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CHAPTER 1

Introduction

In modern times of particle physics the experiments try to reach ever higher luminosity and higher
energies in order to probe the Standard Model of particle physics (SM) to ultra high precision and to
possibly find new physics behind the Standard Model (BSM). Not only the machines are upgraded
with time but also the analysis tools are refined and sometimes reinvented in order to achieve better
accuracy.

The Large Hadron Collider (LHC) is a great example for mankind’s curiosity to understand nature.
It is one of the largest machines ever built and collides protons with a center-of-mass energy of
√

s = 13 TeV. The ATLAS experiment is built around one interaction point to detect the produced
particles in the collision. In the year 2012, this setup discovered a new resonance [1], presumably
the SM Higgs boson, which was predicted in the 1960s[2–4]. An upgrade is planned to reach higher
luminosity [5] and for which also the ATLAS detector is upgraded [6]. With this high luminosity, a
lot of data will be produced which demand for a faster analysis.
The Higgs boson plays a major role in the SM because it arises from the electroweak symmetry

breaking, the Higgs fields non-zero vacuum expectation value explains the masses of the gauge bosons
and also explains the masses of the fermions via the Yukawa coupling. The discovered Higgs boson is
not yet tested to full extend and deviations to the predicted properties would open the window for new
physics. Promising analyses that directly probe the properties of the found resonance are the Yukawa
coupling of the Higgs boson to tau-leptons which can give access to the CP quantum numbers of the
Higgs boson [7–9] and the Higgs boson self interaction which reveals details of the shape of the Higgs
potential [10]. Studies on the Higgs self coupling involve two or three Higgs bosons in the final state.
It is likely that one of these Higgs boson decays into tau-leptons, because the H → ττ decay has a
non-negligible branching ratio of B = 6.37% [11]. While many promising analyses involve Higgs
bosons decaying into tau-lepton pairs, these events have to be accurately distinguished from similar
looking background. The main discriminant to separate Higgs bosons from predominantly Z boson
background is the invariant mass of the di-tau system [12].
One analysis tool which is getting ever higher popularity is the use of artificial neural networks.

While theoretically established since 1943 [13], the recent growth of computational power makes
the training of complex artificial neural networks on large data samples possible. Machine learning
techniques are already present in modern particle physics analyses, e.g. in the usage of boosted
decision trees for the discrimination of signal and background [14]. The trend is to also apply deep
learning techniques to high energy physics problems which are harder to interpret for humans but can
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Chapter 1 Introduction

lead to better results.
The current estimator for the invariant mass of a di-tau system is the Missing Mass Calculator [15].

The MMC is a likelihood-based method which tries to estimate the neutrinos of the tau-lepton decay.
For this, individual likelihoods are calculated and multiplied. Possibly, a deep neural network can
learn additionally correlation between these variables. A second improvement is that a deep neural
network is easy extendable to include additional event related information, which can further improve
the estimated mass resolution. While the MMC performs a phase space scan for each individual event
in order to predict the mass of a di-tau system, a neural network has to be trained only once and then a
map is defined which can calculate the mass of di-tau system by simple matrix multiplication. Thus, a
speedup can very likely be gained.
This thesis introduces a setup for training a neural network for the task of estimating the mass of

a di-tau system in the ATLAS experiment, where both tau-leptons decay hadronically. The neural
network is trained in supervised learning on an unphysical γ∗ → ττ sample, which only includes
virtual photons that couple electromagnetically to the tau-leptons and does not take the interference
with the weak coupling Z boson into account. A loss function is tested which tries to take the limited
target value range of the training sample into account. The performance of the neural network is
compared to the MMC performance not only on this unphysical sample but also tested in the use case
of separating Higgs and Z bosons.
The thesis is structured to first give an overview of related work in Chapter 2. The theoretical

background is given in chapter 3. Chapter 4 describes the ATLAS experiment at the LHC and also
sketches how particle reconstruction with the ATLAS experiment is done. It further describes the
MMC which is the reference method for this work. An introduction of the technicalities of deep
neural networks is presented in chapter 5. The used data samples are described in chapter 6. It also
describes the input variables for the deep neural network and which architectures are tested. Chapter 7
is dedicated to the description of how the performance of a deep neural network can be evaluated. It
also shows the advantages of using a loss function which tries to take the limited target value range of
the training sample into account in the example of a deep neural network trained with Monte Carlo
generated information. Finally, the results of the deep neural network performance, which is trained
on reconstruction level data, are presented in chapter 8. Impact of selected hyperparameters on the
performance are studied and for one specific architecture the performance in the use case of separating
Higgs and Z bosons is presented. The thesis is concluded in chapter 9.
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CHAPTER 2

Related Work

This work has to be seen in the context of the state of similar problems in the field of machine
learning and its applications to high energy physics. For the specific task of the mass estimation of a
di-tau system, the Missing Mass Calculator (MMC) tool (see Chapter 4.4) is used as the reference
method. There is still ongoing work in the development of the MMC and it is planned to include more
variables and the correlation between the probability density functions, which could possibly improve
its performance [16].
Another approach to provide an estimator for the di-tau system mass used a boosted regression

tree (BRT), trained on Monte Carlo generated H → ττ samples which varied the H mass in 5 GeV
steps [17, 18]. The BRT was then trained on truth information and therefore could not exploit possible
effects of the detector response. It achieved a resolution slightly worse than the MMC [17]. An
important observed effect was that the BRT had a non-linear response in the edge regions of the
training sample. This seems to be a problem in regression tasks and there is ongoing work in the
compensation of edge effects. A recent work tried to give a solution for neural network regression
tasks in designing an alternative loss function (see Chapter 5.1.2) [19]. It was developed to reconstruct
the energy in a calorimeter using convolutional neural networks, but the concept should be applicable
to any neural network regression problem.
Convolutional neural networks are heavily and successfully used in high energy physics, e.g. for

top-tagging [20, 21] or for energy reconstruction in NOvA [22]. Other applications of deep learning
in high energy physics at the Large Hadron Collider are summarized in [23]. While the spectrum
of possible applications of deep learning is very broad, deep feed-forward neural networks are
suggested for classification or regression problems. The usage of deep feed-forward neural networks
for regression problems is topic of recent studies, e.g. [24], and may find a growing acceptance and
popularity.

A study of deep feed-forward neural networks in the search for new exotic particles found that deep
neural networks performed better with low level input features in contrast to boosted decision trees
or shallow neural networks which performed better with higher level input features [25]. This can
be interpreted in a sense, that from physical insights a machine learning approach can extract many
useful information, but also that some information can get lost.

A big disadvantage from deep neural networks is that they are very hard to interpret. Many studies
try to address that problem and try to illustrate what the neural network does when going from one
layer to the next one [26, 27].
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CHAPTER 3

The Standard Model of Particle Physics

The StandardModel of particle physics (SM) is a model which aims to describe the nature of elementary
particles and the fundamental interactions between them. It is a non-abelian gauge quantum field
theory with the internal symmetries of the unitary product group SU(3)C × SU(2)L ×U(1)Y. There
are twelve arising gauge bosons which act as the mediators of the fundamental forces, i.e. the strong
(8), the weak (3) and the electromagnetic force (1). The SM contains fermions which exist in three
generations. The mass of the gauge bosons are explained by the Higgs mechanism with a resulting
Higgs boson, while the fermion masses are explained via the Yukawa coupling of the Higgs boson to
the fermions.
The SM is renormalizable [28] and mathematically self-consistent, however there are also short-

comings. The fundamental force gravitation as described by general relativity cannot be explained by
the SM. Additionally, the SM does not explain the observed baryon asymmetry [29], does not include
dark energy [30] which is a possible explanation for the accelerated expansion of the universe [31] and
provides no dark matter candidate with the properties deduced from cosmological observations [32].
Despite the shortcomings, the SM is a very successful model as it predicts many properties of particle
physics in great accuracy.
After the overview of the particles in the SM, theoretical considerations are explained briefly.

It should not be understood as a complete explanation of the SM and at some points it requires
understanding of quantum field theory but should lead to an understanding of the physics of the
tau-lepton which is relevant for this work. For more in-depth explanations standard textbooks like [33]
or [34] are recommended.

3.1 Overview of the Standard Model Particles

Early philosophical thoughts already formulated that matter should consist of some undividable,
smallest building blocks. The term átomos was systematically introduced by Democritus in the
fifth century before Christ. What is called atom today is known to consist of even smaller particles,
electrons and protons and neutrons in the nucleus. Protons and neutrons are known to consist of quarks
which are fundamental particles in today’s understanding, as is the. In the SM these fundamental
particles are featured.
The matter building particles are spin 1/2 fermions. Fermions are subdivided in the group of

leptons, which interact in the electroweak interaction, and quarks, which additionally interact in the
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Figure 3.1: Particles of the Standard Model with selected quantum numbers [36].

strong interaction. The electroweak interaction is a theoretical concept which is introduced to unify
electromagnetic and weak interactions.

Both types of fermions occur in three generations. Similar particles of different generations have the
same quantum numbers and do only differ in the rest mass. The SM gives no explanation why there are
exactly three generations. However, until today there is no clear evidence that more generations exist.

The mediators of the three described fundamental forces are the spin 1 bosons. In the SM there is
also a spin 0 boson, the Higgs boson. The Higgs boson is the most recently discovered particle [1, 35]
and completes the SM in the sense that it was the last puzzle piece for electroweak theory.

All SM particles and some selected quantum numbers are depicted in Fig. 3.1.

3.1.1 Leptons

Leptons are the electrically neutral neutrinos νl and the charged leptons l with charge Q(l) = −1e.
The charged leptons are called electron, muon and tau(-lepton) and abbreviated as e−, µ− and τ−. The
three neutrino generations νe, νµ and ντ are the eigenstates of the weak interaction. As the neutrinos
have no electric or color charge, they only interact via the weak interaction. Each fermion has an
antiparticle. The antiparticles of the charged leptons have opposite charge, while the antiparticles of
the neutrinos are produced in weak charged currents with a negatively charged lepton or pair-produced
in a weak neutral current. This preserves the lepton number. In the later presented formulation of
the SM only the weak eigenstates of the neutrinos occur as massless particles. By the observation of
neutrino oscillations (e.g. [37–39]) it can be concluded that the weak eigenstates are mixtures of mass
eigenstates ν1, ν2 and ν3 and thus not massless.
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3.2 The Electroweak Sector of the SM

3.1.2 Quarks

There are two types of quarks. Up-type quarks have electric charge Q(u) = 2/3, down-type quarks
have electric charge Q(d) = −1/3. Quarks carry color charge which makes them participate in the
strong interaction. Antiquarks have opposite signed charge and carry strong anticolor. Due to the
running coupling constant αs of the strong interaction, free quarks can only exist in the asymptotic
limit of high energies. This is very important for high energy collider experiments. When quarks
are produced the large color potential can create new quark-anti-quark pairs from the vacuum. This
continues until all quarks are bound in colorless final states. This process is called hadronization.
Hadrons consist of either three (baryons) or two (mesons) valence quarks. The three up-type quarks
are called up u, charm c and top t. The down-type quarks are called down d, strange s and bottom b.
The top-quark is in a sense special, because it decays before it hadronizes.

3.1.3 Bosons

The electrically neutral and massless photon γ is the mediator of the electromagnetic force. Every
electrically charged particle couples to the photon. For this work it is important that a virtual photon
can create a τ+τ− pair in the so called Drell-Yan process [40].

The W bosons are the mediators of weak charged current interactions. There is a positively charged
W+ with electric charge Q(W+) = +1e and a negatively chargedW− with electric charge Q(W−) = −1e.
The W bosons have a rest mass of (80.379 ± 0.012)GeV.

The Z0 boson is the mediator of weak neutral currents. It is electrically neutral. As it couples to
τ+τ− pairs, it is important for this work. Off-shell Z0 bosons are experimentally indistinguishable
from virtual photons and are also part of the Drell-Yan process. The Z0 boson has a rest mass of
(91.1876 ± 0.0021)GeV.

The gluons are the mediators of the strong force. They are massless, electrically neutral and carry
color and anticolor charge of different type. Gluons couple to quarks and can self-interact, i.e. a three
and a four-boson vertex exist.
The Higgs boson (H) is different from the other bosons as it is no gauge boson. It arises in the

process of spontaneous symmetry breaking in the electroweak theory. The Higgs boson couples to
the mass of the fermions via Yukawa coupling. Because of this coupling to the fermion masses and
considering that the tau-lepton is the heaviest lepton, the branching ratio of H → τ+τ− is 6.37% [11].
The Higgs boson has a rest mass of (125.18 ± 0.16)GeV.

3.2 The Electroweak Sector of the SM

A great success of the SM is the unification of the weak and the electromagnetic force. Historically,
the Lagrange density, also called Lagrangian, which describes the electroweak sector of the SM is
constructed to reproduce the observations of weak interactions, for example that the parity is maximally
violated in charged current interactions [41–43]. However, the resulting mathematical formulation did
predict the existence of weak neutral currents and the Z boson [44]. The observed vector bosons, the
W± and the Z0 boson, are massive particles. Without the Higgs mechanism [2–4], which explains the
mass of the bosons, as well as masses of the fermions, the electroweak model would not be complete,
because it would not be gauge invariant if the particle masses would be explained by Dirac mass terms.

7



Chapter 3 The Standard Model of Particle Physics

The beauty of the theory is that from the Lagrangian, Feynman rules can be concluded giving a
pictorial view on the interactions and the involved couplings. The Lagrangian will be presented with
a few comments on phenomenological impacts and consequences for the production and decay of
tau-leptons.

The electroweak symmetry group is the direct product of SU(2)L and U(1)Y. After spontaneous
symmetry breaking this breaks down to U(1)Q which describes the electromagnetic interactions. The
subscript L indicates that the SU(2) gauge fields ®W only couple to left-chiral fermions. The left-chiral
leptons (νl, l

−
)L form a doublet with weak isospin T = 1/2 while the right-chiral charged leptons l−R

are SU(2)L singlets, only carry hypercharge Y and do only couple to the U(1)Y gauge field B. The
relation between the weak isospin, the hypercharge and the electric charge is Q = T3 +Y . Right-chiral
neutrinos are not included in the SM, as they do not couple to either of the fields. As they are
not directly observed so far, it is not known whether they exist. From the observations of neutrino
oscillations it is known that there are differences in the neutrino masses of each generation but the
underlying mass acquiring concept is not understood.

The fundamental representation of the Higgs field is:

φ =

(
φ+

φ0

)
. (3.1)

The Lagrangian for the Higgs field reads:

LHiggs =

����(i∂µ − g ®τ2 · ®Wµ − g
′YφBµ

)
φ

����2 − V(φ) , (3.2)

where ®τ are the generators of SU(2)L, g is the coupling constant of SU(2)L, g
′ is the coupling constant

of U(1)Y and Yφ = 1/2 is the hypercharge of both components of φ. The Higgs potential V(φ) is then:

V(φ) = µ2φ†φ + λ(φ†φ)2 . (3.3)

While λ has to be positive in order to bound the potential from below, µ2 can be negative, which is
essential in the SM. In the unitary gauge φ+ is set to 0 and φ0 is real. The global minimum is located
at the vacuum expectation value

〈φ〉 =

√
−µ2

2λ
=:

1
√

2
v . (3.4)

Fluctuations around the vacuum expectation value can be parametrized by a real scalar field h which
is the physical Higgs field:

φ =
1
√

2

(
0

v + h

)
. (3.5)

Plugging this in for the field φ in (3.2) explains the masses of the vector bosons. It is important to note
that the observable vector boson fields are mixtures of the gauge boson fields, which will be explained
below.

The electroweak Lagrangian for leptons only reads:
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3.2 The Electroweak Sector of the SM

Lew =
∑

l=e,µ,τ

[
(νlL, lL)γ

µ

(
i∂µ − g

®τ

2
· ®Wµ − g

′YLBµ

) (
νlL
lL

)
+ lRγ

µ
(
i∂µ − g

′YRBµ
)

lR

]
−

1
4

BµνBµν −
1
4
®Wµν
®Wµν
+ LHiggs + LYukawa

(3.6)

with
Bµν = ∂µBν − ∂νBµ and Wµν

i = ∂
µWν

i − ∂
νWµ

i − gεi jkWµ
j Wν

k . (3.7)

The physical vector boson fields are mixtures of the fields ®W and B such that

W±µ =
1
√

2

(
W1
µ ∓ iW2

µ

)
(3.8)

are the field components of the W± fields and(
Aµ
Zµ

)
=

(
cos θW sin θW
− sin θW cos θW

) (
Bµ
W3
µ

)
(3.9)

are the components of the photon and the Z0 fields. The weak mixing angle is determined through the
relation g′/g = tan θW. It relates the couplings to the electric charge via

g′ cos θW = g sin θW = e . (3.10)

The added Lagrangian for the Yukawa coupling LYukawa explains the lepton masses:

LYukawa =
∑

l=e,µ,τ

− fl · l
−
Rφ
†

(
νlL
l−L

)
+ h.c.

unitary gauge
=

∑
l=e,µ,τ


− fl ·

v
√

2
l−l−︸          ︷︷          ︸

lepton mass term

− fl ·
h
√

2
l−l−︸          ︷︷          ︸

coupling to h


,

(3.11)

identifying fl · v/
√

2 as the lepton mass.

With the Lagrangian Lew all interactions of the tau-lepton are defined, which are the most important
for this work.

For completeness, the electroweak Lagrangian can be easily extended to include quark interactions,
analogously. Left-chiral quarks are introduced as SU(2)L doublets, right-chiral quarks as singlets:(

uL
d ′L

)
, uR, d

′
R,

(
cL
s′L

)
, cR, s

′
R,

(
tL
b′L

)
, tR, b

′
R, (3.12)

where d ′, s′ and b′ denote the weak eigenstates of the down-type quarks. The up-type quarks are
defined to be identical to the mass-eigenstates. The mass eigenstates of the down-type quarks d, s and
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Chapter 3 The Standard Model of Particle Physics

b are related to the weak eigenstates by the CKM-Matrix [45, 46]:

©«
d ′

s′

b′
ª®¬ = ©«

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

ª®¬ ©«
d
s
b

ª®¬ . (3.13)

This allows for interactions between different quark generations in weak charged current interactions.

3.3 Quantum Chromodynamics

Quantum Chromodynamics (QCD) describes the strong interaction between quarks and gluons. The
underlying gauge symmetry is SU(3)C, where the subscript C indicates that only particles with color
charge participate in strong interactions. This means that all other SM particles, except quarks and
gluons are SU(3)C singlets. The theoretical foundation was build in the Young-Mills theory [47],
which extended the concept of gauge theory to non-abelian SU(N) groups.

