ln λ(0) µ̂ ≥ 0
0 µ̂ < 0

(8.4)

and p-value p0 and significance Z0 are given by [72]:

p0 =

∫ ∞

q0,obs

f (q0 |0) dq0 , Z0 = Φ
−1
(1 − p0) . (8.5)

In these equations, Φ−1 is the quantile of the standard Gaussian and f the distribution of the test
statistics. In data samples with large statistics, this distribution is known according to Wilks’ theorem3

and given by a χ2 distribution of the form [72]:

f = −2 ln λ(µ) = −2
(
lnL(µ, ˆ̂θ) − lnL(µ̂, θ̂)

)
=

(
µ − µ̂

σµ

)2

. (8.6)

This allows to directly calculate p0 and the significance. The results provided by TRExFitter are:

p0,exp = 0.322 , Z0,exp = 0.461 (8.7)
p0,obs = 0.588 , Z0,obs = −0.222 . (8.8)

Hence, by using only the ATLAS 2017 data, a 0.461σ deviation in the Z Z → 4τ cross section from
the Standard Model prediction is expected. Due to the negative fit result for µ(Z Z → 4τ), the observed
deviation is negative as well, namely −0.222σ. Although these values are far away from a 3σ excess
or even a discovery at 5σ, they show the potential of an approach where a dedicated identification
method for multi-tau events is combined with the power of boosted decision trees in order to separate
the few expected signal events from an extremely large background. The use of the full ATLAS run 2
data with an integrated luminosity of 139 fb−1 probably would allow to further improve this result.

3 This theorem even holds for a data sample with a size of ≈ O(10) events [72], so it is also applicable in this analysis
where the event yields in the signal enriched bins are quite low.
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Conclusion

In this work the potential of different diboson processes decaying into 4τ final states using ATLAS
2017 data with an integrated luminosity of 46.9 fb−1 was probed.
For that purpose, at first the power of a dedicated identification method for multi-tau events developed
in [8] was demonstrated in chapter 5 using a hh→ 4τ signal sample again. In contrast to the usual
ATLAS approach, where every single τ-lepton needs to fulfill a fixed working point corresponding
to a certain τjetBDT score threshold for an event to be accepted, the method of multiplied τ-lepton
probabilities assigns a combined probability score log

(∏
τ
prob
i=1-3,4

)
to each event. This score then serves

as the selection criterion. Figure 5.7 shows a significant improvement in the achievable background
rejection, especially for fake tau enriched background processes like tt̄ production. These observations
match the results from the studies already performed in [8].
In chapter 6, the expected background in the 4τ channel was studied. A data driven estimation
technique based on combinatorial considerations of the reconstructed four τ-lepton charges for fake
tau events stemming from QCD multijet production [8] (cf. fig. 6.3) has been adapted to further
account for fake tau events originating from heavy particle decays. They are now estimated from data
as well instead of being simulated using Monte Carlo event generators. This advanced fake estimation
method provides a good data-to-model agreement (cf. fig. 6.5) and makes the technique more stable
in the phase space region of high log

(∏
τ
prob
i=1-3,4

)
scores.

After these preparatory studies, one of the main goals of this work was to verify the introduced methods
on a Standard Model process. Therefore, a Z Z → 4τ sample was extracted from a Sherpa ```` sample
which then served as signal for the remaining analysis. First, the outcome of a cut-based selection
of Z Z → 4τ events using the tau probability product log

(∏
τ
prob
i=1-3,4

)
was evaluated in section 7.1.

Although this approach already allows to reject a large fraction of the expected background, the gain
provided by log

(∏
τ
prob
i=1-3,4

)
on its own is limited due to the low absolute number of signal events (cf.

fig. 7.2). Nevertheless, a significance of up to S/
√

S + B = 0.635 can be reached by combining the
tau probability product with an additional veto against b-jets (cf. tab. 7.1).
In order to improve this result, a multivariate event selection approach was taken in section 7.2. Two
forests of boosted decision trees were trained to discriminate the Z Z → 4τ signal from QCD multijet
and fake tau events originating from heavy particle decays, respectively. A careful optimization
of the training variables and the hyperparameter setup was performed for both of them. The final
training parameters are summarized in the tables 7.2 and 7.3, while the obtained evaluation of the
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input variables ranked by their importance for discrimination is shown in table 7.4 and 7.5. During
the optimization process, a balancing between maximizing the separation performance and keeping
overtraining effects at an acceptable level had to be found. With the finally chosen setup, AUC values
of 0.803 for the Monte Carlo BDT and 0.909 for the QCD multijet BDT are obtained when being
evaluated on the total background (cf. tab. 7.9, but also fig. 7.8 and 7.10). The classifier output
distributions in figure 7.7 and 7.9 especially indicate a good discrimination performance against the
background events the respective classifier has been trained on.
In a next step, these multivariate classifiers were then combined with the power of the tau probability
product to enhance the selection of Z Z → 4τ events. By binning in both of them and the Nb-jets
observable, overall six phase space regions were constructed (cf. tab. 7.10). Four of them contain
the majority of the expected background, while the other two are enriched with signal events at high
log

(∏
τ
prob
i=1-3,4

)
values (cf. fig. 7.13, 7.15 and 7.16).

In chapter 8, these regions were finally used as input for a profile likelihood fit carried out with
TRExFitter [70], in order to measure the Z Z → 4τ signal strength compared to the Standard Model
prediction. The treatment of systematic uncertainties related to tau identification was discussed in
section 8.2.1 before further nuisance parameters on the estimated backgrounds were motivated in
section 8.2.2. Then, first an Asimov dataset was used to test the technical fit setup. Afterwards, the
fit was performed on the ATLAS 2017 data. For the parameter of interest, µ(Z Z → 4τ), a value of
−0.49+2.25

−1.59 is obtained. For the uncertainty on the Monte Carlo background, a nuisance parameter
pull is observed, but can be explained from the event distributions in the different fit regions. The
effect of further tau ID related systematic uncertainties is found to be very small (cf. tab. 8.2). Lastly,
an expected limit of 5.488 times the Standard Model prediction can be set on the Z Z → 4τ signal
strength and a significance of 0.461σ is calculated.

One of the main limitations during this work was the limited number of signal events for the
BDT training process. As visible in the plots evaluating different hyperparameter setups in appendix D,
the separation between signal and background events for higher tree depths and smaller minimum node
sizes is much better on the training sample than on the test sample. This leads to the conclusion that
the performance could be further enhanced if a sufficiently large training sample would be available.
An improvement in the BDT training should have a direct impact on the results obtained in the profile
likelihood fit. In a next step, the analysis could be repeated using the full ATLAS run 2 data with an
integrated luminosity of 139 fb−1 which would reduce the limitations currently caused by low statistics.
Furthermore, additional systematic uncertainties need to be included. On the long time scale, the
High-Luminosity LHC will provide a significantly larger amount of data and therefore of Z Z → 4τ
events, too.
Finally, as already motivated at the begin of this thesis, the exotic final state of four τ-leptons also
has some potential to probe theories beyond the Standard Model. A further investigation of this area,
focussing e.g. on BSM resonances like heavy Higgs bosons as predicted by two-Higgs doublet models
[78], which then decay into two on-shell Z bosons, might thus be interesting.
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APPENDIX A

Detailed List of Used Monte Carlo Samples

This chapter lists the different Monte Carlo samples used in the analysis performed in this thesis. The
nomenclature is copied from [8] since exactly the same samples (on n-tuple level) are used.

Dataset ID Name Generator σeff [pb]
342284 WH125 inc Pythia8EvtGen 1.38
342285 ZH125 inc Pythia8EvtGen 0.87
344235 VBFH125 ZZ4lep notau PowhegPythia8EvtGen 3.49
345060 ggH125 ZZ4l PowhegPythia8EvtGen 0.013
345066 ggZH125 ZZ4lepZinc PowhegPythia8EvtGen 0.00024
345123 ggH125 tautau PowhegPythia8EvtGen 1.37
345211 WmH125J Winc tautau PowhegPythia8EvtGen 0.033
345212 WpH125J Winc tautau PowhegPythia8EvtGen 0.052
345217 ZH125J Zinc tautau PowhegPythia8EvtGen 0.055
345875 ttH125 dilep PowhegPythia8EvtGen 0.062
345948 VBFH125 WWlvlv PowhegPythia8EvtGen 0.086
346193 VBFH125 tautauh PowhegPythia8EvtGen 0.11
345911 hh 4tau aMcAtNloHerwig7EvtGen 0.00012

Table A.1: MC samples grouped into the Higgs background process. In the second block, the hh→ 4τ signal
sample used in chapter 5 and 6 is given.

Dataset ID Name Generator σeff [pb]
410470 ttbar nonallhad PhPy8EG 396.88
410471 ttbar allhad PhPy8EG 332.98
410472 ttbar dil PhPy8EG 76.96

Table A.2: MC samples grouped into the tt̄ background process.
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Appendix A Detailed List of Used Monte Carlo Samples

Dataset ID Name Generator σeff [pb]
410644 singletop schan lept top PowhegPythia8EvtGen 2.027
410645 singletop schan lept antitop PowhegPythia8EvtGen 1.267
410646 Wt DR inclusive top PowhegPythia8EvtGen 37.94
410647 Wt DR inclusive antitop PowhegPythia8EvtGen 37.91
410654 Wt DS inclusive top PowhegPythia8EvtGen 36.92
410655 Wt DS inclusive antitop PowhegPythia8EvtGen 37.66

Table A.3: MC samples grouped into the Top background process.

Dataset ID Name Generator σeff [pb]
364128 Ztautau pT range: 0 70 CVetoBVeto Sherpa221 1587.20
364129 Ztautau pT range: 0 70 CFilterBVeto Sherpa221 218.31
364130 Ztautau pT range: 0 70 BFilter Sherpa221 124.55
364131 Ztautau pT range: 70 140 CVetoBVeto Sherpa221 74.13
364132 Ztautau pT range: 70 140 CFilterBVeto Sherpa221 19.71
364133 Ztautau pT range: 70 140 BFilter Sherpa221 11.99
364134 Ztautau pT range: 140 280 CVetoBVeto Sherpa221 24.19
364135 Ztautau pT range: 140 280 CFilterBVeto Sherpa221 9.10
364136 Ztautau pT range: 140 280 BFilter Sherpa221 5.34
364137 Ztautau pT range: 280 500 CVetoBVeto Sherpa221 4.67
364138 Ztautau pT range: 280 500 CFilterBVeto Sherpa221 2.22
364139 Ztautau pT range: 280 500 BFilter Sherpa221 1.47
364140 Ztautau pT range: 500 1000 Sherpa221 1.76
364141 Ztautau pT range: 1000 E CMS Sherpa221 0.14