The concept of color charge [48–50] demands three quark color fields q1, q2 and q3. Requiring the
Lagrangian to be invariant under local phase transformations, the covariant derivatives takes the form:

Dµ = ∂µ + igTaGa
µ , (3.14)

where Ta (a = 1, ..., 8) are the generators of SU(3)C, g is the coupling strength and Ga
µ are the gluon

fields.
The Lagrangian describing QCD reads:

LQCD =
∑

q=u,d,c,s,t,b


∑

j=1,2,3
q̄j(iγ

µ∂µ − m)qj − g(q̄jγ
µTaqj)G

a
µ

 −
1
4

Ga
µνGµν

a , (3.15)

with
Ga
µν = ∂µGa

ν − ∂νGa
µ − g f abcGb

µGc
ν , (3.16)

and f abc = fabc being the structure constants of the group. The Lagrangian (3.15) describes QCD as a
stand-alone theory. But as quarks do also have SU(2)L and U(1)Y quantum numbers, the Dirac mass
term has to be taken out, as it is not gauge invariant in the electroweak theory. The quarks masses are
also explained by the Higgs Yukawa coupling.
The two main properties of QCD are color confinement, i.e. that color charged particles cannot

be isolated at normal conditions, and asymptotic freedom [51, 52], i.e. that the interaction strength
decreases with increasing energy scale so that free color charged particles can exist at the asymptotic
limit of high energies.

3.4 The Tau-Lepton

The tau-lepton was discovered in a series of experiments at the Stanford Linear Accelerator Center
from 1974 to 1977 [53]. It is the heaviest lepton with a mass of mτ ≈ 1.777 GeV and a lifetime of
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3.4 The Tau-Lepton

category decay products branching ratio B/%

leptonic e−ν̄eντ 17.82
µ−ν̄µντ 17.39

hadronic - ”1-prong” h−(≥ 0 neutrals) ντ 50.03
π−ντ 10.82
π−π0ντ 25.49
π−2π0ντ 9.26

hadronic - ”3-prong” h−h−h+(≥ 0 neutrals) ντ 15.21
π−π−π+ντ 9.31
π−π−π+π0ντ 4.62

Table 3.1: Decay channels and respective branching ratios of a τ−-lepton [54]. h± stands for charged hadron,
neutral references neutral hadrons. The hadronic decay channels are divided into 1 and 3 prong, i.e. 1 or 3
charged particles. Details are given on the most dominant sub-channels.

Figure 3.2: Pie chart of the tau-lepton decay modes. The hadronic decay modes are split into the ones which are
dominant [55].

ττ ≈ 290 ps [54]. This results in a mean flight length L of

L ≈ 49 µm
E

GeV
, (3.17)

depending on the energy E of the tau-lepton.
Due to the high rest mass, it is the only lepton which can decay hadronically and leptonically. The

most frequent decay modes are listed in Tab. 3.1 and visualized in Fig. 3.2.
The interactions between tau-leptons and the bosons in the SM are described by (3.6). The Feynman

rules for the interaction vertices are depicted in Figs. 3.3 - 3.6. The different kind of couplings affect
the polarization of the tau-leptons. The photon and the Higgs boson couple equally strong to left-
and right-chiral tau-leptons. The W− only couples to left-chiral tau-leptons, as the Feynman rule for
the vertex contains the left-chiral projection operator PL = (1 − γ5)/2. The Z0 couples to left- and
right-chiral tau-leptons with strengths g(0.5 − sin2 θW)/cos θW and g sin2 θW/cos θW, respectively.

For massless particles (or in the ultra-relativistic limit), the eigenstates of the chirality operator and
the helicity operator are identical. This implies that at high energies, the spin of left-chiral tau-leptons

11



Chapter 3 The Standard Model of Particle Physics

Figure 3.3: Feynman rule for the interaction vertex of
tau-leptons with a photon.

Figure 3.4: Feynman rule for the interaction vertex of a
tau-lepton with a W− boson.

Figure 3.5: Feynman rule for the interaction vertex of
tau-leptons with a Higgs boson.

Figure 3.6: Feynman rule for the interaction vertex of
tau-leptons with a Z0 boson.

is predominantly anti-parallel to the momentum and for right-chiral tau-leptons parallel.
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CHAPTER 4

Experimental Setup

The studies of this work use Monte Carlo simulated data of the ATLAS detector at the Large Hadron
Collider (LHC). This chapter aims to describe the LHC and the ATLAS detector. A short explanation
of how objects are reconstructed is given, especially how tau-leptons are reconstructed. The current
estimator for the mass of a di-tau system is presented, the Missing Mass Calculator tool (MMC) [15].
The MMC will hold for comparison against the neural network approach that will be presented in this
work.

4.1 The Large Hadron Collider

The Large Hadron Collider is a circular hadron collider situated near Geneva. With a circumference
of approximately 27 km, it is currently the world’s largest hadron collider. It is built about 170 m
underneath the ground and operated by the Conseil Européen pour la Recherche Nucléaire, CERN.
In two oppositely running beam pipes protons can be accelerated to energies up to 6.5 TeV (design
energy: 7 TeV). Before the protons are injected into the LHC storage ring, they traverse several small
accelerators. At first, the protons are accelerated to 50 MeV in a linear accelerator, the LINAC 2.
Afterwards, they are accelerated in three synchrotrons, the Proton Synchrotron Booster (Booster),
the Proton Synchrotron (PS) and the Super Proton Synchrotron (SPS) up to an injection energy of
450 GeV. In the LHC, there are four interaction points where the particle beams collide [56]. A
particle detector is built at each of the four interaction points: ALICE1, ATLAS, CMS2 and LHCb3.
Additionally, there are two detectors measuring events close to the beam line, namely LHCf4 and
TOTEM5 [57]. For the studies of this work only proton collisions are simulated. In principle, the
LHC could also accelerate ions. A scheme of the LHC setup is depicted in figure 4.1.

The different detectors are specialized for different purposes. The ALICE detector is specialized for
analyzing lead ion collisions and investigate possible quark-gluon plasma, a state of matter which is
thought to consist of asymptotically free quarks and gluons. The LHCb experiment is specialized to
detect small asymmetries between matter and antimatter in the decay of b mesons. On the other hand,
1 A Large Ion Collider Experiment
2 Compact Muon Solenoid
3 LHC beauty, reference for the examination of hadrons with b-quarks
4 LHC forward
5 TOTal Elastic and diffractive cross sectionMeasurement
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Figure 4.1: Overview of the accelerator system at CERN [58].

the ATLAS and CMS experiments are multipurpose detectors to study a broad variety of processes.
The two experiments are set up differently which allows to discover new findings independently and
they can confirm each other’s discoveries.
During operation in 2018, the ATLAS Detector measured a peak instantaneous luminosity of
L = 21 nb/s [59]. For the production of particles, the integrated luminosity L =

∫
dtL is important,

as the total number of produced particles or events N depends on the integrated luminosity and
the cross section σ via the relation N = Lσ. An overview of selected partial cross section for
proton-proton collisions depending on the center of mass energy

√
s is depicted in Fig. 4.2.

As shown in Fig. 4.2, the cross section for Higgs-boson production is roughly three orders of
magnitude lower than the cross section for the Z0, in the LHC energy regime. In the search for Higgs
bosons decaying into tau-lepton pairs, the Z0

→ ττ decay is the main background, because their
rest masses are in the same order of magnitude and their event topology is similar. The main tool to
discriminate between H and Z in the di-tau channel is the invariant mass of the di-tau system, which
is currently estimated by the MMC. Therefore, a good resolution on the estimated mass is desirable.

4.2 The ATLAS Experiment

The ATLAS Experiment, A Toroidal LHC ApparatuS Experiment, is a multipurpose detector. It has
a length of approximately 44 m and a diameter of about 25 m (cf. Fig. 4.3). The demands on the
ATLAS experiment are to have an acceptance in a large region of pseudorapidity, to cover the whole
azimuthal angle and achieve a good energy and momentum resolution of the constituent detectors. To
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Figure 4.2: Overview of selected cross sections against the center of mass energy
√

s for proton-anti-proton
(below

√
s = 4 TeV) and proton-proton collisions (above

√
s = 4 TeV) [60].

achieve this, the sub-detectors are built cylindrically around the beam axis in an onion-like structure,
symmetrical in forward and backward direction. The three major detector systems are the Inner
Detector, the calorimeters and the muon spectrometer. In addition with the magnet system, the Inner
Detector can measure the trajectory of charged particles and determine its momentum and charge by
the bending in the magnetic field. The calorimeters can measure the energy of electrons, photons
and hadrons. And finally the muon spectrometer can identify muons and measure their momentum.
Information is from [61].

4.2.1 The ATLAS Coordinate System

The ATLAS coordinate system is a right-handed coordinate system with the origin lying in the nominal
interaction point of the proton beams. The z-axis is defined in the direction along the beam pipes, the
x-axis points to the center of the LHC storage ring and the y-axis points upwards towards the Earth
surface. The azimuthal angle φ is measured around the beam pipe (tan φ = py/px) and the polar angle
is the angle relative to the beam pipe (tan θ = py/pz). Instead of the polar angle θ, the pseudorapidity

η = − ln
(
tan

(
θ

2

))
(4.1)
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Figure 4.3: Labeled sketch of the ATLAS detector [62].

is used to measure the angle relative to the beam pipe. The pseudorapidity has the advantage that
differences in pseudorapidity are invariant under Lorentz boosts along the z-axis. Angular differences

are measured by ∆R =
√
∆φ2
+ ∆η2.

The momentum of a reconstructed particle with the ATLAS detector is represented by the magnitude
of the transverse momentum pT =

√
(p2

x + p2
y), φ and η. With the Inner Detector only the transverse

momentum can be measured but there is also the advantage that, as the initial momentum is only along
the z-axis, all transverse momentum should add up to zero. This holds up to the fact, that the particle
beams collide with a half-crossing angle of about 120 − 150 µrad.

4.2.2 The Inner Detector

The Inner Detector is approximately 6.2 m long and has a diameter of about 2.1 m. It is situated right
around the beam pipe. With a magnetic field of 2 T in parallel to the beam axis, charged particles
are bent in the x-y-plane. Tracks associated to particles can be determined by the interaction of the
particle with the detector material. Through the curvature of the tracks, caused by the Lorentz force,
the transverse momentum could be measured with an accuracy of

σ(pT)
pT

= 0, 036% ·
pT

GeV
⊕ 1, 3% , (4.2)

where ⊕ represents the addition in quadrature and taking the square root.
The Inner Detector consist of three sub-detectors, the Pixel Detector, the Silicon Tracker and the

Transition Radiation Tracker and is depicted in Fig. 4.4.

Pixel Detector
The Pixel Detector is built such that a particle traverses three silicon sensors independent of its
pseudorapidity. This is realized by a barrel and an end-cap region. In the barrel region three
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Figure 4.4: Labeled sketch of the Inner Detector [63].

layers are built cylindrically around the beam axis while in the end-cap regions the detector
modules are three discs perpendicular to the beam axis. The innermost layer, the Insertable
B-Layer (IBL), was inserted during a shutdown from 2013 to 2015 [64]. The elements of the
detector are silicon pixels with a size of a minimum of 400 µm × 50 µm. It reaches a resolution
of about 10 µm in the r-φ-plane and covers the range |η | < 2.5.

Silicon Tracker
The Silicon Tracker embraces the Pixel Detector. It consists of eight layers in the barrel region
and nine discs in the end-cap region. It is made of silicon strips allowing a resolution of 17 µm in
the r-φ-plane and 580 µm in the z-direction. The detector geometry covers the region |η | < 2.5.

Transition Radiation Tracker
The Transition Radiation Tracker is the outermost part of the Inner Detector. It is a gaseous
detector made of straw tubes which contain a 70% Xe, 27% CO2 and 3% O2 gas mixture.
Each straw tube has a diameter of about 4 mm and works like a drift chamber. The transition
radiation, which is emitted when a charged particle passes the boundary of two media of different
refraction index, can be used for electron identification. This is because the probability of
transition radiation depends on the Lorentz γ = E/m which is higher for electrons, due to their
small rest mass m at the same energies, compared to other particles. The Transition Radiation
Tracker achieves a resolution of 130 µm in the r-φ-plane and covers the region |η | < 2.5.

4.2.3 The Calorimeters

The calorimeter system is divided in an electromagnetic, a hadronic calorimeter and a calorimeter
which measures the energy of particles close to the beam line. The system covers the range of |η | < 4.9.
The task of the calorimeters is to measure the energy of the particles and the subdivision results from
the different interactions of different particles with matter.
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Figure 4.5: Sketch of the lateral and longitudinal segmentation of the ATLAS electromagnetic calorimeter
around η = 0. [66].

The Electromagnetic Calorimeter
The electromagnetic calorimeter (ECAL) is a sampling calorimeter consisting of alternating
layers of lead and liquid argon. The lead acts like an absorber because of its high atomic number
and density and the liquid argon as scintillating material. As the name suggests, the main task of
the ECAL is to measure the energy of photons and electrons which interact via electromagnetic
interaction. Incoming electrons radiate off Bremsstrahlphotons, which then produce e+e−-pairs
via pair production. This develops an electromagnetic shower. Likewise, incoming photons
produce electromagnetic showers starting with pair production. The relevant length scale is the
radiation length X0, by which the mean energy of the particles in the shower is of the fraction
1/e of the initial energy.

The ECAL is divided into a barrel (|η | < 1.475) and an end-cap region (1.475 < |η | < 3.2).
It consists of a presampling layer (PS) in the range |η | < 1.8, which measures the energy
loss before the ECAL, and three sub-parts of electromagnetic Calorimeters Sampling1-3.
The first, Sampling1 has a high granularity of about ∆η × ∆φ = 0, 003 × 0, 01 in order to
make high precision measurements of photons. In the Sampling2, the main energy of the
electromagnetic showers are deposited. The Sampling3 measures the rest energy of very high
energetic electromagnetic showers. The ECAL in the direction around η = 0 is depicted in
Fig. 4.5. In hadronic tau-lepton decays, neutral pions π0 occur as decay products. They decay
to two photons with a branching ratio of approximately 98.8% [54]. These two photons are very
close together but usually can be separated due to the high granularity of Sampling1. As the
photons of the π0 decay deposits almost no energy in Sampling3, the Sampling3 can be used as
a hadronic calorimeter in tau-lepton decays [65].

The ECAL can measure the energy with a resolution of

σ(E)
E
= 10% ·

√
GeV

E
⊕ 0, 7% . (4.3)
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The Hadronic Calorimeter
The hadronic calorimeter (HCAL) embraces the ECAL and measures the energy of hadrons.
It is divided into a barrel (|η | < 1.7) and an end-cap region (1.5 < |η | < 3.2) which uses
different detector setups to measure the energy of the particles. In the barrel region, a sampling
calorimeter with steel as passive and plastic scintillators as active material is used. In the
end-cap region, copper plates are used as passive material and liquid argon as the active material.
The hadronic showers are more complex than electromagnetic showers. The hadrons interact
strongly with the detector material and can produce other hadrons, e.g. pions, or excite nuclei.
The other pions can then decay or the excited nuclei deexcite. As there are neutrinos involved or
energy can go into binding energy, the energy of a hadronic shower is more difficult to measure.
Hadrons deposit also a fraction of their energy in the ECAL, but as their shower is characterized
by the nuclear absorption length λa which is much larger than X0, the shower extends into the
HCAL. To ultimately stop the shower, a lot of detector material is needed.

The HCAL can measure the energy with a resolution of

σ(E)
E
= 50% ·

√
GeV

E
⊕ 3% . (4.4)

The Forward Calorimeter
The forward calorimeter (FCAL) measures particles in the very forward direction up to |η | < 4.9.
It is a sampling calorimeter consisting of three layers, using a copper layer and two tungsten
layers as passive material and liquid argon as active material. The copper layer is sensible
to electromagnetic interactions and the tungsten layers are to stop hadrons. The FCAL can
measure the energy with a resolution of

σ(E)
E
= 100% ·

√
GeV

E
⊕ 10% . (4.5)

4.2.4 The Muon System

As muons have a higher rest mass than electrons (mµ ≈ 200me), they only deposit a small fraction of
their energy in the calorimeter system. In order to measure muons there is an additional muon chamber
as the outermost part of the ATLAS detector. It covers the range |η | < 2.7. Basically, the muon system
is a tracking detector which measures the bending of muons in the magnetic field of approximately
0.5 T, which is perpendicular to the beam pipe. The detector can measure the momentum of a muon
with 1 GeV with a resolution of approximately 10%.

4.3 Object Reconstruction with the ATLAS Detector

Like hinted before, different particles leave different signatures in the detector. The signatures will be
explained briefly and some selected signatures are visualized in Fig. 4.6. Only the reconstruction of
hadronically decaying tau-leptons will be described in detail, as they are most important for this work.
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Figure 4.6: Sketch of signatures selected particles leave in the ATLAS detector [67].

4.3.1 Electrons and Photons

Electrons and photons both deposit their energy in the ECAL. While electrons are charged, their
signature is a track leading to a energy deposit in the ECAL. Positrons can be distinguished from
electrons via the direction of bending in the magnetic field, i.e. their charge sign. Photons only leave a
signature in the Inner Detector when they pair produce e+e−-pair, which is called photon conversion.
Algorithms decide, whether a cluster in the ECAL belongs to an electron, an unconverted photon or a
converted photon. For details, please see [68] and [69].

4.3.2 Muons

Muons traverse all detector segments and leave a track in the Inner Detector, a small energy deposit in
the calorimeters and a track in the muon system. The tracks can then be extrapolated and combined
into a muon object. Depending on which information is available, different reconstructed muon types
can be defined. Combined muons are tracks reconstructed in the muon system that are extrapolated
and matched with a track in the Inner Detector. Segment-tagged muons are tracks in the ID that, once
extrapolated, match a local track segment in the muon system, i.e. if only one layer is hit caused by its
low pT or by falling into a low acceptance region of the detector. Calorimeter-tagged muons are tracks
that are reconstructed in the Inner Detector and match an energy deposit of a minimal ionizing particle.
They have a low purity but can cover regions where the muon system is only partially installed. Lastly,
extrapolated muons are tracks in the muon system which are, when extrapolated, loosely originating
from the interaction point and can be used to extend the acceptance in the range 2.5 < |η | < 2.7. The
muon objects were presented in descending priority, if muon types overlap, the muon type with the
highest priority is chosen [70].
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Figure 4.7: Sketch of a typical jet caused by a hadronic tau-lepton decay (left) in comparison to a typical QCD
induced jet (right) [74].

4.3.3 Jets

As quarks and gluons are confined in colorless states, they hadronize when produced. As a result, they
lead to a varying number of more or less collimated hadrons. These objects are then grouped as a
jet. Charged hadrons leave a track in the Inner Detector, but all hadrons deposit their energy in the
calorimeters. Therefore, jets are reconstructed from calorimeter cells using the anti-kt algorithm with
R = 0.4 [71]. The anti-kt algorithm is a sequential clustering algorithm that is constructed to be safe
against the irradiation of infrared or collinear gluons [72].

4.3.4 Tau-Leptons

As tau-leptons have a very short lifetime, they typically decay before they interact with the detector.
Tau-leptons can decay into leptonic or hadronic final states which occur approximately 35% and 65%
of the time, respectively. When the tau-lepton decays into light leptons, the leptons look like prompt
leptons, as the neutrinos involved escape undetected. Thus, the leptons can then be identified and
the neutrinos can lead to missing transverse energy in the detector system. When the tau-leptons
decay hadronically, the visible particles are predominantly one or three charged pions with possible
additional neutral pions. Thus, the hadronically decaying tau-leptons are very similar to jets with
one or three charged tracks and an absolute charge of 1, which is why their reconstruction is also
seeded by the anti-kt algorithm. To differentiate between QCD-jets and tau-jets, it can be utilized,
that the hadronic tau-lepton induced jets are on average more collimated than QCD-jets. This is
depicted in Fig. 4.7. A boosted decision tree decides whether the jet is more likely to be a QCD-
or a hadronic-tau-jet. The input variables used for the boosted decision tree (BDT) describe the jet
properties and are given in [73]. The energy of the tau-jet is calibrated with a boosted regression tree,
which centers the mean energy of the tau-jet to the actual simulated energy [73]. As the tau-lepton
always decays into a tau-neutrino, the tau-jet four-momentum is only the visible part of the tau-lepton
four-momentum. In a leptonic decay, there is an additional neutrino.

For tau-jets, the individual constituents and their momentum can be reconstructed using information
from the Inner Detector, the ECAL and the HCAL [65]. The idea is to exploit the information of
the track for the charged hadrons and estimate their energy deposit in the ECAL as the difference in
energy of the track and the energy deposit in the HCAL:

EECAL
h±

= E track
h±
− EHCAL

h±
. (4.6)

This energy is then subtracted from the nearest π0 candidate. The neutral pions almost always decay
into two photons which deposit all their energy in the ECAL. Thus the subtraction corrects the
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Figure 4.8: Decay mode classification efficiency matrix for simulated Z → ττ events with requirements as
defined in [65]. The probability of reconstructing a particular decay mode for a given generated decay mode is
shown [65].

energy of the neutral cluster. A BDT is used to evaluate the shower shapes in the ECAL and identify
neutral pions. This is important, as remnants of charged hadrons could be misclassified as a π0. The
two photons of the π0 decay lead to two close-by calorimeter hits in the Sampling1 due to its high
granularity, but not in all cases. For higher momentum of the initial tau-lepton it gets harder to
separate individual neutral pions as the objects are more collimated. After identifying each object of
the tau-jet, a decay mode classification is performed. The decay modes which can be identified are h±,
h±π0, h± ≥ 2π0, 3h± and 3h± ≥ 1π0, or other if no decay mode can be associated. A BDT then
compares the decay mode classification hypotheses and gives a final decay mode. The performance of
the decay mode classification is depicted in Fig. 4.8.

Besides the achievement of this reconstruction technology to discriminate between tau-lepton decay
modes, the resolution on the four momentum of the visible tau-jet is crucial, too. The performance on
the spacial resolution is depicted in Fig. 4.9 and the energy resolution in Fig. 4.10.

4.3.5 Missing Transverse Energy

As explained in Section 4.2.1, all momenta in the x-y-plane should add up to zero. The missing
momentum is then the negative of the vector sum of all measured energy deposits (again without
z-component). The missing transverse energy ( ®Emiss

T ) is an estimator for the neutrino system of all
neutrinos involved. The resolution on ®Emiss

T depends on the resolution of each individual objects. In
order to correct for possible effects of the energy resolution, the objects are calibrated and ®Emiss

T is
defined as the negative sum of the vectors of every calibrated object [75]:

Emiss
x,y = −

(∑
e

Ee
x,y +

∑
γ

Eγx,y +
∑
τ

Eτ
x,y +

∑
jets

E jets
x,y +

∑
µ

Eµ
x,y +

∑
soft

Esoft
x,y

)
, (4.7)
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Figure 4.9: Depicted is the probability density of the η (left) and φ (right) deviation of the reconstructed direction
and the Monte Carlo generated direction. The reconstruction method described in Section 4.3.4 is referred to as
Tau Particle Flow [65].

Figure 4.10: Depicted is the probability density of the relative transverse energy deviation (left) and the
relative transverse energy resolution as a function of the Monte Carlo generated transverse energy (right). The
reconstruction method described in Section 4.3.4 is referred to as Tau Particle Flow [65].

where the labels say to which physical objects the energy belongs. The energies are estimated using
the calorimeter information. The soft term is reconstructed from transverse momentum deposited
in the detector which is not associated to any physical object. It could be reconstructed either using
calorimeter clusters or tracks that are not associated.

The magnitude and φ-direction are then calculated by:

Emiss
T =

√(
Emiss
x

)2
+

(
Emiss
y

)2
and

φmiss
= arctan

(
Emiss
y

Emiss
x

)
.

(4.8)
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Figure 4.11: Distribution of the predicted di-tau
system mass by the MMC for Z/γ∗ Monte Carlo
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scribed in Section 6.1, the sample cuts described
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4.4 Di-Tau Mass Estimation

The previous section only considered the detector response of a specific object which can be identified.
To characterize and study the event, all object information are combined. In particular resonances like
Z or H are of interest which further decay into a pair of leptons among other final states. While some
decay channels give a very clean signal and the resonance mass can be calculated accurately, the di-tau
channel is experimentally challenging due to the neutrinos involved. It has, however, the feature of
being able to give access to measuring polarization and CP quantum numbers of the resonances [76,
77]. The estimation of the mass of the di-tau system is important to discriminate the resonance of
interest, referred to as signal, compared to the background, eg. between H and Z depicted in Figs. 4.11
and 4.12. The here presented Missing Mass Calculator tool (MMC) is used in recent ATLAS analyses,
e.g. in the cross section measurement of the Higgs boson decaying into a pair of tau-leptons [12] and
is the main discriminator to extract the signal, depicted in Fig. 4.13.
If a resonance, e.g. the H, decays into two tau-leptons, at least two neutrinos occur as decay

products. Hence, there are at least 6 unknown variables (3 for each neutrino momentum). If the
tau-lepton decays leptonically, there is an additional neutrino. As we cannot estimate the neutrinos
individually, the two-neutrino system is estimated with an additional degree of freedom, the mass of
the two-neutrino system. Thus, there are 6-8 unknown variables, depending on the decay channel of
the tau-leptons. With the estimated neutrino system of each tau-lepton pmis,i and the visible decay
products pvis,i the mass of the resonance can be calculated as:

mH =

√(
pvis,1 + pmis,1 + pvis,2 + pmis,2

)2
. (4.9)
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4.4 Di-Tau Mass Estimation

Figure 4.13: Predicted di-tau mass distribution by the MMC. It was used as the main discriminant in a
likelihood-fit to extract the signal strength of H → ττ. For details, please see [12].

However, there are only 4 equations which constrain the neutrino system originating from the measured
missing transverse energy and the tau-mass [15]:

Emiss
x = | ®p|mis,1 sin θmis,1 cos φmis,1 + | ®p|mis,2 sin θmis,2 cos φmis,2

Emiss
y = | ®p|mis,1 sin θmis,1 sin φmis,1 + | ®p|mis,2 sin θmis,2 sin φmis,2

m2
τ = m2

vis,1 + m2
mis,1 + 2

(√
| ®p|2vis,1 + m2

vis,1

√
| ®p|2mis,1 + m2

mis,1 − | ®p|vis,1 | ®p|mis,1 cos∆vm,1

)
m2
τ = m2

vis,2 + m2
mis,2 + 2

(√
| ®p|2vis,2 + m2

vis,2

√
| ®p|2mis,2 + m2

mis,2 − | ®p|vis,2 | ®p|mis,2 cos∆vm,2

)
,

(4.10)

where ∆vm,i is the angle between the visible tau momentum and the neutrino system momentum. Thus,
the equation system is under determined.
In order to estimate the neutrino system, a likelihood is calculated which is a product of three

individual likelihoods that are extracted from Z → ττ Monte Carlo generated events. The likelihoods
considered are the angle between the visible decay products and the neutrino system ∆Rvm, the
ratio between the absolute of the momentum of the visible decay products and the neutrino system
| ®p|vis/| ®p|mis and the resolution of the missing transverse energy ∆Emiss

T [16, 78]:

L(pmis,i) = P(∆Rvm, pmis,i) × P(| ®p|vis/| ®p|mis, pmis,i) × P(∆Emiss
T , pmis,i) , (4.11)

where P(x, p) describes the likelihood of x given p. The likelihoods are parameterized as functions of
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different object and event specific variables. All likelihoods differentiate between events where both
tau-leptons decay leptonically, both hadronically or one leptonically and the other hadronically. The
likelihoodP(∆Rvm, pmis,i) is parameterized as a function of the visible tau-lepton transversemomentum
pvis,iT and as a function of the number of charged tracks. The likelihood P(| ®p|vis/| ®p|mis, pmis,i) is
parameterized as a function of the number of charged tracks and differentiates between leading- and
sub-leading-tau, i.e. which one has higher transverse momentum. The likelihood P(∆Emiss

T , pmis,i)

is parameterized as a function of the square root of the sum of all transverse energy
√∑

ET and the
angle between the two visible tau decay products ∆φvis1,2. The phase space of all neutrino system
configurations is scanned by a Markov chain. The parameter space is again constrained and only
physical solutions are tested. The mass of the di-tau system can now be estimated using the neutrino
systems with the highest likelihood [16].
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CHAPTER 5

Introduction to Deep Neural Networks

The field of machine learning studies algorithms and models so that computer systems can perform on
a given task without being explicitly programmed for that task [79]. This work exploits the methods
of deep learning, a sub-field of machine learning, which aims to learn features from an input in many
different levels of abstraction [80]. Deep learning has reached excellent performance on benchmark
tasks, such as speak recognition [81]. Sometimes the performance even equals or surpass human
experts, e.g. in the visual detection of skin cancer [82] or the ImageNet classification task [83],
respectively. The recent success makes deep learning also very interesting for various tasks in LHC
physics [23]. This work will exploit machine learning and deep learning techniques and tries to
provide a setup for the task of the di-tau invariant mass reconstruction with the ATLAS detector at the
LHC, presenting not only the final setup but also aims to explain the process of model building in the
context of the latest research in machine learning.
In machine learning projects, the utilized techniques depend on the desired goal and the available

data. As this work uses Monte Carlo generated data which contains accessible information on the
simulated detector response, as well as the generated event information, the machine learning task can
be expressed as supervised learning. In supervised learning the input ®x pairs with the output ®y so that
the algorithm can infer a rule to map the input to a predicted output, which can then be applied to new
examples. For a static dimension of the input, deep feed-forward neural networks can be used. In this
chapter, deep learning methods are introduced and intuitions how to optimize them are given. In the
following section some abbreviations are introduced (in cursive) and used throughout the work, they
can be looked up in Appendix A. A lot of intuitions are inspired from [84].

5.1 Feed-Forward Neural Networks

Feed-forward neural networks (FNNs) are artificial neural networks (ANNs) and are inspired by
the human brain. In the human central nervous system, neurons are excitable cells which receive,
process and transmit information via synapses [85]. This structure is emulated in ANNs, however it is
not fully understood how the brain learns, whereas in machine learning optimizing algorithms are
used [86]. The artificial neurons are the building blocks of an ANN. In general, an artificial neuron
receives an input ®x and has a bias b, where the bias represents the constant offset of the artificial
neuron. Each component xi is multiplied with neuron specific weights wi, so that different neurons
can learn different features, given the same input. An artificial neuron is activated with the value z

27



Chapter 5 Introduction to Deep Neural Networks

determined by an activation function a : R→ R:

z = a

(
N∑
i=1
(xi · wi) + b

)
. (5.1)

In the analogy of the human brain, the activation function a gives a rule if, and which information
should be passed on, as the value z can then be used as an input for other artificial neurons. Which
activation functions are used for artificial neurons is described in Section 5.1.4. Note that the bias b is
often re-expressed as an additional input x0 = 1 and a corresponding weight w0 so that b = x0 · w0.
The term feed-forward states that in a FNN the information flow has a distinct direction in which the
signals are processed. The artificial neurons are grouped into layers, such that the neuron activation
®zl+1 of layer l + 1 can be calculated from the the activation of layer l before. Models with intermediate
layer size L are considered deep if L > 1 and have deepness L, because in principle L levels of
abstraction can be learned. An ANN, which is considered deep, is called deep neural network
(DNN). A general sketch of an FNN is presented in Fig. 5.1. For simplicity, only densely connected
layers, in which the output of an artificial neuron in layer l is transmitted to every artificial neuron in
layer l + 1, are considered. FNNs are often used as models because of the universal approximation
theorem [87, 88]. This states that FNNs with a single intermediate layer and a finite number of
artificial neurons can approximate any continuous function on compact subsets of Rn for bounded and
monotonically-increasing continuous, non-linear activation functions, and was extended to unbounded
activation functions, as well [89]. The challenges in machine learning problems are firstly to find the
right number of artificial neurons and secondly to train the weights for optimal approximation.

5.1.1 The Forward and Backward Propagation Algorithm

With the definition of how to calculate the activation of an artificial neuron (5.1), the feed-forward
algorithm can be expressed. The weight to calculate the transmission of information from the ith

artificial neuron ni,l with activation zi,l in layer l to the j th artificial neuron nj,(l+1) in layer (l + 1) will
be called wl

i, j . The input ®x will be treated as ®z0 and the biases as z0,l = 1 with the corresponding
weights wl

0, j . Each neuron ni,l in layer l has an activation function al(x). The intermediate, or hidden,
layer size will be denoted as L, the number of artificial neurons in layer l by N l . The output ®o can be
expressed as ®zL+1:

Algorithm 1 Forward propagation
1: procedure Forward propagation(®x := ®z0)
2: for (l in (0,L)) do
3: for ( j in (1,N l)) do
4: zj,l+1 = a(l+1)

(
∑N l

i=0(zi,l · w
l
i, j))

5: end for
6: end for
7: return ®z(L+1) =: ®o
8: end procedure

With the forward propagation algorithm the output for a given input and a given set of weights can
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Figure 5.1: Scheme of a FNN with intermediate layer size L = 2. For lucidity, only highlighted weights are
named. The naming scheme is according to Section 5.1.1.

be calculated. In order to approximate an analytical function or to optimize the mapping, the weights
Θ, where Θ contains all weights wl

i, j , have to be adjusted. As the ANN should learn these weights,
a rule how to update them has to be found. Firstly, a loss function J(Θ) is defined that should be
minimized during the training process. For m training examples, the loss function is defined as:

J(Θ) =
1
m

m∑
k=1
LΘ(®o, ®y) , (5.2)

where LΘ(®o, ®y) is the individual loss of a training example. The subscript Θ denotes that the output
®o depends on Θ. The individual loss function L has to be chosen related to the desired task of the
ANN. The loss function is a measure of the distance between the predicted output and the true output
and can be for example the squared Euclidean distance, see Section 5.1.2. The minimum of the loss
function minJ(Θ) is typically found by some optimization algorithm. The choice of the optimization
algorithm is important for the training performance and various different algorithms are described
in Section 5.1.2. However, they all need to compute the impact of a weight wl

i, j to the loss function
J(Θ). The calculation of the partial derivative

∂J(Θ)

∂wl
i, j

:= ∆li, j (5.3)
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can be done by the backward propagation algorithm [90]. The backward propagation algorithm
exploits the chain rule, let

zj,l = al ©«
N (l−1)∑
i=0
(zi,(l−1) · w

(l−1)
i, j )

ª®¬︸                       ︷︷                       ︸
:=b(l−1)

j

= al
(
b(l−1)
j

)
, (5.4)

where b(l−1)
j is the input for the artificial neuron nj,l.

Then

∆
l
i, j =

1
m

m∑
k=1

∂LΘ(®o, ®y)

∂z(k)
j,(l+1)

·
∂z(k)

j,(l+1)

∂bl,(k)j

·
∂bl,(k)j

∂wl
i, j

=
1
m

m∑
k=1

∂LΘ(®o, ®y)

∂z(k)
j,(l+1)

· a
′
(l+1)
(bl,(k)j ) · z

(k)
i,l
, (5.5)

where a
′l denotes the derivative of the activation function al. The later two terms of the product can

be calculated easily for every i, j, where the first term can only be calculated for the output layer L + 1
straightforwardly. Let

∂LΘ(®o, ®y)

∂z(k)
j,(L+1)

· a
′
(l+1)
(bl,(k)j ) := δ(L+1),(k)

j , (5.6)

then
∂LΘ(®o, ®y)

∂z(k)i,L

=

N (L+1)∑
j=1

∂LΘ(®o, ®y)

∂z(k)
j,(L+1)

·
∂z(k)

j,(L+1)

∂z(k)i,L

=

N (L+1)∑
j=1

δ
(L+1),(k)
j · wL

i, j . (5.7)

Combining all the findings, this gives the backward propagation algorithm which calculates ∆Θ =
(∆0,...,∆L) 1.

Algorithm 2 Backward propagation
1: procedure Backward propagation(Z = (®z0, ..., ®z(L+1)),Θ)
2: δ

(L+1),(k)
j =

∂LΘ( ®o, ®y)

∂z
(k)
j,(L+1)

· a
′
(L+1)
(bL,(k)

j )

3: ∆
(L)
i, j =

1
m

∑m
k=1 δ

(L+1),(k)
j · z(k)i,L

4: for (l in (0,L − 1)) do
5: δ

(L−l),(k)
j =

∑N (L−l+1)

q=1 δ(L−l+1),(k)
q · w

(L−l)
i, j

6: ∆
(L−l−1)
i, j = 1

m

∑m
k=1 δ

(L−l),(k)
j · a

′
(L−l)
(b(L−l−1),(k)

j ) · z(k)
i,(L−l−1)

7: end for
8: return ∆Θ = (∆0,...,∆L)
9: end procedure

In the forward and backward propagation algorithm only matrix and vector multiplication are
computed. This allows computers to efficiently perform these algorithms if a vectorized implementation
is used.
1 ∆l is the matrix containing ∆li, j for every i, j.
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5.1 Feed-Forward Neural Networks

5.1.2 Loss Functions and Optimization Algorithms

As explained, the model learns the weights Θ during an optimization process, minimizing the loss
formally introduced in Eq. 5.2. The choice of the individual loss function LΘ(®o, ®y) is important and
depends on the task of the FNN on which it should perform. The problem of this work is a regression
problem. There exist several loss functions which are specialized for classification problems but are
not applicable here. The two main loss functions which can be used are:

LΘ(®o, ®y) = (®o − ®y)
2 squared error

LΘ(®o, ®y) = ‖ ®o − ®y‖ absolute error
(5.8)

Both are means of measure for the distance of the predicted output to the given reference values. The
absolute error is the Euclidean distance and the squared error is the square of the Euclidean distance.
As stated before, the partial derivative of the individual loss function with respect to the output can be
calculated easily, which is exploited in the backward propagation algorithm.

Recent work on neural network regression task developed a new loss function, which should correct
for edge effects [19]. First of all, edge effects can occur when the target y is limited in some range (a, b).
It is costly for the neural network estimator to predict values below a or above b because they were
not seen in the training sample. If there is only one input feature x1 and some linear correspondence
y ∝ x1 with a Gaussian smearing σ, then the distribution y against x1 has a hard cut in the range of
y < a and y > b. This results to the fact that the neural network thinks the probability distribution for
x1 to map to y is a cut off Gaussian. This is sketched in Fig. 5.2. It is proposed that the neural network
should maximize the likelihood product which is equivalent to minimizing the sum of the negative
log-likelihood, where for the individual likelihood a normal distribution with mean µ = o is assumed.
The boundary correction comes by weighting the likelihood value with the inverse of the overlap of
the assumed normal distribution with the sample region (a, b):

min−
∑
i

ln ©« N(y(i) |µ = o(i), σ)∫ b

a
dy(i)N(y(i) |µ = o(i), σ)

ª®¬
⇔min

∑
i

(
o(i) − y(i)

)2

2σ2 + ln

(
erf

(
o(i) − a
√

2σ

)
− erf

(
o(i) − b
√

2σ

))
+ ln

(√
2πσ

)
︸                                                                                ︷︷                                                                                ︸

LΘ(o,y)

.