Table A.4: MC samples grouped into the Z → ττ background process. They are sliced into different pT ranges
and several flavor filters are applied.
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Dataset ID Name Generator σeff [pb]
308092 Zee2jets TChannel Sherpa 221 0.63
308093 Zmm2jets TChannel Sherpa 221 0.63
308094 Ztautau2jets TChannel Sherpa 221 0.63
308095 Znunu2jets TChannel Sherpa 221 2.94
308096 Wenu2jets TChannel Sherpa 221 6.81
308097 Wmunu2jets TChannel Sherpa 221 6.80
308098 Wtaunu2jets TChannel Sherpa 221 6.80
364100 Zmumu pT range: 0 70 CVetoBVeto Sherpa 221 1589.63
364101 Zmumu pT range: 0 70 CFilterBVeto Sherpa 221 218.15
364102 Zmumu pT range: 0 70 BFilter Sherpa 221 124.01
364103 Zmumu pT range: 70 140 CVetoBVeto Sherpa 221 73.15
364104 Zmumu pT range: 70 140 CFilterBVeto Sherpa 221 19.84
364105 Zmumu pT range: 70 140 BFilter Sherpa 221 12.08
364106 Zmumu pT range: 140 280 CVetoBVeto Sherpa 221 23.68
364107 Zmumu pT range: 140 280 CFilterBVeto Sherpa 221 9.04
364108 Zmumu pT range: 140 280 BFilter Sherpa 221 5.75
364109 Zmumu pT range: 280 500 CVetoBVeto Sherpa 221 4.65
364110 Zmumu pT range: 280 500 CFilterBVeto Sherpa 221 2.21
364111 Zmumu pT range: 280 500 BFilter Sherpa 221 1.45
364112 Zmumu pT range: 500 1000 Sherpa 221 1.74
364113 Zmumu pT range: 100 E CMS Sherpa 221 0.14
364114 Zee pT range: 0 70 CVetoBVeto Sherpa 221 1586.66
364115 Zee pT range: 0 70 CFilterBVeto Sherpa 221 218.16
364116 Zee pT range: 0 70 BFilter Sherpa 221 123.30
364117 Zee pT range: 70 140 CVetoBVeto Sherpa 221 74.39
364118 Zee pT range: 70 140 CFilterBVeto Sherpa 221 19.83
364119 Zee pT range: 70 140 BFilter Sherpa 221 12.31
364120 Zee pT range: 140 280 CVetoBVeto Sherpa 221 24.41
364121 Zee pT range: 140 280 CFilterBVeto Sherpa 221 9.14
364122 Zee pT range: 140 280 BFilter Sherpa 221 5.93
364123 Zee pT range: 280 500 CVetoBVeto Sherpa 221 4.75
364124 Zee pT range: 280 500 CFilterBVeto Sherpa 221 2.22
364125 Zee pT range: 280 500 BFilter Sherpa 221 1.46
364126 Zee pT range: 500 1000 Sherpa 221 1.76
364127 Zee pT range: 1000 E CMS Sherpa 221 0.14

Table A.5: MC samples grouped into the V + Jets background process. The first block summarizes different
t-channel processes, while the second and third one contain Z → ee and Z → µµ s-channel events. These are
sliced into different pT ranges and several flavor filters are applied.
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Appendix A Detailed List of Used Monte Carlo Samples

Dataset ID Name Generator σeff [pb]
363355 ZqqZvv Sherpa 221 4.35
363356 ZqqZll Sherpa 221 2.17
363357 WqqZvv Sherpa 221 6.80
363358 WqqZll Sherpa 221 3.44
363359 WpqqWmlv Sherpa 221 24.72
363360 WplvWmqq Sherpa 221 24.73
363489 WlvZqq Sherpa 221 11.41
364250 llll Sherpa 222 1.25
364253 lllv Sherpa 222 4.58
364254 llvv Sherpa 222 12.50
364255 lvvv Sherpa 222 3.23
364283 lllljj Sherpa 222 0.01
364284 lllvjj Sherpa 222 0.05
364285 llvvjj Sherpa 222 0.12
364288 llll lowMllPtComplement Sherpa 222 1.43
364289 lllv lowMllPtComplement Sherpa 222 2.91
364290 llvv lowMllPtComplement Sherpa 222 0.17
407311 6l0v Sherpa 221 0.00010
407312 5l1v Sherpa 221 0.00057
407313 4l2v Sherpa 221 0.0044
407314 3l3v Sherpa 221 0.016
407315 2l4v Sherpa 221 0.0058

Table A.6: MC samples grouped into the Multiboson background process. The upper two blocks contain
diboson processes, while the bottom one consists of triboson processes. The Z Z → 4τ process used in chapter
7 and 8 is part of the llll sample which contains all SM processes with exactly four leptons in the final state. The
hh→ 4τ process is not included due to its limited statistics.

100



APPENDIX B

Input Variable Distributions for the BDT Training

The transformed distributions of all input variables used for the BDT training, which are not shown in
section 7.2.1, can be found below.
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Figure B.1: Further input variables for the Monte Carlo BDT training (1/7).
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Appendix B Input Variable Distributions for the BDT Training
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Figure B.2: Further input variables for the Monte Carlo BDT training (2/7).
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Figure B.3: Further input variables for the Monte Carlo BDT training (3/7).
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Figure B.4: Further input variables for the Monte Carlo BDT training (4/7).
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Figure B.5: Further input variables for the Monte Carlo BDT training (5/7).
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Figure B.6: Further input variables for the Monte Carlo BDT training (6/7).
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Figure B.7: Further input variables for the Monte Carlo BDT training (7/7).
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Figure B.8: Further input variables for the Multijet BDT training (1/5).
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Figure B.9: Further input variables for the Multijet BDT training (2/5).
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Figure B.10: Further input variables for the Multijet BDT training (3/5).
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Figure B.11: Further input variables for the Multijet BDT training (4/5).
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Figure B.12: Further input variables for the Multijet BDT training (5/5).
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APPENDIX C