(5.9)

However, this cost function comes with the caveat that the standard deviation σ has to be estimated.
The standard deviation itself can also depend on the true value y. While for calorimetry it is a
reasonable assumption that σ ∝

√
E , for other problems the dependency of σ and y can differ. This

can make the DNN training very difficult with this particular loss function.
The simplest method to minimize the loss function J(Θ) is to use gradient descent [91]. There the

weights are updated proportional to the negative of the derivative of the loss function to the current
point:

Θ← Θ − α
∂J(Θ)

∂Θ
, (5.10)

where α is the learning rate and the operator a← b is defined as the variable a gets updated with the
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Figure 5.2: Scheme of how a limited target range effects the probability functions for input features. Here in the
task of energy reconstruction in a calorimeter with the number of calorimeter hits as input. On the right hand
side, the generated particle energy is shown as a function of the calorimeter hits. On the left hand side, the
distribution of events is shown as a function of the generated energy for a fixed number of calorimeter hits in a
region where boundary effects play a role [19].

value b. The gradient can be calculated by the backward propagation algorithm and all weights are
updated simultaneously. This is repeated until the loss function converges to a local minimum. Two
small variations to gradient descent are stochastic gradient descent (SGD) and mini-batch gradient
descent which try to approximate the minimization of J(Θ). In stochastic gradient descent, the
training examples ((®x(1), ®y(1)),...,(®x(m), ®y(m))) are shuffled randomly and only a single example is used
to update the weights [92, 93]. This is repeated until every training example is seen and is called an
epoch:

Θ← Θ − α
∂LΘ(®o

(i), ®y(i))

∂Θ
, (5.11)

where the partial derivative of LΘ with respect to Θ can be calculated similarly to the backward
propagation algorithm.

Mini-batch gradient descent works similar as SGD with the difference that s examples are used for
each update, where s is the mini-batch size. Again, the updates are repeatedly performed until every
training example was seen:

Θ← Θ − α
1
s

s∑
i=1

∂LΘ(®o
(i), ®y(i))

∂Θ
. (5.12)

Note that for s = 1 mini-batch gradient descent equals SGD, for s = m it equals gradient descent.
Mini-batch gradient descent has a few advantages compared to SGD and gradient descent. While
SGD can be very noisy, i.e. the direction of the weight adjustment can be totally different for different
training examples, gradient descent can be slow in the training process. This could be due to plateaus
in the multi-dimensional loss function, where the derivatives are small. The noise of mini-batch
gradient descent can pull the weight vector randomly away from plateaus or even away from local
optima. Note that points of zero gradient in the loss function in multi-dimensional space are more
likely to be saddle points than local optima [94]. However, finding the global optimum can not be
guaranteed.

The fact that the loss function depends on many parameters makes it very unintuitive. However, if
the loss function is imagined to depend only on two parameters J(θ1, θ2), then some intuitions can
be gained. A possible contour plot could look for example like as depicted in Fig. 5.3. There, the
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Figure 5.3: Scheme of a contour plot of J(θ1, θ2). Lines connect space-points of equal loss. The point of
optimal loss is represented by the star. The weight updates are visualized by the red arrows.

parameter updates can be viewed as a two dimensional vector (δθ1,δθ2). The component δθ1 gets
updated alternating positively and negatively, whereas δθ2 gets updated only positively. It can be
concluded that the updates can be stabilized, when they are averaged. This can also speed up training.
In order to achieve this, a momentum term is introduced [95]. The presented algorithms can be easily
extended to include the momentum term. The weight updates are then defined recursively:

ut = −α
1
s

s∑
i=1

∂LΘ(®o
(i), ®y(i))

∂Θ︸                        ︷︷                        ︸
dΘ

+βut−1 = dΘ + βut−1 , (5.13)

where dΘ is the update on Θ as in the (mini-batch) gradient descent algorithm, β < 1 is the so-called
momentum and ut is the tth actual update on Θ. Notice that it is similar to the calculation of an
exponentially weighted moving average without bias correction, which would look like

ut = (1 − β)dΘ + βut−1 . (5.14)

The parameters are then updated according to

Θt ← Θt−1 + ut . (5.15)

There exist a variety of advanced optimization algorithms which all aim to achieve better convergence
rates to the minimum. To give a small overview, the established advanced optimization algorithms are:

• Nesterov accelerated momentum (NAM) [96]

• RMSprop [97]

• Adagrad [98]
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Figure 5.4: Scheme of how Nesterov accelerated momentum (right) differs from SGD with standard momentum
(left). The green arrow represents the momentum step βut−1 in Eq. 5.13 and Eq. 5.16, the red arrow represents
the gradient step dΘ and the blue arrow the actual step dΘ + βut−1 [102].

• Adadelta [99]

• Adam [100]

• Nadam [101] .

Nesterov accelerated momentum
Nesterov accelerated momentum is similar to SGD with a momentum term, except that the
partial derivative is calculated with respect to an estimated parameter update Θt−1+βut−1

. This
guarantees a stronger theoretical performance and in practice leads to slightly better results.
The weight updates are then defined as:

ut = −α
1
s

s∑
i=1

∂L(Θt−1+βut−1)
(®o(i), ®y(i))

∂(Θt−1 + βut−1)︸                                     ︷︷                                     ︸
dΘ

+βut−1 . (5.16)

Graphically, the algorithm is depicted in Fig. 5.4.

RMSprop
RMSprop tries to tackle the same problem as the momentum term, namely to dampen out
oscillations in parameter updates. It is an adaptive learning optimization algorithm, as the
learning rate gets adapted for each parameter θ in Θ individually. The idea is to divide the
parameter updates by the square root of the exponentially weighted moving average of the
square of the parameter updates:

s
(∂θ)2
(t) = βs

(∂θ)2
(t − 1) + (1 − β) (∂θ(t))2

θ(t) = θ(t − 1) −
α√

s
(∂θ)2
(t) + ε

∂θ(t) , (5.17)
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where ε > 0 to ensure not to divide by 0 and

∂θ(t) =
s∑

i=1

∂LΘ(®o
(i), ®y(i))

∂θ
. (5.18)

By doing so, the weights get updated more slowly if the previous updates were big and the other
way around.

Adagrad and Adadelta
Adagrad and Adadelta are like RMSprop adaptive learning optimization algorithms. They are
not tested in this work and for completeness described in Appendix B.

Adam
Adam is essentially a combination of RMSprop and momentum. The only difference is that
Adam applies a bias correction to the averages:

u(t) = (1 − β1)∂θ + β1u(t − 1)

û(t) =
u(t)

1 − (β1)
t

s
(∂θ)2
(t) = β2s

(∂θ)2
(t − 1) + (1 − β2) (∂θ(t))

2

ŝ
(∂θ)2
(t) =

s
(∂θ)2
(t)

1 − (β2)
t

θ(t) = θ(t − 1) −
α√

ŝ
(∂θ)2
(t) + ε

û(t) .

(5.19)

Nadam
Nadam works identically to Adam simply replacing the momentum term u(t) in Eq- 5.19 by the
introduced Nesterov accelerated momentum in Eq. 5.16.

5.1.3 Standardization of the Input

Another consequence of ellipse shaped contour plots, like in Fig. 5.3, is that the input data should be
preprocessed before the training procedure. Standardization of the input features, i.e. all input features
standard normal distributed, is a common requirement to make ANNs better trainable. Often, the shape
of the input features is neglected but they are transformed to have zero mean and unit variance [103].
The basic intuition is that the loss function is on average more symmetric for standardized inputs. To
give an example, one could think of a DNN which task it is to classify jets as QCD-jets or tau-leptons.
This could take e.g. the transverse momentum pT/GeV, the number of tracks ntracks or the isolation
cone ∆Risolation as input features. The problem is that pT/GeV and ∆Risolation are in different number
ranges. If the initial values of the weights Θ are small, then the gradient on the weights which pass
on the information of pT/GeV are likely to be much bigger than the other gradients and training can
become unstable. If all input variables are in the same number region, this problem could potentially
be avoided.
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Figure 5.5: Illustration of the logistic activation function σ(x) and its derivative to show the vanishing gradient
problem.

5.1.4 Activation Functions and Weight Initialization

Activation functions are crucial for the ANN to learn complex non-linear behaviors. If every artificial
neuron is activated by the linear function a(x) = x, then the output can only be a linear combination of
the input plus a bias. The universal approximation theorem was first proven for the logistic activation
function

a(x) = σ(x) =
1

1 + exp(−x)
, (5.20)

which is a sigmoid function. The characteristic S-shaped curve is shown in Fig. 5.5. The problem of
sigmoid functions is that the absolute of the gradient is smaller one. When training a FNN with a
gradient based optimizer, the gradients ∂J/∂wl

i, j can be very small. Because of the details of the
backward propagation, the later layers affect the gradient on the previous layers, resulting in even
smaller gradients in the first layers. This problem is known as the vanishing gradient problem [104]. It
slows down the learning in FNN with many intermediate layers and makes it very difficult to train. On
the other hand, if the gradients in the later layers are large, i.e. > 1, this can lead to very big gradients
in the previous layers and is known as the exploding gradient problem [105]. Both problems can make
learning very unstable.
The vanishing gradient problem can be addressed with using other activation functions. A very

popular activation function is the rectified linear unit (ReLU)

a(x) =

{
0, if x ≤ 0
x, otherwise

. (5.21)

As the ReLU is not differentiable, which is a necessary condition to use the backward propagation
algorithm, the derivative is simply defined as

a′(x) =

{
0, if x ≤ 0
1, otherwise

. (5.22)

Another tool which tries to address a stable learning is weight initialization. Often an ANN is trained
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from scratch, meaning that there is no initial guess for the weight parameters Θ. If all weights were
initialized by the same value, then the derivatives ∂J/∂wl

i, j would be equal for every i, j, meaning
that the layers can effectively learn only one feature. Therefore, the weights need to be initialized
differently, to assure a symmetry breaking. Often this is done by initializing the weights randomly.
Empirically, it was found that poorly initialized DNNs are very difficult to train [106]. Several works
on how to initialize the weights exist. All methods are similar in a way that they propose a uniform
distribution (U(a, b), where a and b are the upper and lower bound) or normal distribution (N(µ, σ2

),
where µ is the mean and σ2 the variance) with mean zero, differing in the bounds and standard
deviation but all taking the number of input nodes, sometimes also of output nodes, into account.
Denoting the number of input nodes by nin and the number of output nodes by nout, the different
initialization methods are:

• LeCun normal [107]: N
(
0, 1

nin

)
• LeCun uniform [107]: U

(
−

√
3
nin
,
√

3
nin

)
• Glorot normal [108]: N

(
0, 2

nin+nout

)
• Glorot uniform [108]: U

(
−

√
6

nin+nout
,
√

6
nin+nout

)
• He normal [83]: N

(
0, 2

nin

)
• He uniform [83]: U

(
−

√
6
nin
,
√

6
nin

)
.

The initialization methods are sometimes designed for specific activation functions, e.g. the He
normal/uniform initialization method is specialized on rectified activation functions. Notice that the
bias weights wl

0, j are often initialized differently than the other weights, e.g. set to zero. The intuition
of the weight initialization is that the ANN has to be trained from scratch and the weights should be
small to not have artificial neurons with large activation values in order to avoid the exploding gradient
problem.

5.1.5 Self-Normalizing Neural Networks

With the information above, a FNN F could be set up, defining a mapping F (®x) = ®o. However,
many decisions have to be made, such as choosing a number of intermediate layers, the number of
artificial neurons for each layer, an activation function for each artificial neuron, a loss function, an
optimization algorithm (and its parameters) and an initialization scheme for all the weights. Having
chosen all these things, it is not guaranteed that the training will work efficiently. How to analyze the
training procedure will be discussed later. However, there exist also a few more tricks to stabilize the
training procedure. Having said that standardization of the input is important, it was seen that it can
also be useful to normalize the input of each layer. The Batch Normalizing Transform algorithm uses
the statistics in a mini-batch to transform the input of each artificial nodes [109]. The algorithm is
depicted in Algorithm 3 in Appendix B. The whole procedure is done to reduce the so called internal
shift. To illustrate what this is, it is useful to cover the first few layers of a DNN and just look at the
last few layers and the output. This describes a new ANN which task it is to find a mapping of a
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given input to a given output. However, during training the input varies, as the network is trained.
If the input varies very rapidly, then the last layers cannot focus on learning distinct features but
maybe tend to find different features with every training step. If the input values are confined in
some sense, or change only slowly, this can help to make the training procedure more stable. In
FNN batch normalization is not as successful as for different architectures, i.e. convolutional neural
networks or recurrent neural networks. There exist different techniques to normalize FNNs, and
for this work the setup of self-normalizing neural networks (SNNs) is chosen [110]. SNNs do not
explicitly perform a transformation on the inputs to each artificial neuron but ensure that the neurons
zi,l have a fixed point with zero mean and unit variance, to which they always tend. To achieve this a
special activation function is used together with the presented LeCun normal weight initialization
method. The activation function is the scaled exponential linear unit (SELU) and is given by

a(x) = selu(x) = λ

{
α exp(x) − α, if x ≤ 0
x, otherwise

, (5.23)

with λ = 1.0507 and α = 1.6733. Note that the function can reach negative and positive values, has a
slope greater one for positive values and a saturation for negative values. All of this is needed for the
self-normalizing properties. The LeCun normal weight initialization is important for the mapping of
one layer to the next. If a layer has activation zi,l which are independent but share mean µ = 0 and
variance σ = 1, then the input to nj,(l+1) is a weighted sum of these independent variables. For that, the
central limit theorem (CLT) holds. If the weights have mean µ( ®wl

i ) = 0 and variance σ( ®wl
i ) = 1/nin,

then the input distribution of neuron nj,(l+1) is approximately a normal distribution N(µν, στ), where
ν =

∑
i µ( ®w

l
i ) and τ =

∑
i σ( ®w

l
i ), hence ∼ N(0, 1). In the CLT, the distribution is closer to a normal

distribution, the larger the input size of a given artificial neuron is, i.e. layers with many artificial
neurons are required for SNNs. This is ensured by the fact that the layers of DNNs are typically
very broad. The advantages of SNNs are that they do not suffer from the exploding or vanishing
gradient problem, because the activation of the artificial neurons are bounded and the variance close
to one. Also strong regularization schemes, which will be explained later, can be applied to SNNs.
For detailed proofs of the self-normalizing properties, see [110].

5.2 Optimizing Neural Network Architectures

In the previous section tools to build and train a FNN were introduced. By restricting to SNNs, the
activation function of the artificial neurons and the initialization scheme is fixed. There are still
many parameters to choose and twist. This section tries to give guidelines on how to choose and
optimize the so-called hyperparameters of the FNN in order to optimize its performance. First of all,
possibilities how to check the performance and the predictive power of a FNN are introduced. Of
course, performance and predictive power are closely related, i.e. a FNN with low performance is
expected to have a low predictive power on unseen new examples but for the development of a FNN it
is useful to think of both things separately and find (nearly) orthogonal adjusting mechanisms.
In order to estimate the predictive power of a FNN, we need to hold back a piece of the data set

which is large enough to be representative. This data set is orthogonal to the rest which will be called
training data. However, if the parameters of the FNN are adjusted to perform good on the held back
data, then the estimation of the predictive power is biased. In order to avoid this problem, the data
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set is split into three orthogonal pieces which will be called the training, cross-validation and test
sample. The training sample contains the input output pairs which the FNN will get for training, the
cross-validation, or development sample will be used for choosing which configuration has the best
predictive power and the test sample is only used for getting an unbiased estimate for the predictive
power of the FNN. The splitting of the samples has to be done carefully and depending on the task in
a strategic way. Sometimes it is fine to just randomly split the whole sample but this could lead into
problems. Imagine the task of classifying mice, cats and dogs in a data set of labeled pictures, if the
development set would not contain any cat pictures, it could be that when analyzing the outcome of
the test set all cat pictures were misclassified as dog pictures. The relative size of the three individual
data sets depends on the absolute size of the whole data set. There exist no strict rule on how to split
the data set. As explained later, it is desirable to have a very large training data set. Therefore, it can
be fine, to split the data set into ∼ 98% training sample, ∼ 1% cross-validation and ∼ 1% test data
sample, for very large data sets. For small data sets, it can be useful to split the data set only into two
orthogonal data sets, a training and a test data set, and then use k-fold cross validation on the training
set [111]. In the process, the FNN has to be trained k times, which can be counterproductive for large
data sets, as the training then takes very long time.
After having split the data set into training, cross-validation and test set, some metrics have to

be defined which measure the performance and the predictive power. The predictive power is the
performance of the FNN on unseen new data. When comparing two different FNNs it is desirable
to have a single, real-valued evaluation metric which tells which of the two FNNs performs better.
For regression tasks, this can be the loss on the cross-validation set. In practice, this is not always
achievable, because the single metric can not take all the effects into account that can occur. When
realizing a strange effect or behavior of the FNN performance for some training examples, it can be
useful to formulate necessary conditions. For regression tasks, this is often more difficult than for
classification tasks because there exist more, and more advanced metrics, such as the F1-score [111],
the accuracy or the area under the ROC-curve. When realizable, it is always good to look into examples
that are not well predicted by the FNN and see if there are any patterns. Also, it is always good to
have something to compare the FNN against. For image classification this can be a human (expert), as
humans are very good on natural perception tasks. The comparison tells, how good a FNN can at least
be, and therefore can tell if the performance can be increased. Having set a decision rule to rank the
performance of different FNNs, the hyperparameters can be varied and the best FNN can be chosen.

5.2.1 Bias and Variance

Bias and Variance are two concepts which explain how well a ANN generalizes features. The
theoretical foundations are that the expected squared error of a model f̂ (x) on unseen new data (x, y)
following the underlying model f (x) can be decomposed into[112]

E
[
(y − f̂ (x))2

]
=

(
Bias

[
f̂ (x)

]2
+ Var

[
f̂ (x)

]
+ Var [ f (x)]

)
. (5.24)

In practice this is not usable, as the underlying model is unknown and the error can only be measured as
a whole and not separated into terms resulting from bias or variance or the irreducible error Var [ f (x)].
Therefore, it is looked at regions of either high bias or high variance. The concepts are feasible when
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Figure 5.6: Random generated data according to f (x) = ln(x + 1) + ε in comparison to the function ln(x + 1)
and three fitted polynomials of order 1, 2 and 8.

looking at a function with some random noise. Let

f (x) = ln(x + 1) + ε for x ∈ [0, 2] , (5.25)

where ε is some random noise distributed like N(0, 0.05). In order to approximate the underlying
model, three polynomials are fitted to random generated data points. Denoting a polynomial of order
n by P(n). The results are depicted in Fig. 5.6. The first order polynomial underfits the data in the
sense that is misses the flattening of the underlying function for larger values. It suffers from high
bias, i.e. when predicting new values it would fail due to a too simple model of the data. The second
order polynomial has a steeper rise for smaller values and flattens out for larger. This more or less
represents the underlying function and would be considered a good model. The polynomial of order
eight fits every training example very well but can only limitedly generalize the underlying function. It
suffer from high variance, i.e. when predicting new values it would fail, because the model predicts a
complex behavior in between the training examples. For complex DNN tasks the low order polynomial
represents a very shallow FNN with only a few artificial neurons, the high order polynomial a complex
FNN with many artificial neurons.
To diagnose whether an ANN suffers from high bias or high variance or both, it is good to look

at learning curves. There are two possible ways to track the learning. The first method is to plot
the training and the cross-validation error of a fully trained model for different training sample sizes.
If the training error is fast above the desired performance error and the cross-validation error close
to the training error, the model suffers from high bias. If there is a large gap between the training
and the cross-validation error, this hints that the model suffers from high variance. The qualitative
shape of these learning curves are depicted in Fig.5.7. A major advantage of this method is that in
case of high variance, it can be estimated how much more training data would be needed, as in the
high variance scenario the loss would converge towards the optimal performance value for ever larger
training samples. The drawback of this method is that a model has to be trained with many different
sample sizes and thus it takes a long time to obtain the learning curve. A second method to obtain a
learning curve is to plot the training error and cross-validation error against the number of epochs. A
high training error, a high cross-validation error and low discrepancy between the two errors hints at
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(a) Qualitative behavior of the loss as a function of the
training sample size in the case of high bias.

(b) Qualitative behavior of the loss as a function of the
training sample size in the case of high variance.

(c) Qualitative behavior of the loss as a function of the
training sample size in the case of optimal performance.

Figure 5.7: Behavior of the loss as a function of the training sample size in different scenarios.

high bias while a small training error, a high cross-validation error and large discrepancy between
the two hints at high variance. In the case of high variance, the cross-validation sometimes rises at
some point because then the model weights are adjusted to learn the specific features of the training
example which is bad for the generalization quality of the model. The advantage of the second method
is that the learning curve can be obtained during training and the model is only trained once with the
fully available training sample.
In order to say whether a training error is high or low, it is good to have a reference value, e.g.

performance of existing models or human level performance. When this is not available, it can be
good to go into regimes of high bias, i.e. a model with low complexity, and regimes of high variance,
i.e. very complex models, in order to get boundaries for the optimal training error.
After diagnosing high bias or high variance or sometimes a combination of both, there are a few

mechanisms which can control those. If the ANN suffers from high bias, it is useful to increase the
model complexity by using more artificial neurons and/or more intermediate layers. Before making
the model too complex it should be checked, whether the model training was successful, i.e. did not
stop because of slow training in a plateau region. If the ANN suffer from high variance, the model
complexity can be reduced. However, this is not always desirable, e.g. if the performance on the
training set is still below, the desired performance. Then it could help to collect more data, i.e. this
can limit overfitting. Collecting more data can be (time) costly. Two other things which can reduce
high variance are using regularization or dropout.
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5.2.2 Regularization

Regularization and dropout (described in Appendix B) are two mechanisms which address high
variance. As explained, high variance occurs when the model is too complex. The complexity is
described by the number of intermediate layers and the number of artificial neurons. The number
of intermediate layers does also give the level of abstraction of the learned features, the number of
artificial neurons the number of features which can be learned. Therefore, it is good to have ways
to cope with high variance other than reducing the model complexity. Regularization introduces an
additional term to the loss function

J(Θ) =
1
m

m∑
i=1
LΘ(®o, ®y) +

1
m

L∑
l=0

∑
i, j

[
λ1 |(w

l
i, j)| + λ2(w

l
i, j)

2
]
, (5.26)

where λ1 is the regularization parameter for the so-called L1 regularization, and λ2 the regularization
parameter for the so-called L2 regularization. The two different regularization schemes have different
effects on the weights in the ANN. L1 regularization favors sparse weights, i.e. a lot of weights are
zero, while with L2 regularization the weights get very small and it is often called weight decay.
When αdΘ describes the weight updates calculated with the back propagation algorithm without any
regularization, then the weight updates with L2 regularization reads

Θ← (Θ −
2λ2α

m
Θ) − αdΘ . (5.27)

Because the weights are kept either sparse or small, the model complexity is reduced and the model
gets less prone to overfitting.

5.2.3 Hyperparameter Tuning

As introduced in this section, there are ways to judge the quality of a DNN and ways to improve
its performance. Additional regularization parameters were introduced and added to the set of
hyperparameters which should be optimized. As the training of an individual DNN setup usually
takes very long time, a grid hyperparameter search is computationally very expensive. There are some
things which could be done in order to avoid grid searches. As it is hard to tell in advance, which
hyperparameters are the most important and where their optimal region lies, a grid search can be very
inefficient. Because some hyperparameters are more important than others and/or more sensitive to
small deviations, a random sampling of the hyperparameters exploits a larger variety of values for all
parameters and is therefore recommended. Parameters which are more sensitive to small deviations
should also be sampled according to logarithmic scales, rather than linear scales. In order to get a
flavor of the ranking of the hyperparameters it can be good to start with a given set of hyperparameters
and vary some of them by hand.
Often the learning rate α is the most important hyperparameter and is therefore recommended to

be tested first. This can then limit the range of α where good results are expected. If the training
error does not further decrease, the learning rate can be lowered, which allows to go closer to the
local minimum and can cause jumps in the learning curve. This should not be done too early, as it can
instantly decrease the training loss but could decelerate the convergence progress.

The more advanced optimization algorithms have additional hyperparameters but they do also come
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with default values and they are considered to have a smaller impact on the DNN performance than
the learning rate. However, they do have advantages over the standard mini-batch SGD and should
be used or at least tested. The choice of which optimization algorithm to use can be viewed as a
hyperparameter itself.
A very important hyperparameter is the mini-batch size s, which is usually chosen as a power of

2, e.g. 32, 64, ..., 512. Recent research hinted that larger mini-batch sizes can lead to the optimizer
going into sharp minima which lead to poorer generalization and worse predictive power [113]. Sharp
minima mean that a small variation of the input vector leads to a large deviation on the output and a
much higher loss value. Therefore, only s = 32 and s = 64 are considered.
The first focus should lie on optimizing the training error, and therefore choose a number of

intermediate layers and of artificial neurons in each layer. As very complex DNNs take a very long
time to train, it should definitely be started with less complex neural networks and decided whether
the training performance is close to the desired performance. By ruling out regions in which high
bias occurs, the possible range of a random sampled hyperparameter search can be decreased. After
optimizing the training error, the validation error should give a diagnosis on whether the network
suffers from high variance. If that is the case, then dropout should be used and tested with keeping
probabilities of p = 0.95 and p = 0.90. This is simply to the fact that it is much more difficult to find
good regularization parameters. In tasks where there is no reference value for a desired performance, it
can be very hard to find an optimal interplay between optimizing the training error and avoid variance
at the same time.
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CHAPTER 6

Data Sample and DNN Setup

This chapter aims to describe how to set up an environment where a DNN can be trained for the
specific task of the mass estimation of a di-tau system. While in the previous chapter all tools were
described how a DNN can be set up, this chapter also takes into account which information should
be used as input for a DNN and which data sample is suitable for the training. As stated before, this
work uses Monte Carlo generated data where event generated information is accessible for supervised
learning. First, a short overview about the data sample is given and why it was chosen. Secondly, the
variables are introduced which will be fed into the DNN. Lastly, the architectures and hyperparameters
which will be tested for the DNN are introduced.

6.1 Data Sample

The data sample and the available statistics are the most important part in the development of the
neural network di-tau mass estimator. As high statistics are necessary in order to successfully train a
DNN, there is also a strong interplay of the data used for training and what it can predict. Similar to a
Taylor expansion of a function f (x) around a point x0 which is not expected to predict well for x with
|x − x0 | >> 1, the DNN is not expected to predict masses well outside the training mass range. A
suitable data sample is needed so that the DNN can fulfill the requirements of exploiting the decay
kinematics, covering a broad mass range, especially the mass range of 90− 125 GeV, and of delivering
an unbiased result. The mass range of 90 − 125 GeV is of particular interest because there the Z and
H resonances lie. As explained the estimated di-tau system mass is the main discriminant for H → ττ

analyses with Z/γ∗ → ττ background and the neural network estimator should perform well in this
region. Due to the estimators resolution, the mass range of the training sample should have a safety
margin to both sides. It cannot be guaranteed that the DNN is able to exploit the decay kinematics
but with high statistics in a broad mass range the fundamentals can be given. In order to prevent the
DNN from being biased, i.e. having a preferred mass, the mass spectrum should be flat over the whole
mass range. The necessity of having a broad mass range can be explained by the mass resolution
again. If the mass window would be narrower than the theoretical achievable mass resolution, the best
prediction would always be close to the mean mass.
For the realization of the data sample’s demands, an unphysical γ∗ → τhadτhad data sample was

used, where τhad indicates that the tau-lepton decays hadronically. The unphysical sample has virtual
photons as intermediate states and re-weighted matrix elements in order to modify the mass distribution.
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Figure 6.1: Feynman diagram of the Drell-Yan process [114].

As only hadronic tau decay modes where simulated, the estimator is limited to the prediction of di-tau
systems, where both tau-leptons decay hadronically. Other decay channels would have additional
neutrinos which the DNN cannot know about. Note, that the unphysical γ∗ → τhadτhad process has
a different coupling to left- and right-chiral tau-leptons than the physical Drell-Yan process, where
an interference between γ∗ → ττ and Z → ττ occurs. A Feynman diagram of a Drell-Yan process
is shown in Fig. 6.1. The sample is unphysical because in experiments the process γ∗ → ττ cannot
be observed but only with the interference of γ∗ and Z . In order to compare the DNN di-tau mass
estimator to more realistic scenarios, the neural network estimator can be tested on Z/γ∗ → ττ and
H → ττ simulated data. These samples can also be used to judge on the discriminant power of the
neural network estimator.

The simulation of the γ∗ → τhadτhad data sample is based on the Pythia8 [115] event generator. The
H → ττ data is simulated with the POWHEG BOX [116, 117] framework interfaced with the Pythia8
event generator. The Z/γ∗ → ττ data sample is simulated with the SHERPA [118] framework. Many
different statistically independent data samples are combined into one data sample in order to have
more statistics. An overview of the data samples is given in Table 6.1. The mass distribution of the
γ∗ → τhadτhad is depicted in Fig. 6.2. In order to correct the shape of the mass distribution, the events
receive weights that flatten the mass distribution in bins of 0.1 GeV. The weighted mass distribution
is shown in Fig 6.3. The mass range is limited from 60 − 220 GeV because the simulation started
at 60 GeV and higher masses than 220 GeV are considered to be not relevant for the mass range of
interest, namely 90− 125 GeV. Note, that the energy resolution of the detectors depends on the energy
of the particles and with higher invariant masses the average energies of the individual particles will be
higher. Also the Emiss

T resolution depends on the sum of all transverse energies. Thus, the resolution
on possible event characterizing variables depends on the initial simulated invariant mass of the di-tau
system. A broader mass range means more statistics and gives the hope that the DNN is able to learn
more general features like Lorentz boosts, even when not understandable for a human interpreter.

6.1.1 Event Selection

A fully simulated data sample goes through two steps of cuts applied on event level before the data
will be interpreted. The first step is the derivation step, where the data sample is reduced to the events
interesting for the final state. And the second step further employs selection and is mainly used to
define signal regions. For the DNN training, there is no signal region in that sense but the cuts are
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Figure 6.2: Histogram of the generated di-tau mass distribution mtrue
ττ of the γ∗ → τhadτhad sample.
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Figure 6.3: Histogram of the generated di-tau mass distribution mtrue
ττ of the γ∗ → τhadτhad sample with event

weights.

process MC sample Nevents

γ∗ → τhadτhad mc16_13TeV.425200.Pythia8EvtGen_A14NNPDF23LO_ 2 142 022
Gammatautau_MassWeight.deriv.DAOD_
HIGG4D3.e5468_s3126_r10201_r10210_p3703

Z/γ∗ → ττ combined Sherpa samples, full list in Appendix C 259 654
H → ττ mc16_13TeV.345123.PowhegPy8EG_NNLOPS_ 14 066

nnlo_30_ggH125_tautauh30h20.deriv.DAOD_
HIGG4D3.e5814_s3126_r10201_p3627

Table 6.1: Overview of the used Monte Carlo data samples. The number of events is after event cuts described
in Section 6.1.1.
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motivated to give the DNN a safer training environment.

Derivation Cuts

The derivation cuts are applied to all data samples. On this level the applied cuts aim for two
hadronically decaying tau-leptons. Every jet is a (hadronically-decaying-) tau candidate if it fulfills
the requirement:

• (nTracks + nWideTracks ≥ 1) and (nTracks + nWideTracks ≤ 8),

where nTracks is the number of tracks in the core region ∆R ≤ 0.2 and nWideTracks is the number
of tracks in the isolation region 0.2 < ∆R ≤ 0.4.
It is further required that there are at least two tau candidates in the event with pτ1

T ≥ 33 GeV and
pτ2
T ≥ 23 GeV, respectively. One of the two tau candidates also needs to pass the loose working point

in the BDT-based tau identification algorithm (cf. [73]).

Event Selection for DNN Training

These cuts are applied to the γ∗ → τhadτhad sample and are chosen to have a reasonable setup for the
DNN training. The cuts are selected so that little events fail the criteria in order to have high training
statistics. Thus, there is no specific trigger requirement, just any of the triggers need to fire.

A tau candidate needs to have

• (nTracks = 1) or (nTracks = 3),

in order to exploit that a hadronically decaying tau-lepton has one or three charged pions/kaons as
decay products. The sum of the absolute charge of the tracks has to be one: AbsCharge = 1.
All candidates have to fall into the η region 0 ≤ |η | ≤ 1.37 or 1.52 ≤ |η | ≤ 2.5. The forbidden

region is in the transition region between the barrel and end-cap region.
There can be more than two tau candidates but only the two with the highest transverse momentum

are considered. The last requirement on reconstruction level is that the two tau candidates have to
originate from the same vertex.
Additional cuts on the truth/generated level are applied to define a safe working region. Both tau

candidates need to have a truth-matched tau-lepton which decays hadronically. This was chosen to
ensure that the DNN does not try to learn features from misidentified jets. The mass of the system of
the two truth tau-leptons has to lie in the region 60 GeV ≤ mtruth

ττ ≤ 220 GeV.

Event Selection for the Z and H Discrimination

The cuts on the Z/γ∗ → ττ sample and H → ττ sample are chosen to be close to the selection in the
H → ττ cross-section analysis (given in brackets if different) [12], only slightly less strict. As here,
the prediction of the mass of the di-tau system is important for signal and background discrimination,
the DNN estimator can be tested under conditions relevant for analyses.

The selection demands for

• exactly two tau candidates with

– (nTracks = 1) or (nTracks = 3)
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– 0 ≤ |η | ≤ 1.37 or 1.52 ≤ |η | ≤ 2.5

• at least medium (tight) tau identification BDT working point

• pτ1
T ≥ 35 GeV(40 GeV) and pτ2

T ≥ 25 GeV(30 GeV)

• the charge product of the tau candidates has to be −1

• both tau candidates must have a valid decay mode, i.e. not other (see Section 4.3.4)

• no light lepton

• Emiss
T ≥ 20 GeV

• ∆φ( ®Emiss
T , ( ®pτ1 + ®pτ2)) (no requirement)

• 0.8 < ∆R( ®pτ1, ®pτ2) < 2.4(2.5)

• |∆η( ®pτ1, ®pτ2)| < 1.5

6.2 DNN Input Variables

The input variables for the DNN are inspired by the MMC input. The DNN is firstly trained with basic
kinematic features in order to find stable training regions. Later, also additional information is taken
into account and the impact on the DNN training is studied. The kinematic input directly follows from
Eq. 4.10, namely the three momentum of the visible tau decay products and the two components of
the missing transverse energy. The MMC further uses the number of tracks of each tau decay. This
gives in total ten input parameters:

• pτ1
T , ητ1 , φτ1 , nTracks(τ1)

• pτ2
T , ητ2 , φτ2 , nTracks(τ2)

• Emiss
T , φmiss .

Many variables are interesting for auxiliary information. The additional features that are tested in this
work are:

• tau decay channel

• MET significance

• number of vertices

• number of jets (the MMC differentiates between 0 and > 0 jets [16]) .

The tau decay channel can give additional information because there the intermediate resonance is
encoded. The intermediate resonances, e.g. π, ρ or a1, have different masses, and therefore the angle
between the visible decay products and the neutrino should be different. What could also have an
effect is the different tau momentum resolution in the different decay channels [119].
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The MET significance is the estimated error on the missing transverse energy divided by the
magnitude of the missing transverse energy. This could be a useful input feature because the error on
the missing transverse energy gives indicates of how precisely the neutrino momenta can be estimated.
The number of vertices and the number of jets can both have an effect on the resolution of the

missing transverse energy.
It is important to notice that the input of a DNN should be uncorrelated. As stated in Section 2

higher level input features are not expected to lead to better DNN performance and are not studied.

6.2.1 Additional Input Variables for Future Work

There are more event and object related features which are interesting to study. As the main focus of
this work lies in finding a safe and stable setup for the DNN training, not every detail is studied. In
principle, feature selection and their representation can have a major impact on improving the DNN
performance. This is typically desirable when it comes to gaining the last few percent (or permille) in
accuracy. Additional information could be:

• impact parameters d0 and z0

• jet kinematics

• missing transverse energy with respect to primary vertex

The impact parameters d0 and z0 measure the distance of the secondary vertex to the primary vertex.
This could be helpful in tau decays with three tracks because then the exact position of the tau decay
would give further constraints. However, the resolution on the secondary vertex is a very limiting
factor.

The jet kinematics can be more helpful than just the number of jets since a mismeasurement of the
missing transverse energy could be correlated with the direction of the jets and their momentum.

As the missing transverse energy is measured event-wise it may be helpful to try to give an estimate
of the missing transverse energy with respect to the primary vertex. However, this cannot take final
state radiation into account.
Beside additional input features, the representation of the input feature can also have an impact

on the DNN performance. In [120, 121] measurements of angles were made in the rest-frame of
the visible tau decay. Inspired by this, an idea could be to give the momenta in the rest-frame of the
visible resonance. As this work does not aim to fully optimize the setup, impacts on different input
representations is suggested for further studies.

6.2.2 Standardization of Input Variables

The input variables were standardized, i.e. subtracted by their mean and divided by their standard
deviation. The distribution of the different input features are depicted in Appendix D. Note that the
standardization transforms the features to have zero mean and unit variance but does not change the
shape of the distributions. For the standardization the scikit-learn package was used [103].
The decay channel is not a numerical number, and therefore an one-hot encoding is suggested to

represent them. This maps each decay mode to a unit vector of standard base. This is a simple way to
find an orthogonal representation. The decay channels are:
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6.3 Data Sample Splitting

• h± → (1, 0, 0, 0, 0, 0)T

• h±π0
→ (0, 1, 0, 0, 0, 0)T

• h± ≥ 2π0
→ (0, 0, 1, 0, 0, 0)T

• 3h± → (0, 0, 0, 1, 0, 0)T

• 3h± ≥ 1π0
→ (0, 0, 0, 0, 1, 0)T

• other→ (0, 0, 0, 0, 0, 1)T

6.2.3 Suggestion for Future Work

The shapes of the variable distribution are not Gaussian (see Appendix D). It may be worthwhile to
study the impact of outliers on the DNN training. The robustness of DNNs is a topic of recent study,
i.e. [122]. A simple way to test the robustness could be a check whether input with outliers produces
particularly inaccurate results or whether the performance improves when data with outliers is not
used for training.