Full Ranking Tables of the Input Variables for the
BDT Training

Monte Carlo BDT

Rank Variable Importance
1

∑
pT(lep1−4, 3h1l) 3.410 × 10−2

2 pMet
T 3.169 × 10−2

3 ∆ηMet, Jet2
3.025 × 10−2

4 ∆φmin((τ2τ4),Met) 2.863 × 10−2

5 ∆Rhigh
ττ 2.735 × 10−2

6 ∆φτ1τ3
2.595 × 10−2

7 ∆φMet,τ4
2.567 × 10−2

8 mlow
ττ 2.548 × 10−2

9 ∆φmin((τ1τ3),Met) 2.542 × 10−2

10 Met significance 2.510 × 10−2

11 pT(τ4) 2.478 × 10−2

12 ∆Rlow
ττ,false 2.400 × 10−2

13 ∆φJet1,τ4
2.399 × 10−2

14 ∆ητ1τ2
2.352 × 10−2

15 mlow
ττ,false 2.334 × 10−2

16 pT(τ1) 2.301 × 10−2

17 ∆φmin((τ1τ2),Met) 2.298 × 10−2

18 ∆φMet,(τ1τ2)
2.284 × 10−2

19 ∆ητ1τ3
2.266 × 10−2

20 ∆Rlow
ττ 2.244 × 10−2

hello

Rank Variable Importance
1 ∆φJet1,τ4

2.908 × 10−2

2 ∆φ(τ1τ3),(τ2τ4)
2.856 × 10−2

3 ∆φJet1,τ3
2.754 × 10−2

4 ∆Rlow
ττ 2.678 × 10−2

5 ∆φ(τ1τ2τ3τ4),τ4
2.663 × 10−2

6 ∆ηMet,τ4
2.640 × 10−2

7 ∆φτ1τ3
2.626 × 10−2

8 ∆ητ3τ4
2.580 × 10−2

9 ∆φMet,τ4
2.578 × 10−2

10 ∆ηJet1,τ3
2.558 × 10−2

11 ∆φ(τ3τ4),(τ2τ4)
2.512 × 10−2

12 ∆ητ1τ3
2.503 × 10−2

13 ∆Rτ3τ4
2.467 × 10−2

14 cos(α)τ2τ4
2.452 × 10−2

15 ∆ητ2τ4
2.393 × 10−2

16 ∆φmin((τ1τ2),Met) 2.369 × 10−2

17 ∆ητ1τ2
2.347 × 10−2

18 ∆φmin((τ2τ4),Met) 2.340 × 10−2

19 Met significance 2.322 × 10−2

20 ∆ητ3τ4
2.320 × 10−2
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21 ∆φ(τ1τ2τ3τ4),τ4
2.243 × 10−2

22 cos(α)τ2τ4
2.196 × 10−2

23 ∆φmin((τ3τ4),Met) 2.186 × 10−2

24 ∆ητ2τ4
2.166 × 10−2

25
∑

cos
(
∆φ((τ1τ2),Met)

)
2.166 × 10−2

26 ∆Rτ1τ2τ3τ4
2.163 × 10−2

27 ∆ηJet2,τ1
2.085 × 10−2

28 ∆ηMet,Jet3
2.076 × 10−2

29 ∆ητ3τ4
2.074 × 10−2

30 ∆ητ3τ4
2.019 × 10−2

31 ∆ηJet1,τ3
1.997 × 10−2

32 ∆ηMet,τ4
1.974 × 10−2

33 ∆φ(τ1τ3),(τ2τ4)
1.973 × 10−2

34 ∆φJet2,Jet3
1.942 × 10−2

35
∑

cos
(
∆φ((τ3τ4),Met)

)
1.938 × 10−2

36 ∆Rτ3τ4
1.908 × 10−2

37 cos(α)τ1τ3
1.897 × 10−2

38
∑

cos
(
∆φ((τ1τ3),Met)

)
1.879 × 10−2

39 ∆φ(τ3τ4),(τ2τ4)
1.867 × 10−2

40 ∆ηJet1,τ3
1.856 × 10−2

41 ∆ηJet3,(τ2τ4)
1.824 × 10−2

42 cos(α)τ3τ4
1.760 × 10−2

43 ∆Rhigh
ττ,false 1.639 × 10−2

44 mhigh
ττ,false 1.503 × 10−2

45 mτ1τ3
1.348 × 10−2

(a) BDT (MC)

hello

21 pMet
T 2.290 × 10−2

22 cos(α)τ3τ4
2.285 × 10−2

23 ∆Rhigh
ττ,false 2.282 × 10−2

24 ∆φmin((τ3τ4),Met) 2.278 × 10−2

25 ∆Rhigh
ττ 2.257 × 10−2

26 ∆φMet,(τ1τ2)
2.232 × 10−2

27 ∆Rlow
ττ,false 2.216 × 10−2

28
∑

cos
(
∆φ((τ3τ4),Met)

)
2.169 × 10−2

29 cos(α)τ1τ3
2.162 × 10−2

30 ∆ηMet,Jet2
2.135 × 10−2

31 ∆ηJet3,(τ2τ4)
2.120 × 10−2

32 ∆φmin((τ1τ3),Met) 2.108 × 10−2

33 ∆Rτ1τ2τ3τ4
2.106 × 10−2

34
∑

cos
(
∆φ((τ1τ2),Met)

)
2.104 × 10−2

35 ∆ηJet2,τ1
2.081 × 10−2

36 pT(τ1) 2.052 × 10−2

37 mlow
ττ 1.983 × 10−2

38
∑

pT(lep1−4, 3h1l) 1.901 × 10−2

39 pT(τ4) 1.845 × 10−2

40
∑

cos
(
∆φ((τ1τ3),Met)

)
1.833 × 10−2

41 ∆φJet2,Jet3
1.682 × 10−2

42 ∆ηMet,Jet3
1.533 × 10−2

43 mlow
ττ,false 1.450 × 10−2

44 mτ1τ3
1.187 × 10−2

45 mhigh
ττ,false 8.422 × 10−3

(b) BDTG (MC)

Table C.1: Full classifier-specific rankings of all input variables for the training of the Monte Carlo BDT.

QCD Multijet BDT

Rank Variable Importance
1 pMet

T 5.837 × 10−2

2 Met significance 5.585 × 10−2

3 ∆φJet1,τ4
4.507 × 10−2

4
∑

pT(lep1−4, 3h1l) 4.455 × 10−2

hello

Rank Variable Importance
1 pMet

T 4.600 × 10−2

2 Met significance 4.569 × 10−2

3 ∆ητ1τ3
3.506 × 10−2

4 ∆φJet1,τ4
3.457 × 10−2
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5 ∆ητ1τ3
3.535 × 10−2

6 ∆Rhigh
ττ 3.396 × 10−2

7 ∆φMet,(τ1τ2τ3τ4)
3.293 × 10−2

8 mlow
ττ 3.284 × 10−2

9 pT(τ1τ2τ3τ4) 3.273 × 10−2

10 ∆φMet,τ4
3.246 × 10−2

11 ∆ητ1τ2
3.154 × 10−2

12 ∆ηMet,Jet2
3.141 × 10−2

13 ∆ηMet,τ4
2.978 × 10−2

14 ∆ηMet,Jet3
2.846 × 10−2

15 pT(τ1) 2.835 × 10−2

16 ∆Rhigh
ττ,false 2.772 × 10−2

17 mlow
ττ,false 2.615 × 10−2

18 ∆ητ3τ4
2.600 × 10−2

19 cos(α)τ1τ2
2.593 × 10−2

20 ∆φ(τ1τ2τ3τ4),τ4
2.533 × 10−2

21 ∆Rlow
ττ 2.444 × 10−2

22 ∆ητ1τ2
2.436 × 10−2

23 cos(α)τ2τ4
2.374 × 10−2

24 ∆Rlow
ττ,false 2.358 × 10−2

25 mhigh
ττ,false 2.334 × 10−2

26
∑high pT(ττ) 2.325 × 10−2

27 ∆ηJet1,τ4
2.284 × 10−2

28 ∆ητ2τ4
2.236 × 10−2

29 cos(α)τ1τ3
2.203 × 10−2

30 mτ1τ2τ3τ4
2.201 × 10−2

31 ∆φMet,τ3
2.188 × 10−2

32 ∆Rτ1τ2
2.187 × 10−2

33 pT(τ2) 2.023 × 10−2

34
∑low pT(ττ, false) 1.930 × 10−2

(a) BDT (Fakes)

hello

5 ∆ηMet,τ4
3.450 × 10−2

6 ∆Rlow
ττ,false 3.443 × 10−2

7 ∆ητ3τ4
3.389 × 10−2

8 cos(α)τ1τ3
3.378 × 10−2

9 ∆φMet,τ4
3.368 × 10−2

10 ∆Rhigh
ττ 3.285 × 10−2

11 ∆ητ2τ4
3.274 × 10−2

12 cos(α)τ1τ2
3.274 × 10−2

13 ∆φ(τ1τ2τ3τ4),τ4
3.272 × 10−2

14 cos(α)τ2τ4
3.240 × 10−2

15 ∆Rτ1τ2
3.185 × 10−2

16 ∆φMet,(τ1τ2τ3τ4)
3.163 × 10−2

17 ∆φMet,τ3
3.141 × 10−2

18 ∆ητ1τ2
3.122 × 10−2

19 mlow
ττ 2.914 × 10−2

20 ∆ηJet1,τ4
2.894 × 10−2

21 ∆ητ1τ2
2.886 × 10−2

22 ∆Rlow
ττ 2.846 × 10−2

23
∑

pT(lep1−4, 3h1l) 2.802 × 10−2

24 ∆ηMet,Jet2
2.781 × 10−2

25 pT(τ1τ2τ3τ4) 2.546 × 10−2

26 pT(τ1) 2.388 × 10−2

27 ∆Rhigh
ττ,false 2.268 × 10−2

28
∑high pT(ττ) 2.236 × 10−2

29 ∆ηMet,Jet3
2.214 × 10−2

30 mτ1τ2τ3τ4
2.193 × 10−2

31
∑low pT(ττ, false) 1.907 × 10−2

32 mhigh
ττ,false 1.824 × 10−2

33 mlow
ττ,false 1.812 × 10−2

34 pT(τ2) 1.376 × 10−2

(b) BDTG (Fakes)

Table C.2: Full classifier-specific rankings of all input variables for the training of the QCD Multijet BDT.
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APPENDIX D

BDT Overtraining Results for Different
Hyperparameter Setups

In this chapter, the overtraining results of the trained BDT classifiers for different hyperparameter
setups are shown. The final selection of a tree depth of 3 and a minimum node size of 5% (cf. tab. 7.2)
has been made based on the plots for the BDTG (MC) and BDTG (Fakes) classifiers in combination
with table 7.7 and 7.8 and is highlighted in the captions below.
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(h) Depth 3, min. node size 10%
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(k) Depth 3, min. node size 20%
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0.5− 0.4− 0.3− 0.2− 0.1− 0 0.1 0.2 0.3

BDT response

0

1

2

3

4

5

d
x

 / 
(1

/N
) 

d
N

Signal (test sample)

Background (test sample)

Signal (training sample)

Background (training sample)

Kolmogorov­Smirnov test: signal (background) probability =     0 (    0)

U
/O

­f
lo

w
 (

S
,B

):
 (

0
.0

, 
0

.0
)%

 /
 (

0
.0

, 
0

.0
)%

TMVA overtraining check for classifier: BDT

(l) Depth 5, min. node size 20%

Figure D.1: Overtraining results of the BDT (MC) classifier for different hyperparameter setups. The effect is
large for high depths and small minimum node sizes and decreases especially when higher values for the second
parameter are chosen. On the other hand, this increase also leads to a larger overlap between the signal and
background distributions, i.e. to a worse separation performance.
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(b) Depth 3, min. node size 2%
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(g) Depth 2, min. node size 10%
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(j) Depth 2, min. node size 20%
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(h) Depth 3, min. node size 10%
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(k) Depth 3, min. node size 20%
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(i) Depth 5, min. node size 10%
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Figure D.2: Overtraining results of the BDTG (MC) classifier for different hyperparameter setups. The effect is
large for high depths and small minimum node sizes and decreases especially when higher values for the second
parameter are chosen. On the other hand, this increase also leads to a larger overlap between the signal and
background distributions, i.e. to a worse separation performance.
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(d) Depth 2, min. node size 5%
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(b) Depth 3, min. node size 2%
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Kolmogorov­Smirnov test: signal (background) probability =     0 (0.349)
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Kolmogorov­Smirnov test: signal (background) probability =     0 (0.281)
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0.4− 0.3− 0.2− 0.1− 0 0.1 0.2 0.3

BDT response

0

1

2

3

4

5

6d
x

 / 
(1

/N
) 

d
N

Signal (test sample)

Background (test sample)

Signal (training sample)

Background (training sample)