6.3 Data Sample Splitting

In order to evaluate the training process, the γ∗ → τhadτhad data sample is split into a training (train),
a cross-validation (xval) and a test sample. The cross-validation sample is used to evaluate the training
during the development process and the test sample is used to estimate the performance after a model
is selected. The splitting of the data sample is orientated on the mass distribution of the γ∗ → τhadτhad

sample. As explained it is desirable to have a data sample which mass distribution is flat in mass.
The data sample was first sorted into bins of 0.1 GeV. Then, from every bin the same amount of

events were used in order to define a flat region (319/GeV, i.e. the lowest occupancy of all bins). From
this flat region 10% (32) of the events per bin were used for the training and the cross-validation
sample (in total 51 200 events each). The rest of the events were then used to define a flat training
region (train flat) with events that are used for training but with a flat mass distribution (408 000
events). The events of the region flat training and the formerly not used were put together, defining the
training sample. This sample is then weighted to have a flat mass distribution. The training sample
is used for the DNN training while the flat training subsample is used for the evaluation plots (see
Chapter 7). An overview of the sample splitting is given in Tab. 6.2.
A simple data sample splitting is used because k-fold cross-validation is computationally more

expensive and the loss in the training sample size is manageable while the cross-validation sample and
test sample are big enough to give a good estimate of the DNN performance. The standardization
transformation, i.e. the mean and the standard deviation of the input variables, is calculated on the
training sample and then performed on all samples.

6.4 DNN Architecture

The DNN training is performed using the Keras framework [123] with TensorFlow [124] as backend.
Different setups are used in order to make consistency checks and to study the impact of some selected
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Chapter 6 Data Sample and DNN Setup

sample subsample events

train 2 039 622
train flat 408 000

xval 51 200
test 51 200

Table 6.2: Overview of the splitting of the γ∗ → τhadτhad sample.

hyperparameter test range

# hidden layers 1,2,3,4,5
# nodes / layer 1,2,4,8,16,32
optimizer NAM, Adam, Nadam

Table 6.3: Overview of the hyperparameters and how they are varied in order to study their impact on the DNN
training.

hyperparameters. The tested architectures are depicted in Tab. 6.3. The number of hidden layers and
the number of nodes per hidden layer is varied. For all setups no regularization method is used, and the
squared error is used as the loss function. The activation function and the weight initialization scheme
is chosen according to the SNN setup (see Section 5.1.5). The training of the different setups will
be performed with three different optimization algorithms with mini-batch size s = 32, the Nesterov
accelerated momentum algorithm (NAM), the Adam and the Nadam algorithm. This is repeated for
two different random initializations, i.e. different random seeds so that the results are reproducible.
All these studies aim to check how stable the DNN training is and if good results can be achieved.

The hyperparameters of the optimization algorithms are chosen according to the standard values
of [123]:

• NAM: α = 0.01, β = 0.9

• Adam: α = 0.001, β1 = 0.9, β2 = 0.999

• Nadam: α = 0.002, β1 = 0.9, β2 = 0.999

The training time is fixed to 200 epochs. If the training loss does not decrease within 15 epochs, the
value α is decreased by a factor of 2. Further, the gradient is clipped to 2, i.e. if the norm of the
calculated gradient is larger than 2, it is scaled to 2. This is used for numerical stability in regions
with high gradients [125]. The value 2 is chosen randomly and it is another hyperparameter which has
to be optimized or tested for further optimization.
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CHAPTER 7

DNN Evaluation Metrics

This chapter aims to introduce and motivate the evaluation metric plots which are used to measure
the DNN performance. They are exemplarily shown for the MMC predictions for the γ∗ → τhadτhad

sample which will be used for comparison with the DNN predictions. As stated before, for the
development of a DNN it is important to know how precise the DNN estimation can become.
Unfortunately, there is no recipe for estimating the best possible performance. In order to give a very
upper limit, a DNN will be trained with truth information as input and the evaluation metric plots
will be used for this particular example. This is of course not a valid estimation for the best possible,
achievable precision of a DNN trained with detector information, as the limiting factor should arise
from the DNN architecture itself and not from the data. However this validates if a DNN can learn
something in the safe environment of no detector resolution effects.

7.1 Evaluation Metrics

The DNN performance at training time is measured by the loss function. It should be decreasing
with the number of epochs and for a non-high-variance case, the loss function value evaluated on the
cross-validation data should be near the training data value. While the learning curve is good for
comparing different DNN setups and getting a flavor of the variance, it has also a few down sides. For
example it can not be concluded if the predictions are equally good in every mass interval. In order to
compare the DNN with the MMC, a few plots are shown which can evaluate the performance and also
check the consistency.
Firstly, the distribution of the predicted di-tau system mass is considered. This contains a lot

of information. If the estimator has a strong bias, the distribution could peak at some mass value.
Moreover, the distribution should look continuous. If this is not the case this would need further
investigation. The distribution does also give insights on the resolution dependency on the truth
mass. If the resolution would be considered Gaussian with a constant standard deviation, then the
distribution of the predicted masses would be given by the convolution of the Gaussian with the
uniform distribution (depicted in Fig. 7.1). A dependency of the standard deviation of the truth mass

would lead to other distributions. Exemplary for a σ ∝
√

mtruth
ττ and a σ ∝ mtruth

ττ dependency the
distributions are simulated and depicted in Figs. 7.2 and 7.3, respectively. The di-tau system masses
predicted by the MMC are depicted in Fig. 7.4. Comparing the distribution in Fig. 7.4 with the
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Figure 7.1: Convolution of a Gaussian (with σ = 15 GeV) with a uniform distribution U(60 GeV, 220 GeV).
This gives the distribution of the expected predicted mass m̂ττ if a Gaussian-shaped resolution of σ = 15 GeV
is assumed.

Figure 7.2: Histogram of a simulated distribution of
the expected predicted mass m̂ττ if a Gaussian-shaped

resolution of σ = 3 GeV
√

mtruth
ττ /GeV is assumed.

Figure 7.3: Histogram of a simulated distribution of
the expected predicted mass m̂ττ if a Gaussian-shaped
resolution of σ = 0.2 · mtruth

ττ is assumed.

theoretically expected distributions Figs. 7.1-7.3, it seems as if the resolution depends approximately
linearly on the truth di-tau system mass because of the similarity with Fig. 7.3 but further evaluation
plots are needed. However, the Gaussian distribution is very idealized and the tails are typically non
Gaussian.
As from the distribution of the predicted mass the deviation from the truth mass can not be

concluded, additional information is needed. Therefore the predicted mass is plotted against the truth
mass in a two-dimensional scatter plot, depicted in Fig. 7.5. There it can be seen how much the
predicted mass correlates with the truth mass, if there are any shifts and also what resolution the mass
estimator has. The correlation factor is an additional real value number which can be used to quickly
compare different estimators, besides comparing their loss values. In principle, this plot contains all
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Figure 7.4: Histogram of the predicted di-tau mass distribution of the γ∗ → τhadτhad sample by the MMC, in
the flat training subsample.
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Figure 7.5: Scatter plot of the predicted di-tau mass distribution of the γ∗ → τhadτhad sample by the MMC
against the truth mass mtruth

ττ , in the flat training subsample. The correlation factor is 0.804. The red line
describes an ideal linear response mest

ττ = mtruth
ττ .

the information needed to evaluate the DNN performance. But as the resolution is very hard to read
off by eye, an additional auxiliary plot is made which is easier to interpret. As The underlying truth
mass distributions are always flat because they cannot be read off by eye an otherwise the plot would
be hard to interpret. This is why the flat training subsample is needed. Additionally, a linear response
mest
ττ = mtruth

ττ is plotted to the scatter plot in red.
A possible way to visualize a possible relative shift from the estimator to the truth mass is plotting

the mean value of (mestimated
ττ /mtruth

ττ ) − 1 in bins of the truth mass. This can also show trends or hint
at a high bias. The resolution is added to the plot as error bars of the central values. The error bars
enclose the range corresponding to one standard deviation in both directions, the 15.865 − 84.135
percentile range. For the MMC prediction this is depicted in Fig. 7.6.
To further visualize the size of the width, the half of the widths corresponding to 1σ and 2σ
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Figure 7.6: Depicted is the mean of the relative deviation mMMC
ττ /mtruth

ττ − 1 of the γ∗ → τhadτhad flat training
subsample in 10 GeV bins of the truth mass. The error bars enclose the percentile range corresponding to 1σ.
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Figure 7.7: Depicted are the half of the quantile widths of the relative deviation mMMC
ττ /mtruth

ττ − 1 of the
γ∗ → τhadτhad flat training subsample in 10 GeV bins of the truth mass. The black dot corresponds to a 1σ
range, the red dot to a 2σ range.

(2.275 − 97.725 percentile range) are also plotted in bins of the truth mass. This is easier to read off.
This can also give an estimate how Gaussian a distribution is. For a Gaussian distribution, the range
corresponding to 2σ should be exactly twice as wide as the range corresponding to 1σ. For the MMC
this is depicted in Fig. 7.7. It can be seen that the relative resolution is rather flat which means that the
uncertainty of the estimated mass is roughly linear with respect to the truth mass.

7.2 DNN with Truth Level Information Input

The training of a DNN with truth level information is mainly a check how much a DNN with a given
architecture can learn from the low level information. As input variables the basic variables described
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7.2 DNN with Truth Level Information Input

in Section 6.2 are chosen, without auxiliary information (10 input variables in total). The architecture
tested will be:

• SNN setup

• 4 hidden layers with 16 nodes each

• Adam optimizer (α = 0.001, β1 = 0.9, β2 = 0.999)

• no regularization

• 200 epochs

• reduce α by a factor 0.5 if loss does not decrease for 15 epochs

• squared error loss

• truth mass as target

• mini-batch size s = 32

The results are summarized in Figs. 7.8-7.14. A first evaluation is to look at the learning curve.
From the loss function J(Θ), the square root J ′(Θ) is calculated:

J
′
(Θ) =

√
J(Θ) =

√√√√©«
∑
i

1
wi

(
mpred.
ττ − mtruth

ττ

GeV

)2ª®¬ , (7.1)

where wi are the event weights used to weight the distribution flat in mass. This RMS value is easier
to interpret. The value J ′(Θ) is evaluated at the end of each epoch and plotted against the number of
trained epochs in Fig. 7.8. It can be concluded that there is only little variance because the loss value
for the training and cross-validation sample differ only by a small amount. It gives a consistent result,
i.e. the training point with the lowest loss also gives the lowest cross-validation error. The steps in the
training learning curve emerge because of a decrease of α.

Themass distribution, depicted in Fig. 7.9, follows neither of the theoretically motivated distributions
from Figs. 7.1, 7.2 or 7.3. It rather looks like the distribution of the predicted mass tries to emulate
a flat mass distribution. It is striking, that the predicted masses are very unlikely to be outside the
training mass region of 60 GeV − 220 GeV.
The distribution of the estimated masses against the truth masses give more insights. For the flat

training subsample and the cross-validation sample they are depicted in Figs. 7.10 and 7.11. Firstly,
the correlation factor of the two histograms are very high 0.905 (train flat) and 0.903 (xval) which
means that the DNN estimates the mass very accurately. The small deviation further underlines
that there is only little variance. But the predicted masses in the edge regions are very asymmetric.
The DNN prefers to predict masses inside the known mass region. There is also a shift in the most
probable estimated mass depending on the truth mass. This trend can be seen in the mean of the
relative deviation, depicted in Fig 7.12. This effect is believed to occur because of the squared error
loss function which does not correct for edge effects. In order to compensate the edge effects, the
loss function with boundary correction derived in Eq. 5.9 is tested. Unfortunately, this new loss
function cannot be tested to full detail. As a best guess, a linear dependency of the standard deviation
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Chapter 7 DNN Evaluation Metrics

Figure 7.8: Square root of the loss against the number of training epochs.
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Figure 7.9: Distribution of the estimated masses for the flat training subsample (blue), the cross-validation
sample (red) and the MMC predictions for the flat training subsample.
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Figure 7.10: Scatter plot of the DNN predicted di-
tau mass distribution against the truth mass mtruth

ττ in
the flat training subsample. The correlation factor is
0.905.
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Figure 7.11: Scatter plot of the DNN predicted di-tau
mass distribution against the truth mass mtruth

ττ in the
cross-validation sample. The correlation factor is
0.903.
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Figure 7.12: Mean of the relative deviation mest
ττ/m

truth
ττ − 1 compared for the flat training subsample (blue), the

cross-validation sample (red) and the MMC predictions for the flat training subsample.

σ = c · mtruth
ττ is assumed (based on the estimated MMC dependency) and the coefficient c = 0.12 is a

very rough estimate of the 68% quantile width from Figs. 7.13 and 7.14.

7.2.1 Boundary Corrected Loss Function

The boundary corrected loss function can be a promising tool to counter the effect of learning global
features from the training sample, i.e. the training target range. However, it is not commonly used
and therefore not fully tested. For the di-tau system mass prediction it has to be tested whether the
assumption of a normal distribution with σ = c · mtruth

ττ is valid or if this runs into problems. For a fair
comparison, the same hyperparameters are used like in Section 7.2, exchanging only the loss function.
The results are summarized in Figs. 7.15-7.22.

Firstly, the learning, depicted in Figs. 7.15 and 7.16, is not as stable as in the case of the squared
error loss. There are small jumps in the learning curve of the training sample and even bigger jumps

59



Chapter 7 DNN Evaluation Metrics

6-7 7-8 8-9 9-10 10-11 11-12 12-13 13-14 14-15 15-16 16-17 17-18 18-19 19-20 20-21 21-22

 / 10 GeVtruth
ττm

0

0.1

0.2

0.3

0.4

0.5

0.6

 -
1)

tr
ut

h
ττ

 / 
m

es
t. ττ

Q
W

(m

train flat 68%

train flat 95%
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ττ − 1 of the

flat training subsample in 10 GeV bins of the truth
mass. The black dot corresponds to a 1σ range, the
red dot to a 2σ range.
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Figure 7.14: Depicted are the half of the quantile
widths of the relative deviation mest

ττ/m
truth
ττ − 1 of the

cross-validation sample in 10 GeV bins of the truth
mass. The black dot corresponds to a 1σ range, the
red dot to a 2σ range.

in the cross-validation sample. Evaluating the RMS√√√√©«
∑
i

1
wi

(
mpred.
ττ − mtruth

ττ

GeV

)2ª®¬ (7.2)

after each epoch shows, that the RMS in the cross-validation is very noisy and it is hard to see whether
there is any improvement at all. The RMS is not expected to be monotonically decreasing as it is not
optimized. However, further investigation is needed and possibly this result of an unstable learning
curve has to be confirmed by other experiments. There are a few things that may cause these behaviors.
Maybe the initial value of the learning rate is too high or maybe the estimate of σ is too inaccurate for
the problem. Possible further investigation could be to test different optimizers and learning rates,
train the DNN with pretrained weights (e.g. by a DNN trained with the squared error loss function) or
estimate σ differently, maybe on an epoch-wise basis.
Despite the problems with the optimization, the other evaluation plots look better. The DNN now

also predicts masses outside the training target range, see Fig. 7.17. This comes with a lower accuracy
of the predictions, i.e. a lower correlation factor, see Figs. 7.18 and 7.19. This has to be considered
when looking at correlation factors predicted by DNNs trained with the squared error, that these DNNs
probably overestimate the correlation due to edge effects. The correlation factors of the flat training
subsample (0.880) and the cross-validation sample (0.877) differ only a little suggesting that the DNN
does not overtrain. It is striking, that the relative resolution gets worse for higher truth masses. If this
is an artifact from the loss function itself or a result of a suboptimal training has to be investigated in
further research. However, the relative resolution is roughly constant in the region of interest, see
Figs. 7.20 and 7.21, and there is no obvious trend in the shifts of the relative deviation against the
truth mass, see Fig. 7.22.
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7.2 DNN with Truth Level Information Input

Figure 7.15: Square root of the boundary corrected
loss against the number of training epochs.

Figure 7.16: RMS of the predicted masses against the
number of training epochs.
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Figure 7.17: Distribution of the estimated masses for the flat training subsample (blue), the cross-validation
sample (red) and the MMC predictions for the flat training subsample.
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Figure 7.18: Scatter plot of the DNN predicted di-
tau mass distribution against the truth mass mtruth

ττ in
the flat training subsample. The correlation factor is
0.880.
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Figure 7.19: Scatter plot of the DNN predicted di-tau
mass distribution against the truth mass mtruth

ττ in the
cross-validation sample. The correlation factor is
0.877.
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Figure 7.20: Depicted are the half of the quantile
widths of the relative deviation mest
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ττ − 1 of the

flat training subsample in 10 GeV bins of the truth
mass. The black dot corresponds to a 1σ range, the
red dot to a 2σ range.
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Figure 7.21: Depicted are the half of the quantile
widths of the relative deviation mest

ττ/m
truth
ττ − 1 of the

cross-validation sample in 10 GeV bins of the truth
mass. The black dot corresponds to a 1σ range, the
red dot to a 2σ range.
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Figure 7.22: Mean of the relative deviation mest
ττ/m

truth
ττ − 1 compared for the flat training subsample (blue), the

cross-validation sample (red) and the MMC predictions for the flat training subsample.
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Results

In Section 7.2 it was shown that a DNN can approximate the mass of a di-tau system with low level
input features at truth level. Now, also detector effects are included and the input variables are given
at reconstruction level. The DNN performance is compared to the MMC performance. For the
comparison it is important to remember that the MMC is trained on Z/γ∗ → ττ data while the DNN
on the explained γ∗ → τhadτhad data sample. Therefore, the comparison is difficult depending on
which data sample the performance is tested, since each estimator is expected to perform better on the
data sample it is trained on. The idea is to train the DNN on the γ∗ → τhadτhad data sample and then
test it in the task of separating Z/γ∗ → ττ and H → ττ events.

8.1 Impact of the DNN Architecture

In order to study the impact of the architecture on the DNN performance, some hyperparameters are
varied as described in Section 6.4. For the comparison, not all evaluation metric plots are shown but
rather the correlation factors between the predicted mass and the truth mass on the cross-validation
samples are compared. This is of course not sufficient for a detailed analysis. A differentiated analysis
is exemplarily shown when necessary.