Kolmogorov­Smirnov test: signal (background) probability =     0 (0.315)

U
/O

­f
lo

w
 (

S
,B

):
 (

0
.0

, 
0

.0
)%

 /
 (

0
.0

, 
0

.0
)%

TMVA overtraining check for classifier: BDT

(f) Depth 5, min. node size 5%

115



Appendix D BDT Overtraining Results for Different Hyperparameter Setups

0.5− 0.4− 0.3− 0.2− 0.1− 0 0.1 0.2 0.3

BDT response

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5d
x

 / 
(1

/N
) 

d
N

Signal (test sample)

Background (test sample)

Signal (training sample)

Background (training sample)

Kolmogorov­Smirnov test: signal (background) probability =     0 ( 0.75)

U
/O

­f
lo

w
 (

S
,B

):
 (

0
.0

, 
0

.0
)%

 /
 (

0
.0

, 
0

.0
)%

TMVA overtraining check for classifier: BDT

(g) Depth 2, min. node size 10%
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Kolmogorov­Smirnov test: signal (background) probability = 0.001 (0.088)
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(j) Depth 2, min. node size 20%
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Kolmogorov­Smirnov test: signal (background) probability =     0 (0.597)
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(h) Depth 3, min. node size 10%
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Kolmogorov­Smirnov test: signal (background) probability =     0 (0.158)
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(k) Depth 3, min. node size 20%
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Kolmogorov­Smirnov test: signal (background) probability =     0 (0.334)
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(i) Depth 5, min. node size 10%

0.5− 0.4− 0.3− 0.2− 0.1− 0 0.1 0.2 0.3 0.4

BDT response

0

0.5

1

1.5

2

2.5

3

3.5

4d
x

 / 
(1

/N
) 

d
N

Signal (test sample)

Background (test sample)

Signal (training sample)

Background (training sample)

Kolmogorov­Smirnov test: signal (background) probability =     0 (0.158)
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Figure D.3: Overtraining results of the BDT (Fakes) classifier for different hyperparameter setups. The effect is
large for high depths and small minimum node sizes and decreases especially when higher values for the second
parameter are chosen. On the other hand, this increase also leads to a larger overlap between the signal and
background distributions, i.e. to a worse separation performance.
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Kolmogorov­Smirnov test: signal (background) probability =     0 (0.458)
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(d) Depth 2, min. node size 5%
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Kolmogorov­Smirnov test: signal (background) probability =     0 (0.011)
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(b) Depth 3, min. node size 2%
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Kolmogorov­Smirnov test: signal (background) probability =     0 (0.176)
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(c) Depth 5, min. node size 2%
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Kolmogorov­Smirnov test: signal (background) probability =     0 (0.203)
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(g) Depth 2, min. node size 10%
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Kolmogorov­Smirnov test: signal (background) probability =     0 (0.059)
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(j) Depth 2, min. node size 20%
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Kolmogorov­Smirnov test: signal (background) probability =     0 (0.407)

U
/O

­f
lo

w
 (

S
,B

):
 (

0
.0

, 
0

.0
)%

 /
 (

0
.0

, 
0

.0
)%

TMVA overtraining check for classifier: BDTG

(h) Depth 3, min. node size 10%
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Kolmogorov­Smirnov test: signal (background) probability =     0 (0.353)
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(k) Depth 3, min. node size 20%
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Kolmogorov­Smirnov test: signal (background) probability =     0 ( 0.05)
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Kolmogorov­Smirnov test: signal (background) probability =     0 (0.353)
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Figure D.4: Overtraining results of the BDTG (Fakes) classifier for different hyperparameter setups. The effect
is large for high depths and small minimum node sizes and decreases especially when higher values for the
second parameter are chosen. On the other hand, this increase also leads to a larger overlap between the signal
and background distributions, i.e. to a worse separation performance.
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APPENDIX E

Pre-Fit Event Yield Tables

The pre-fit events yields in the different fit regions constructed in section 7.3 are given below.

Process
Bin

1 2 3 4 5 6 7 8 9 10
Z Z → 4τ 0.002 0 0.008 0.040 0.051 0.118 0.109 0.130 0.041 0.082
V + Jets 0 0 0 0 0 0 0 0.050 0 0
Higgs 0 0 0 0 0.001 0.001 0.007 0.011 0.037 0.027

Z → ττ 0 0 0 0 0 0 0 0.182 0.022 0
Multiboson 0 0 0 0 0.002 0.003 0.007 0.032 0.015 0.101

tt̄ 0 0 0 0 0.509 1.027 1.195 0.173 0.338 0.086
Top 0 0 0 0 0 0 0 0 0 0

Fakes (QCD) 3850.972 5047.551 32962.807 46902.751 23847.177 8778.283 2425.485 569.188 90.695 12.935
Fakes (MC) 169.028 237.449 1448.193 21575.249 12240.630 8292.301 3294.687 962.203 214.729 30.044∑

MC 0 0 0 0 0.512 1.031 1.209 0.448 0.412 0.214∑
Fakes 4020.000 5285.000 34411.000 68478.000 36087.807 17070.584 5720.172 1531.391 305.424 42.979

Total 4020 ± 608 5285 ± 798 34411 ± 5167 68478 ± 10277 36088 ± 5418 17072 ± 2566 5721 ± 863 1532 ± 234 306 ± 50 43 ± 10
Data 3779 5266 34430 67433 35485 16679 5409 1476 319 51

Table E.1: Bin-separated pre-fit event yields in the CRMCLowFLow region.

Process
Bin

1 2 3 4 5 6 7 8 9 10
Z Z → 4τ 0.009 0.002 0.039 0.149 0.213 0.453 0.447 0.626 0.547 0.538
V + Jets 0 0 0 0 0 0 0 0 0 0
Higgs 0 0 0 0 0.006 0.001 0.019 0.049 0.088 0.212

Z → ττ 0 0 0 0 0 0 0.088 0.449 0.051 0
Multiboson 0 0 0 0 0 0.001 0.001 0 0.051 0.205

tt̄ 0 0 0 0 0.081 0.424 0.597 0.258 0.268 0.084
Top 0 0 0 0 0 0 0 0 0 0

Fakes (QCD) 7820.945 10732.229 80830.385 110436.935 78192.898 35482.149 11531.468 2586.003 359.354 43.161
Fakes (MC) 371.055 535.771 4167.615 16969.805 11037.932 8555.766 3335.659 1299.646 298.488 71.628∑

MC 0 0 0 0 0.087 0.426 0.705 0.756 0.458 0.501∑
Fakes 8192.000 11268.000 84998.000 127406.740 89230.830 44037.915 14867.127 3885.650 657.842 114.789

Total 8192 ± 809 11268 ± 1100 84998 ± 8120 127407 ± 11202 89231 ± 7925 44039 ± 3682 14868 ± 1235 3887 ± 332 659 ± 86 116 ± 34
Data 8077 11171 85626 127480 88196 44690 15056 3987 711 106

Table E.2: Bin-separated pre-fit event yields in the CRMCHighFLow region.

119



Appendix E Pre-Fit Event Yield Tables

hello

Process
Bin

1 2 3 4 5 6 7 8 9 10
Z Z → 4τ 0 0.001 0.003 0.014 0.013 0.032 0.039 0.039 0.048 0.047
V + Jets 0 0 0 0 0 0 0 0 0 0
Higgs 0 0 0 0 0.002 0.003 0.017 0.050 0.100 0.358

Z → ττ 0 0 0 0 0 0 0 0.080 0.079 0
Multiboson 0 0 0 0 0 0 0.031 0.001 0.022 0.024

tt̄ 0 0 0 0 0 0.787 1.287 0.747 0.862 0.170
Top 0 0 0 0 0 0 0 0.313 0 0

Fakes (QCD) 292.194 292.195 1842.462 1179.211 623.609 166.708 75.083 5.546 0 1.909
Fakes (MC) 97.806 143.805 860.538 24311.789 11488.391 5902.771 2066.258 631.839 117.917 20.066∑

MC 0 0 0 0 0.002 0.790 1.335 1.191 1.063 0.552∑
Fakes 390.000 436.000 2703.000 25491.000 12112.000 6069.479 2141.341 637.385 117.917 21.975

Total 390 ± 53 436 ± 60 2703 ± 236 25491 ± 2454 12112 ± 1171 6070 ± 610 2143 ± 225 639 ± 80 119 ± 24 23 ± 10
Data 379 495 2759 25833 12202 6360 2183 634 152 34

Table E.3: Bin-separated pre-fit event yields in the CRTop region.

Process
Bin

1 2 3 4 5 6 7 8 9 10
Z Z → 4τ 0 0 0.011 0.046 0.125 0.288 0.516 0.783 0.684 1.236
V + Jets 0 0 0 0 0 0 0 0 0 0
Higgs 0 0 0 0 0.001 0.006 0.007 0.061 0.115 0.641

Z → ττ 0 0 0 0 0 0 0 0 0.063 0
Multiboson 0 0 0 0 0 0.002 0.001 0.016 0.049 0.075

tt̄ 0 0 0 0 0.086 0.250 0.924 0.244 0.081 0
Top 0 0 0 0 0 0 0 0 0 0

Fakes (QCD) 207.970 260.854 2405.562 4266.748 4121.840 2196.596 758.230 173.315 36.374 2.330
Fakes (MC) 24.030 55.146 535.438 6884.330 4575.986 3202.943 1254.253 482.512 98.599 24.641∑

MC 0 0 0 0 0.087 0.258 0.932 0.321 0.308 0.716∑
Fakes 232.000 316.000 2941.000 11151.078 8697.826 5399.539 2012.483 655.827 134.973 26.971

Total 232 ± 44 316 ± 48 2941 ± 276 11151 ± 848 8698 ± 649 5400 ± 429 2014 ± 191 657 ± 91 136 ± 33 29 ± 16
Data 246 345 3220 11829 9058 5533 2159 723 167 20

Table E.4: Bin-separated pre-fit event yields in the SRMCHighFMed region.

hello
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Process
Bin

1 2 3 4 5 6 7 8 9 10
Z Z → 4τ 0 0 0.005 0.007 0.081 0.185 0.482 0.784 1.164 3.279
V + Jets 0 0 0 0 0 0 0 0 0 0
Higgs 0 0 0 0 0 0.001 0.029 0.512 0.203 1.517

Z → ττ 0 0 0 0 0 0 0 0 0.064 0.063
Multiboson 0 0 0 0 0 0 0.002 0.008 0.037 0.084

tt̄ 0 0 0 0.250 0.084 0.768 0.255 0.417 0 0
Top 0 0 0 0 0 0 0 0 0 0

Fakes (QCD) 29.921 43.093 404.776 682.526 838.316 390.646 116.552 26.008 8.974 3.572
Fakes (MC) 9.079 14.907 181.224 3494.252 2169.684 1699.982 771.136 265.566 76.505 12.404∑

MC 0 0 0 0.250 0.084 0.769 0.286 0.937 0.304 1.664∑
Fakes 39.000 58.000 586.000 4176.778 3008.000 2090.628 887.688 291.574 85.479 15.976

Total 39 ± 13 58 ± 18 586 ± 70 4177 ± 379 3008 ± 261 2092 ± 212 888 ± 129 293 ± 71 87 ± 37 21 ± 21
Data 41 70 636 4585 3253 2366 967 372 73 16

Table E.5: Bin-separated pre-fit event yields in the SRMCHighFHigh region.