8.1.1 Impact of DNN Depth

For a fixed number of nodes N = 16, the number of hidden layers L is varied in order to study the
impact of the depth of the DNN on the performance. The DNN is trained with the Adam optimization
algorithm. The impact of this on the correlation factor is depicted in Fig. 8.1. It can be seen that the
correlation factor flattens out for L ≥ 3 and that even for L = 1 the correlation factor (0.828) is higher
than the correlation factor for the MMC (0.804). This would suggest that the DNN performs better
on the γ∗ → τhadτhad sample than the MMC. Unfortunately, a few effects occur which dampen this
success. To quickly sketch the problem, the DNN suffers from edge effects but the mass distribution is
also not smooth in the intermediate mass range for L = 5. The mass distribution for L = 5 is shown in
Fig. 8.2. While theoretically a DNN should become more precise with more hidden layers, it might
be, that the training is too difficult and the weights got stuck in a plateau region. In a plateau region
the loss does not decrease or only very slowly and is very hard to distinguish from a (local) optimum.
For L < 5 the mass distributions are shown in Appendix E.1.
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Figure 8.1: Correlation factor of the predicted mass against truth mass scatter plot on the cross-validation sample
for different number of hidden layers. All hidden layers have N = 16 nodes per layer and the DNNs are trained
with the Adam optimizer.

The edge effects are still present, i.e. the DNN only very rarely predicts masses outside the training
mass range of 60 GeV − 220 GeV, which also results in a shift in the relative deviation, shown in
Fig. 8.3. The relative resolution also depends on the truth mass, see Fig. 8.4. This is caused by the
squared error loss, because the squared error loss only takes the distance of the predicted output and
truth output into account. Thus, the DNN is optimized for a minimal distance independent of the truth
output, and thus the error is held constant. In order to achieve a constant relative resolution the loss
function has to be changed to:

L =

(
o(i) − y(i)

)2

y(i)
. (8.1)

The good resolution for high truth masses might further be caused by the limited prediction range of
the DNN estimator, see Fig. 8.5.
To conclude, there is a general trend that the DNN can achieve a higher correlation between

predicted mass and truth mass with more hidden layers. This effect flattens out for more hidden layers
(L ≥ 3) so that at some point the correlation does not increase with more layers anymore. This is
expected, however increasing the number of hidden layers may also run into difficulties with the
DNN training. Furthermore, the edge effects play a major role in the DNN predictions and the global
feature of the training mass range has a higher impact on the DNN trained with reconstruction level
information than on the DNN trained with truth level information.

8.1.2 Impact of DNN Broadness

In order to study the effect of the DNN Broadness, i.e. how many nodes are used per hidden layer, the
number of hidden layers L = 4 is held constant and the number of nodes per layer is varied. The DNNs
are trained with the Adam optimization algorithm. The results are depicted in Fig. 8.6. It can be seen,
that the correlation factor flattens out, starting at N = 8. The edge effects are still present and not
presented again. Despite the edge effects, studies like these can help to get a feeling in which range of
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Figure 8.2: Mass distribution of the DNN predicted masses for the flat training subsample (blue), the cross-
validation sample (red) and the MMC predicted masses (black). The DNN has L = 5 hidden layers with N = 16
nodes and is trained with the Adam optimization algorithm.
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cross-validation sample (red) and the MMC predictions (black). The DNN has L = 5 hidden layers with N = 16
nodes and is trained with the Adam optimization algorithm.
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Figure 8.5: Scatter plot of the DNN predicted di-tau mass distribution against the truth mass mtruth
ττ in the

cross-validation sample. The correlation factor is 0.845. The DNN has L = 5 hidden layers with N = 16 nodes
and is trained with the Adam optimization algorithm.
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8.1 Impact of the DNN Architecture

Figure 8.6: Correlation factor of the predicted mass against truth mass scatter plot on the cross-validation
sample for different number of nodes per layer. The DNNs have 4 hidden layers and are trained with the Adam
optimizer.

the hyperparameters good results can be achieved. This could then lower the cost of a hyperparameter
scan, if some regions are already excluded. For the tested architectures the DNN training did not suffer
from large overfitting. For higher numbers of nodes per hidden layer regularization techniques should
be used. A possible way how to determine the transition point could be determining the point where
the correlation factor between the predicted mass and the truth mass on the cross-validation sample
starts to drop down with increasing number of nodes per hidden layer. Additionally, the learning curve
should be considered to keep track of high bias, i.e. overtraining.

8.1.3 Impact of Different Optimization Algorithms

In order to test the impact of different optimization algorithms on the DNN performance, different
DNN configurations are set up and then trained with the NAM, the Adam and the Nadam optimization
algorithm. The different tested algorithms have different theoretical convergence behavior and could
lead to different results. The tested configurations, denoted by (L,N), are (1,2), (2,4), (3,8), (4,16)
and (5,32). There, the weights are initialized with the same random seeds in order to have the same
starting point for every optimization algorithm. The results are depicted in Fig. 8.7. It can be seen,
that in general the Nadam optimization algorithms leads to the best results. It is slightly better than the
Adam optimization algorithm. It is noticeable, that the NAM optimization algorithm leads to the best
result for the configuration (1,2) which is even to better than the result of configuration (2,4) trained
with the NAM algorithm. This leads to the question, what could cause this observed effect?

A possible explanation could be, that the DNN gets stuck in a local optima or a plateau region
for some training cases. The Adam and Nadam optimizer might be similar enough, that there the
DNNs end up in the same or a very similar end point, but that the NAM optimization algorithm takes
a very different path and ends up in a better (1,2) or worse local optima (2,4). In order to verify this
hypothesis, two tests are proposed. Firstly, the Adam and Nadam optimizer are considered. It is
studied how similar the predictions of DNNs trained with the two optimization algorithms are. And
secondly, the same configurations are trained again with another random initialization, i.e. different
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Figure 8.7: Comparison of the correlation factor of the predicted mass against truth mass scatter plot on the
cross-validation sample for different DNN configurations and different optimization algorithms.

random seeds, in order to see whether the DNNs end up in the same or similar end points as before.

Comparison of the Adam and Nadam Optimization Algorithm

The Adam and Nadam optimizer achieve very similar correlation factors between the predicted mass
and the truth mass. Therefore, it is studied whether they predict similar results for the same examples.
For this, the relative deviation of the DNN trained with the Adam optimizer and the DNN trained with
the Nadam optimizer is calculated for the (5,32) configuration. There the deviation of the correlation
∆r = 1.9 · 10−5 is particularly small. This is then compared to the relative deviations of both DNNs
with the relative deviation of the DNN trained with the NAM optimizer in the same configuration.
This is depicted in Fig. 8.8. It can be seen that the deviation of the predicted values of the DNN trained
with the Adam algorithm and the DNN trained with the Nadam algorithm is not significantly smaller
than the deviation of any other combination. Thus, the hypothesis, that the Adam and Nadam end up in
a similar end point which is further different to the end point of the NAM algorithm is not supported.

8.1.4 Impact of Random Initialization

In order to understand why the DNNs trained with different optimization algorithms end up having
very different correlation coefficients between the predicted mass and the truth mass, especially in the
configurations (1,2) and (2,4), all configurations are trained again with different initial weightsΘ of the
neural network. This is done by changing the random seeds of the TensorFlow and numpy random
generators. The correlation factors are again computed for the correlation between the predicted
mass and the truth mass on the cross-validation sample and then compared to the ones obtained with
the random initialization used before. For the training with the Adam optimization algorithm, the
results are depicted in Fig. 8.9. It can be seen that for the configurations (1,2) and (3,8) the obtained
correlation factors differ quite significantly for the different initializations. This suggests that the
DNN can really get stuck in different optima or plateau regions. This would also imply that the same
configurations should be trained multiple times in order to find the optimal weights. A last cross-check
is to have a look at the learning curves for the setup (1,2) or (3,8) trained with the Adam optimization
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Figure 8.8: Comparison of the relative deviations of the DNN predictions. The DNNs are trained with the
different optimization algorithms in the configuration of L = 5 hidden layers and N = 32 hidden nodes. The
predictions were made on the cross-validation sample.

Figure 8.9: Comparison of the correlation factor of the predicted mass against truth mass scatter plot on the
cross-validation sample for different DNN configurations trained with the Adam optimization algorithm for
different random weight initialization.

algorithm for the different initialization and check whether one training is not finished, in the sense
that the loss function is still decreasing. Exemplarily, this is done for the configuration (2,4) and
shown in Figs. 8.10 and 8.11. There it can be seen that the square root of the loss starts with a much
lower value in Fig. 8.10 compared to Fig. 8.11 but that both learning curves seem to have achieved the
end of their training after 200 epochs. A last cross-check would be to check whether deviations for
different random initialization still occur if the optimal hyperparameters of the optimization algorithm
have been found. Therefore, a hyperparameter scan for the parameter of the optimization algorithm
would be needed. A suggestion to address this problem would be to use a more stable optimization
algorithm, possibly a Markov chain based procedure, e.g. the Metropolis-Hastings algorithm, if this
would be feasible.
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Figure 8.10: Square root of the loss against the number
of training epochs for the configuration (3,8) trained
with the Adam optimization algorithm in the first
random initialization scheme, from Section 8.1.3.

Figure 8.11: Square root of the loss against the number
of training epochs for the configuration (3,8) trained
with the Adam optimization algorithm in the second
random initialization scheme, from Section 8.1.4.

Figure 8.12: Comparison of the correlation factor
of the predicted mass against truth mass scatter plot
on the cross-validation sample for different DNN
configurations trained with the Nadam optimization
algorithm for different random weight initialization.

Figure 8.13: Comparison of the correlation factor
of the predicted mass against truth mass scatter plot
on the cross-validation sample for different DNN
configurations trained with the NAM optimization
algorithm for different random weight initialization.

For the training with the other two optimization algorithms, the Nadam and NAM algorithm, the
results are depicted in Figs. 8.12 and 8.13. They support the local optima or plateau region hypothesis
in the sense, that there are also deviations between the different random weight initializations.
Coming back to the hypothesis that the DNNs trained by the Adam and Nadam optimizer end up

in very similar end points when trained with the same initial random weights, this hypothesis is not
rejected by the results because both the DNNs trained with the Adam and Nadam algorithms show
larger deviations in the configurations (1,2) and (3,8) which are in the same direction and very similar
in size.
To conclude the study of the different optimization algorithms, there are only small deviations

between the Adam and Nadam optimizer and both tend to be better than the NAM optimizer. Getting
stuck in local minima or plateau regions is a difficulty in the training process and it could be
countered by training the same configuration multiple times with different random initialization or by
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a hyperparameter scan of the hyperparameters of the optimizer.

8.2 mvis/mgenerated as target

As the target for the DNN training so far the Monte Carlo generated mass of the di-tau system, also
referenced as the truth mass, was used. Another possible target could be the ratio of the visible mass
divided by the truth mass. The visible mass mvis is the invariant mass of the system defined by the
visible decay products of both tau decays. In principle, this is no new information because the visible
mass can be calculated from the momentum vectors of the visible decay products which is used as
input information for the DNN. A hope could be, that with this target the DNN is easier to train, in a
sense, that it leads to better results. In order to study the impact of this new target mvis/mgenerated on
the DNN training, the training is compared to a DNN with the truth mass as target for a few selected
configurations. Again, the correlation factors are compared. For the DNN trained with mvis/mgenerated
as target, the measured visible mass is used for the final prediction, according to:

mest.
ττ = mvis/o , (8.2)

where mest.
ττ is the final estimate of the mass of the di-tau system and o is the output of the DNN.

In order to get a good understanding of the impact of the new target, for the configurations (1,2),
(2,4), (3,8), (4,16) and (5,32) a DNN gets trained with the Adam optimization algorithm and is then
compared to the same configurations also trained with the Adam optimization algorithm, but with
the truth mass as target. The comparison of the achieved correlation factors on the cross-validation
sample is depicted in Fig. 8.14. For the other tested optimization algorithms there were only tiny
deviations from the results obtained by training with the Adam optimization algorithm, and therefore
they are omitted. It can be seen in Fig. 8.14, that the correlation factor is very high with r ≈ 0.811 fo
the simplest configuration (1,2) but does not improve as much as before with the truth mass as target.
The correlation factor for the configuration with the most trainable parameters (5,32), r ≈ 0.844, is
slightly lower than the correlation factor r ≈ 0.846 obtained by training with the truth mass as target.

As the correlation factor alone is not enough for a detailed analysis, a more differentiated analysis is
presented for one specific configuration. In order to have a good comparison to the training with the
truth mass as target, again the configuration (5,16) trained with the Adam optimizer is chosen to be
presented in more detail.
Firstly, the mass distribution, depicted in Fig. 8.15, looks more smoothly compared to the mass

distribution predicted by the DNN trained with the truth mass as target (cf. Fig. 8.2). It is roughly flat,
but it still does not or only very rarely predict masses outside the training mass range. The scatter
plot of the DNN predicted mass against the truth mass, depicted in Fig. 8.16, looks similar to the one
obtained with the truth mass as target (cf. Fig. 8.5). The trend in the mean of the relative deviation,
depicted in Fig. 8.17, is still present, however slightly less prominent (cf. Fig. 8.3). The quantile
widths are compared to the ones obtained by the DNN prediction with the truth mass as target and
are also compared to the MMC prediction obtained quantile widths in Figs. 8.18 and 8.19. There
it can be seen that the quantile widths are smaller for the DNN predictions at high and low masses.
But essentially there, the DNN predictions are not perfectly valid. This underlines the importance of
fixing the edge effect problem.
As it is not clear how to cope with the edge effects for the case of mvis/mgenerated as target and

because for the truth mass as target a promising possibility is already tested at truth level, the ratio of
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Figure 8.14: Comparison of the correlation factor of the predicted mass against truth mass scatter plot on the
cross-validation sample for different DNN configurations of a DNN trained with the truth mass as target (red)
and with the ratio of the visible mass and the truth mass as target (blue). Both DNNs are trained with the Adam
optimization algorithm.
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Figure 8.15: Mass distribution of the predicted masses for the flat training subsample (blue), the cross-validation
sample (red) and the MMC (black). The DNN has L = 5 hidden layers with N = 16 nodes and is trained
with the Adam optimization algorithm. The training target is the ratio of the visible mass and the truth mass
mvis/mgenerated.

72



8.2 mvis/mgenerated as target

0

2

4

6

8

10

0 50 100 150 200 250
 / GeVtruth

ττm

0

50

100

150

200

250

300

 / 
G

eV
es

t. ττ
m

Simulation

correlation factor: 0.844

Figure 8.16: Scatter plot of the DNN predicted di-tau mass distribution against the truth mass mtruth
ττ in the

cross-validation sample. The correlation factor is 0.845. The DNN has L = 5 hidden layers with N = 16 nodes
and is trained with the Adam optimization algorithm.
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Figure 8.17: Mean of the relative deviation for the flat training subsample (blue), the cross-validation sample
(red) and the MMC (black). The DNN has L = 5 hidden layers with N = 16 nodes and is trained with the Adam
optimization algorithm.
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Figure 8.18: Comparison of the half of the quantile
widths corresponding to 1σ of the relative deviation
mest
ττ/m

truth
ττ −1 of the cross-validation sample in 10 GeV

bins of the truth mass for a DNN trained with the truth
mass as target (red), a DNN trained with the ratio of
the visible mass and the truth mass as target (blue)
and the MMC (black).

6-
7

7-
8

8-
9

9-
10

10
-1

1

11
-1

2

12
-1

3

13
-1

4

14
-1

5

15
-1

6

16
-1

7

17
-1

8

18
-1

9

19
-2

0

20
-2

1

21
-2

2

 / 10 GeVtruth
τ τm

0

0.1

0.2

0.3

0.4

0.5

0.6

 -
1)

tr
ut

h
τ τ

 / 
m

es
t. τ τ

Q
W

(m

 t. 95%truth
ττm

 t. 95%truth
ττ/mvis

ττm
MMC 95%

Figure 8.19: Comparison of the half of the quantile
widths corresponding to 2σ of the relative deviation
mest
ττ/m

truth
ττ −1 of the cross-validation sample in 10 GeV

bins of the truth mass for a DNN trained with the truth
mass as target (red), a DNN trained with the ratio of
the visible mass and the truth mass as target (blue)
and the MMC (black).

the visible mass to the truth mass is not studied further.

8.3 Boundary Effect Correction

In order to deal with the effects that arise from the boundaries, two possibilities could be studied. The
first one is calibrating the DNN predicted output and the second method is training the DNN using the
boundary corrected loss function, derived in (5.9).
The usage of boundary corrected loss function can potentially solve the boundary effect problem.

Therefore, it is studied in more detail. While the boundaries are given by the training sample,
i.e. a = 60 GeV and b = 220 GeV, a prior guess of the resolution σ is needed. Following the
argumentation of Section 7.2.1 that the relative resolution of the MMC is roughly constant and
estimating the resolution as the 68% half-quantile width of the DNN, where it is roughly equal to the
MMC resolution at mtruth

ττ ≈ 100 GeV (cf. Fig. 8.18), the prior guess of the resolution is chosen to be
σ = 0.18 · mtruth

ττ . Note that the prior guess could heavily effect the achievable DNN performance.
Further, note that the prior guess is not a specific characteristic of the boundary corrected loss function
but of any loss function. It is often neglected by choosing the square error loss, where the resolution is
assumed to be constant.

The setup of the DNN training is chosen as described in Section 7.2, changing only the loss function
to the boundary corrected loss function with σ = 0.18 ·mtruth

ττ . The results are summarized in Figs. 8.20
-8.26.

The learning curve, where the square root of the loss is depicted after each epoch, shown in Fig. 8.20,
implies that the learning is still unstable. This has a huge impact on the RMS (cf. Eq. 7.2) as a
function of the number of epochs, depicted in Fig. 8.21. More effort has to be put in stabilizing the
training process.
The distribution of the DNN predicted mass, shown in Fig. 8.22, is very similar to the MMC

predicted distribution. It is striking that there is a small irregularity at mest.
ττ ≈ 47 GeV. This could be
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Figure 8.20: Square root of the boundary corrected
loss against the number of training epochs.

Figure 8.21: RMS of the predicted masses against the
number of training epochs.
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Figure 8.22: Mass distribution of the DNN predicted masses for the flat training subsample (blue), the
cross-validation sample (red) and the MMC predicted masses (black).

an effect of the unstable training and has to be further investigated, if this irregularity is still present
after a hyperparameter scan.

The scatter plot of the DNN estimated mass against the truth generated mass, depicted in Fig. 8.23,
shows that the DNN does indeed predict masses outside the training mass range, but also that there is a
sharp edge at mest.

ττ ≈ 47 GeV. The correlation factor of r = 0.821 is higher than the correlation factor
between the MMC predicted mass and truth mass of rMMC

= 0.801, which suggests that the DNN
performs better. From Figs. 8.18 and 8.19 it turned out that the DNN predicted resolution without
boundary correction is predominantly better in the edge regions. In order to check if this is still
the case, the predicted resolution of the DNN, trained with the boundary corrected loss function, is
compared to the MMC predicted resolution in Figs. 8.24 and 8.25. It can be seen that the 68%-quantile
widths are consistently smaller in the range of 70 − 200 GeV for the DNN predictions and roughly
equally good in the edge regions. The 95%-quantile widths are consistently smaller in the whole
tested mass region for the DNN predictions. This suggests that the DNN really performs better on the
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Figure 8.23: Scatter plot of the DNN predicted di-tau mass distribution against the truth mass mtruth
ττ in the

cross-validation sample. The correlation factor is 0.821.
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Figure 8.25: Comparison of the half of the quantile
widths corresponding to 2σ of the relative deviation
mest
ττ/m

truth
ττ −1 of the cross-validation sample in 10 GeV

bins of the truth mass for a DNN trained with the
boundary corrected loss function (red) and the MMC
(black).