Process
Bin

1 2 3 4 5 6 7 8 9 10
Z Z → 4τ 0 0 0.002 0.004 0.013 0.030 0.017 0.075 0.035 0.078
V + Jets 0 0 0 0 0 0 0 0 0 0
Higgs 0 0 0 0.001 0.001 0 0.001 0.002 0.016 0.036

Z → ττ 0 0 0 0 0 0 0 0 0 0
Multiboson 0 0 0 0 0 0 0 0 0.001 0.062

tt̄ 0 0 0 0 0 0.602 0.348 0.349 0.086 0
Top 0 0 0 0 0 0 0 0 0 0

Fakes (QCD) 17.196 22.233 119.253 95.933 95.381 53.106 19.274 5.669 1.865 0
Fakes (MC) 5.804 6.767 48.747 2601.067 1396.626 902.458 352.726 107.323 16.066 2.998∑

MC 0 0 0 0.001 0.001 0.602 0.349 0.351 0.103 0.098∑
Fakes 23.000 29.000 168.000 2697.000 1492.007 955.564 372.000 112.992 17.931 2.998

Total 23 ± 11 29 ± 11 168 ± 30 2697 ± 280 1492 ± 166 956 ± 111 372 ± 57 113 ± 27 18 ± 10 3 ± 5
Data 17 21 156 3044 1784 1105 423 130 21 7

Table E.6: Bin-separated pre-fit event yields in the VRMCLowFMed+ region.
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APPENDIX F

Post-Fit Event Yield Tables

The post-fit events yields in the different fit regions constructed in section 7.3 are given below. In
contrast to the pre-fit yields in appendix E, they can only be given for signal, data and the summed
Monte Carlo and fake backgrounds, as the fit also treats these processes as one sample each. Due to
the negative value of the fitted signal strength, the signal event yields are negative as well.

Process
Bin

1 2 3 4 5 6 7 8 9 10
Z Z → 4τ -0.001 0 -0.004 -0.020 -0.025 -0.057 -0.053 -0.063 -0.020 -0.040

MC 0 0 0 0 0.669 1.350 1.582 0.588 0.541 0.279
Fakes 4029.967 5298.104 34496.320 68647.786 36177.284 17112.909 5734.355 1535.188 306.181 43.085

Total 4030 ± 81 5298 ± 93 34496 ± 245 68648 ± 356 36178 ± 246 17114 ± 163 5736 ± 92 1536 ± 47 307 ± 21 43 ± 8
Data 3779 5266 34430 67433 35485 16679 5409 1476 319 51

Table F.1: Bin-separated post-fit event yields in the CRMCLowFLow region.

Process
Bin

1 2 3 4 5 6 7 8 9 10
Z Z → 4τ -0.004 -0.001 -0.019 -0.073 -0.104 -0.221 -0.218 -0.305 -0.266 -0.262

MC 0 0 0 0 0.114 0.557 0.922 0.986 0.601 0.660
Fakes 8212.311 11295.938 85208.746 127722.636 89452.072 44147.104 14903.989 3895.284 659.473 115.073

Total 8212 ± 118 11296 ± 137 85209 ± 408 127723 ± 515 89452 ± 409 44147 ± 271 14905 ± 150 3896 ± 75 660 ± 31 115 ± 13
Data 8077 11171 85626 127480 88196 44690 15056 3987 711 106

Table F.2: Bin-separated post-fit event yields in the CRMCHighFLow region.
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Process
Bin

1 2 3 4 5 6 7 8 9 10
Z Z → 4τ 0 0 -0.002 -0.007 -0.006 -0.016 -0.019 -0.019 -0.024 -0.023

MC 0 0 0 0 0.002 1.035 1.748 1.561 1.392 0.723
Fakes 390.967 437.081 2709.702 25554.204 12142.031 6084.528 2146.651 638.966 118.209 22.029

Total 391 ± 24 437 ± 28 2710 ± 66 25554 ± 208 12142 ± 139 6086 ± 97 2148 ± 56 641 ± 30 120 ± 14 23 ± 8
Data 379 495 2759 25833 12202 6360 2183 634 152 34

Table F.3: Bin-separated post-fit event yields in the CRTop region.

Process
Bin

1 2 3 4 5 6 7 8 9 10
Z Z → 4τ 0 0 -0.005 -0.022 -0.061 -0.140 -0.252 -0.382 -0.333 -0.602

MC 0 0 0 0 0.113 0.339 1.221 0.420 0.403 0.937
Fakes 232.575 316.783 2948.292 11178.727 8719.391 5412.926 2017.473 657.453 135.307 27.037

Total 233 ± 20 317 ± 23 2948 ± 70 11179 ± 134 8719 ± 116 5413 ± 89 2018 ± 54 657 ± 30 135 ± 14 27 ± 7
Data 246 345 3220 11829 9058 5533 2159 723 167 20

Table F.4: Bin-separated post-fit event yields in the SRMCHighFMed region.

Process
Bin

1 2 3 4 5 6 7 8 9 10
Z Z → 4τ 0 0 -0.003 -0.003 -0.040 -0.090 -0.235 -0.382 -0.567 -1.598

MC 0 0 0 0.327 0.110 1.007 0.376 1.226 0.398 2.178
Fakes 39.097 58.144 587.453 4187.134 3015.458 2095.811 889.889 292.297 85.691 16.016

Total 39 ± 8 58 ± 11 587 ± 31 4187 ± 80 3016 ± 68 2097 ± 55 890 ± 35 293 ± 20 86 ± 11 17 ± 8
Data 41 70 636 4585 3253 2366 967 372 73 16

Table F.5: Bin-separated post-fit event yields in the SRMCHighFHigh region.

Process
Bin

1 2 3 4 5 6 7 8 9 10
Z Z → 4τ 0 0 -0.001 -0.002 -0.006 -0.015 -0.008 -0.037 -0.017 -0.038

MC 0 0 0 0.001 0.001 0.789 0.456 0.460 0.134 0.128
Fakes 23.057 29.072 168.417 2703.687 1495.706 957.934 372.922 113.272 17.976 3.005

Total 23 ± 7 29 ± 7 168 ± 16 2704 ± 64 1496 ± 47 959 ± 36 373 ± 22 114 ± 12 18 ± 6 3 ± 4
Data 17 21 156 3044 1784 1105 423 130 21 7

Table F.6: Bin-separated post-fit event yields in the VRMCLowFMed+ region.
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