γ∗ → τhadτhad sample.

As a last cross-check the mean of the relative resolution is considered and depicted in Fig. 8.26.
There is still a small trend in overestimating small masses and underestimating higher masses. However,
this trend is less prominent than in the case of using the squared error loss function (cf. Fig. 8.3).
Further notice that the trend is remarkably similar to the trend of the MMC predictions.

With this results it is promising to test the DNN in the test case of separating Z and H events and
compare it to the MMC in this particular task.
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Figure 8.26: Mean of the relative deviation for the DNN predictions on the flat training subsample (blue), the
cross-validation sample (red) and the MMC predictions (black).

8.4 Z and H Discrimination

In order to test the DNN estimator, trained with the boundary corrected loss function from Section 8.3,
it is applied to the unseen Z/γ∗ → ττ and H → ττ samples. For analyses studying H → ττ decays,
it is important to discriminate between the H boson as signal and the Z boson as background. In
order to do so, the predicted mass distributions for both samples and the overlap between them are
considered. For optimal separation the overlap should vanish. The mass histograms are normalized
to one in order to get an estimate on the probability density function of the mass distributions. For
the DNN predicted masses, the histogram of the Z and H samples and their overlap is depicted in
Fig. 8.27. The irregularity at mest.

ττ ≈ 47 GeV is still present in the Z/γ∗ → ττ sample and is consistent
with the observations made before. Furthermore, it can be seen that the mass of the Z boson is slightly
overestimated with 93.9 GeV (91.2 GeV) and the mass of the H boson slightly underestimated with
120 GeV (125 GeV). The resolution and overlap has to be compared to the MMC predicted values,
depicted in Fig. 8.28. The MMC has a slightly better 68%-core resolution on the Z/γ∗ → ττ sample
(14 GeV) compared to the DNN (15 GeV), but the DNN has a slightly better 95%-tail resolution on
the H → ττ sample (33 GeV) than the MMC (35 GeV). The other values, including the overlap, are
identical.

For the discriminating power, the Receiver Operator Characteristics (ROC) curve and the area under
this curve are good evaluation metrics. The ROC curve is obtained when applying cuts to the variable
of interest, i.e. the predicted di-tau mass, and classifying everything above the cut as signal and below
as background. For each cut the signal efficiency and the background rejection is calculated and
plotted for every possible cut. The ROC curves for the DNN predictions and the MMC predictions are
shown in Fig. 8.29. The area under the ROC curve is nearly identical for the MMC predictions (0.878)
and the DNN predictions (0.877). Thus, both estimators for the di-tau mass achieve approximately the
same discriminating power in the task of separating Z and H.
From the results it can be checked, whether there are transition effects from training the DNN on

the γ∗ → τhadτhad sample and predicting the mass of di-tau systems in Z/γ∗ → ττ and H → ττ

samples. Estimating the relative resolution of the DNN estimator from the γ∗ → τhadτhad sample

77



Chapter 8 Results

50 100 150 200

 [GeV]ττ
DNNm

0

0.05

0.1

0.15G
eV

 5 / 
F

ra
ct

io
n 

of
 e

ve
nt

s

ττ→Z
F)gg (ττ→H

=13 TeVs MC16
 0.1, 68: 15, 95: 33±: Mean: 93.9 ττ→Z

 0.1, 68: 16, 95: 33±F): Mean: 120 gg (ττ→H
Overlap: 0.24

ττ→Z
F)gg (ττ→H

Figure 8.27: Histogram of the normalized mass distribution predicted by the DNN of the Z/γ∗ → ττ sample
(blue), the H → ττ sample (red) and the overlap between them (0.24).

at the Z and H mass to be roughly σ = 0.16% (cf. Fig. 8.24), resolutions of roughly 15 GeV (Z)
and 20 GeV (H) were expected. For the Z sample this resolution estimate is in good agreement with
the observed 15 GeV and for the H sample the observed resolution of 16 GeV is actually better than
expected. It seems that the transition for the MMC has a bigger impact, because the MMC achieved a
worse resolution on the γ∗ → τhadτhad sample than on the Z/γ∗ → ττ and H → ττ samples.

Estimating the relative deviation of the DNN predictions from the γ∗ → τhadτhad sample at the the
Z and H mass, one would expect an absolute deviation of roughly +5 GeV and −6 GeV, respectively
(cf Fig. 8.26). Observed are deviations of roughly +3 GeV and −5 GeV, respectively. The expected
and observed deviations are in a good agreement. Thus it could be promising to put more effort into
getting rid of the relative deviation.

Concluding, the training on the γ∗ → τhadτhad sample and its application to the Z/γ∗ → ττ sample
works very good and gives consistent results. For the application of the H → ττ sample, the DNN
works better than expected. Further investigations could study if this results from the different spin
of the particles, i.e. 1 for γ∗ and 0 for H or if this is due to something different. The DNN achieves
approximately the same discriminating power in separating Z and H bosons as the MMC, which is the
main result of this work.
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8.5 Impact of Additional Auxiliary Features

With the main result, that the DNN can perform equally good as the MMC on physical Z/γ∗ → ττ

and H → ττ samples, a question could be whether it exceeds the MMC performance when trained
with more auxiliary information. The additional auxiliary variables are introduced in Section 6.2. In
order to study their impact on the DNN training, a DNN is trained with the basic information and one
additional input variable at a time. And finally with all additional input variables (combined). The
same hyperparameters as in Section 8.3 were chosen in order to have a reference. For every DNN the
correlation factor between the DNN predicted masses and the truth masses on the cross-validation
sample is extracted. This is then compared to the correlation factor for the DNN without auxiliary
information (0.821). The results are depicted in Table 8.1.

Unfortunately, any of the additional auxiliary input variables led to any improvement on the DNN
performance and all information combined seem to have lowered the DNN performance. This results
have to be treated cautiously, because it was already seen that a DNN has to be trained multiple times
and with different random initialization in order to get an actual estimate of its capability.
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Figure 8.29: ROC curves of the MMC predictions (blue) and the DNN predictions (yellow) for the task of
discriminating between the Z/γ∗ → ττ and H → ττ sample.

auxiliary variable correlation factor

tau decay channel 0.820
MET significance 0.820
number of vertices 0.820
number of jets 0.820
combined 0.804

Table 8.1: Overview of the correlation factor between the DNN predicted mass and the truth mass on the
cross-validation sample with additional auxiliary information.
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CHAPTER 9

Conclusion

9.1 Summary

The accurate reconstruction of the mass of a di-tau system is important for many physics analyses,
especially for studies of the Higgs boson decaying into tau-leptons. There, the estimated mass of the
di-tau system is the main discriminant for distinguishing between signal and background. A small
improvement in the resolution of the mass estimate of a di-tau system can lead to a big improvement in
the signal significance because the estimated mass of the Z and H resonance overlap. An improvement
in the resolution thus narrows both resonances, lowering the overlap from both sides. The current
used estimator for the mass of a di-tau system is the Missing Mass Calculator (MMC).
In this thesis, a setup for a deep neural network training is introduced, in which the deep neural

network can learn to estimate the mass of a di-tau system. In this setup, the momentum of the visible
tau-decay products and the missing transverse energy serve as input for the deep neural network. A
loss function is tested which takes the limited value range into account and tries to counter edge effects
that occur when using the squared error loss function for the training. This boundary corrected loss
function improves the training of the deep neural network in the sense that the relative deviation of the
predicted masses is on average closer to zero and the mass resolution gets better in the middle of the
value range, compared to using the squared error loss function. The training of the deep neural network
is performed on an unphysical γ∗ → τhadτhad sample, where both tau-leptons decay hadronically. On
this data sample the deep neural network estimator outperforms the MMC slightly in the 68%-core
resolution and significantly in the 95%-tail resolution.
While the data sample used for training is unphysical, i.e. it only includes the electromagnetic

coupling of virtual photons to the tau-leptons and does not take the interference with the weak coupling
Z boson into account, the transition to physical samples is studied. The trained deep neural network
estimator is applied to Z/γ∗ → ττ and H → ττ samples and the mass resolution is compared to the
MMC. The deep neural network estimator has a slightly worse 68%-core resolution than the MMC on
the Z/γ∗ → ττ data sample with 15 GeV (14 GeV). Both estimators have the same 95%-tail resolution
on the Z/γ∗ → ττ data sample with 33 GeV. On the H → ττ data sample, both estimators have a
68%-core resolution of 16 GeV. In the 95%-tail resolution the deep neural network estimator has a
better resolution than the MMC with 33 GeV (35 GeV). In the task of separating H as signal and Z as
background, the estimators achieve very similar results. Using the area under the receiver operating
characteristics curve as the metric, the neural network value (0.877) is only minimally lower than the
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value achieved by the MMC (0.878). The results achieved on the physical sample are consistent with
the results on the unphysical γ∗ → τhadτhad sample suggesting that further improvements on the deep
neural network trained on the unphysical sample would lead to improvements on the physical sample
as well.
The achievement of performing equally well in the task of separating Z and H bosons without a

fully optimized deep neural network architecture encourages to put more effort in the development of
a neural network based estimator of the mass of a di-tau system.

9.2 Future Work

In order to investigate some findings of this thesis, a hyperparameter scan is needed and is suggested
for future analyses building on this work. As the usage of the boundary corrected loss function is
the biggest improvement on the deep neural network performance, but the training with this loss
function is not particularly stable with the set of used hyperparameters, it has to be investigated
whether the learning is still unstable when the optimal hyperparameters are found including additional
regularization techniques, e.g. dropout.
Another finding which has to be confirmed is the dependency on the initial weights of the deep

neural network on its achievable performance. Possibly, this dependency vanishes once the optimal
set of hyperparameters is found. If not it could be considered using other optimization techniques,
such as the Metropolis-Hastings algorithm.

With a potentially more stable training setup, the impact of additional auxiliary information could
be revisited and potentially even further improvement achieved. For new additional auxiliary variables
suggestions are made in Section 6.2.1. Also the impact of the representation of the input variables
could be studied and the way they are preprocessed, as suggested in Section 6.2.3.
As the presented estimator should only be capable of predicting the mass of di-tau systems where

both tau-leptons decay hadronically, a similar analysis could be done for other final states, including
one or two leptonically decaying tau-leptons. For the analysis of the case where one tau-lepton decays
hadronically and one tau-lepton leptonically a Monte Carlo simulation request was set up for a similar
unphysical data sample like the one presented which can be used for a similar analysis. Unfortunately,
due to time limitations, this could not be done during this work but is suggested for future work.
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APPENDIX A

Acronymes

ANN Artificial neural network - is a general term for a computational system of artificial neurons
inspired by the human brain. There exist many different types of ANNs.

FNN Feed-forward neural network - is an artificial neural network in which the information flow is in
a distinct forward direction. A FNN consist of an input layer, at least one intermediate layer and
an output layer. The number of intermediate, or hidden, layers L describes the depth of a FNN.

DNN Deep neural network - is an artificial neural network with many intermediate layers. A DNN
does not have to be a feed-forward neural network, but these are the only ones which are
considered in this work. Thus, they are used synonymously.

SNN Self-normalizing neural network - a feed-forward neural network where the inputs of the
intermediate layers l > 1 are normalized without explicit transformation, only by the choice of
the activation function a of the artificial neurons and the weight initialization scheme.
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APPENDIX B

Algorithms

Algorithm 3 Batch Normalizing Transform

1: procedure Batch Normalizing Transform(®zi,l = (z
(0)
i,l
, ..., z(m)

i,l
)) . m training examples

2: µB ←
1
s

∑s
k=1 z(k)

i,l
. compute mean on mini-batch

3: σ2
B ←

1
s

∑s
k=1

(
z(k)
i,l
− µB

)2
. compute variance on mini-batch

4: for ( j in (1,m)) do

5: ẑ(j)
i,l
←

z
( j)
i, l
−µB√
σ2
B+ε

. normalize every training example

6: z(j)
′

i,l
← γ ẑ(j)

i,l
+ β := BNγβ(z

(j)
i,l
) . scale and shift, γ and β are learnable parameters

7: end for
8: return ®z′i,l
9: end procedure

Adagrad
Adagrad is like RMSprop an adaptive learning optimization algorithm. The divisor differs from
RMSprop as it takes all previous updates into account and not only the exponentially moving
average:

s
(∂θ)2
(t) = s

(∂θ)2
(t − 1) + (∂θ(t))2

θ(t) = θ(t − 1) −
α√

s
(∂θ)2
(t) + ε

∂θ(t) , (B.1)

where again, ε ensures not to divide by 0. The problem with Adagrad is, that the learning rate
α′ = α/

√
s
(∂θ)2
(t) + ε gets smaller and smaller during training such that for some weights it

will eventually be too small to learn something new.

Adadelta
Adadelta is an extension to Adagrad and very similar to RMSprop. In Eq. 5.17 the parameter
updates of θ would have a different unit than θ itself, when θ is not dimensionless. Adadelta
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Appendix B Algorithms

Figure B.1: Illustration of an ANN with dropout during training time (left) and testing time (right), edited
after [126].

therefore defines a second exponentially weighted moving average which calculates the average
of the actual weight updates ∆θ(t) and updates the weights according to:
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(B.2)

Thus, there is no need to set an initital learning rate α.

Dropout
Dropout is another way to reduce variance. The idea of dropout is to randomly drop artificial
neurons during at training time. By doing this, a set of different possible ANNs with shared
weights is trained and averaged over. To achieve this, an artificial neuron is dropped with
probability 1 − p during training, i.e. set to zero, while the weights are multiplied with a factor
p at test time [126]. A sketch of an ANN with dropout during training is depicted in Fig. B.1.
This forces the artificial neurons to be more robust, i.e. to not rely on many input features,
motivated by the way genes are combined during reproduction. For the setup of SNNs, the
dropout technique is adjusted, such that the artificial neurons are not set to zero, but to the value
of a not-activated neuron, i.e. limx→−∞ a(x) = −λα = α′, and called alpha-dropout. In order to
preserve mean and variance and to keep the self-normalizing property, the input to an artificial
neuron in the next layer, after performing alpha-dropout to the previous layer, is transformed
according to

b(l−1)
j ← c · b(l−1)

j + d (B.3)

with
c =

√
p · (1 + (1 − p)(α′)2) and d = −c · α′(1 − p) . (B.4)

It was found that keeping probabilities p between 90 − 95% lead to good results [110].
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APPENDIX C

Combined Sherpa Samples

For the Z/γ∗ → ττ sample a combination of statistically independent SHERPA simulated data
samples is used. The samples are:

• mc16_13TeV.308094.Sherpa_221_NNPDF30NNLO_Ztautau2jets_Min_N_TChannel.deriv.
DAOD_HIGG4D3.e5767_s3126_r10201_p3749

• mc16_13TeV.344775.Sherpa_221_NNPDF30NNLO_Ztautau_MAXHTPTV0_70_h30h20.deriv.
DAOD_HIGG4D3.e5585_s3126_r10201_p3749

• mc16_13TeV.344779.Sherpa_221_NNPDF30NNLO_Ztautau_MAXHTPTV70_140_h30h20.deriv.
DAOD_HIGG4D3.e5585_s3126_r10201_p3749

• mc16_13TeV.344782.Sherpa_221_NNPDF30NNLO_Ztautau_MAXHTPTV140_280_h30h20.deriv.
DAOD_HIGG4D3.e5585_s3126_r10201_p3749

• mc16_13TeV.364212.Sherpa_221_NN30NNLO_Ztt_Mll10_40_MAXHTPTV70_280_BVeto.deriv.
DAOD_HIGG4D3.e5421_s3126_r10201_p3759

• mc16_13TeV.364213.Sherpa_221_NN30NNLO_Ztt_Mll10_40_MAXHTPTV70_280_BFilter.deriv.
DAOD_HIGG4D3.e5421_s3126_r10201_p3759

• mc16_13TeV.364214.Sherpa_221_NN30NNLO_Ztt_Mll10_40_MAXHTPTV280_E_CMS_BVeto.deriv.
DAOD_HIGG4D3.e5421_s3126_r10201_p3759

• mc16_13TeV.364215.Sherpa_221_NN30NNLO_Ztt_Mll10_40_MAXHTPTV280_E_CMS_BFilter.deriv.
DAOD_HIGG4D3.e5421_s3126_r10201_p3759

97





APPENDIX D

Input Variable Distributions

Figure D.1: Distribution of the scaled visible trans-
verse momentum of the higher energetic tau-lepton.

Figure D.2: Distribution of the scaled visible trans-
verse momentum of the higher energetic tau-lepton
with a logarithmic y-axis.

Figure D.3: Distribution of the scaled pseudorapidity
of the visible momentum of the higher energetic tau-
lepton.

Figure D.4: Distribution of the scaled azimuthal angle
of the visible momentum of the higher energetic tau-
lepton.
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Appendix D Input Variable Distributions

Figure D.5: Distribution of the scaled visible trans-
verse momentum of the lower energetic tau-lepton.

Figure D.6: Distribution of the scaled visible trans-
verse momentum of the lower energetic tau-lepton
with a logarithmic y-axis.

Figure D.7: Distribution of the scaled pseudorapidity
of the visible momentum of the lower energetic tau-
lepton.

Figure D.8: Distribution of the scaled azimuthal angle
of the visible momentum of the lower energetic tau-
lepton.

Figure D.9: Distribution of the scaled charged tracks
of the higher energetic tau-lepton.

Figure D.10: Distribution of the scaled charged tracks
of the lower energetic tau-lepton.
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Figure D.11: Distribution of the scaled magnitude of
the missing transverse energy.

Figure D.12: Distribution of the scaled magnitude
of the missing transverse energy with a logarithmic
y-axis.

Figure D.13: Distribution of the scaled azimuthal angle of the missing transverse energy.
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APPENDIX E

Results - Additional Plots

E.1 Impact of DNN Depth - Additional Plots

0 50 100 150 200 250
M / GeV

0

0.002

0.004

0.006

0.008

0.01

a.
u.

 / 
2 

G
eV

train flat
xval
MMC (flat)

Figure E.1: Mass distribution of the predicted masses
for the flat training subsample (blue), the cross-
validation sample (red) and the MMC (black). The
DNN has L = 1 hidden layers with N = 16 nodes and
is trained with the Adam optimization algorithm.
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Figure E.2: Mass distribution of the predicted masses
for the flat training subsample (blue), the cross-
validation sample (red) and the MMC (black). The
DNN has L = 1 hidden layers with N = 16 nodes and
is trained with the Adam optimization algorithm.
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Figure E.3: Mass distribution of the predicted masses
for the flat training subsample (blue), the cross-
validation sample (red) and the MMC (black). The
DNN has L = 1 hidden layers with N = 16 nodes and
is trained with the Adam optimization algorithm.
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Figure E.4: Mass distribution of the predicted masses
for the flat training subsample (blue), the cross-
validation sample (red) and the MMC (black). The
DNN has L = 1 hidden layers with N = 16 nodes and
is trained with the Adam optimization algorithm.
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