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Chapter 1

Introduction

1.1 Motivation for the Analysis

When the idea for the PanTau algorithm first came up, its purpose was seen as a possible re-
placement of TauRec, the current τ lepton identification method in ATLAS. By making use
of the particle flow concept, performance was expected to improve by exploiting the tracker’s
better energy resolution, compared to the calorimeter. A further advantage is the built-in op-
portunity to separate the τ lepton’s hadronic decay modes from each other (‘substructure’ of
the τ lepton), which is a natural consequence of PanTau’s particle-oriented philosophy.

While all analyses benefit from a better energy resolution, the substructure is mainly im-
portant to spin-dependant studies. A particle’s spin can be determined through a decay into
a τ lepton and τ (anti-)neutrino, because neutrinos are virtually always left-handed (and anti-
neutrinos right-handed).

Currently, PanTau is used as an optional addition to TauRec to identify decay modes, while
PanTau’s fake suppression is not performed by default. The Tau Working Group (Tau WG)
of the ATLAS Collaboration will conduct further studies in the near future to test PanTau’s
performance, whose outcome will have great impact on the decision how to proceed with the
tool.

Prior to these studies, PanTau’s basic functionality had to be proven. This document presents
an analysis of PanTau’s handling of fake τ leptons, along with a technical test of its output
mechanisms. These investigations have played a major part in demonstrating PanTau’s physical
abilities in order to qualify it as an adequate analysis tool.

1.2 The τ Lepton in Experimental Physics

1.2.1 The τ Lepton in the Standard Model of Particle Physics

The Standard Model of Particle Physics, often just referred to as the ‘Standard Model’, clas-
sifies particles as quarks, leptons and gauge bosons (see Fig. 1.1, where the Higgs boson is
omitted for historical reasons).

The τ lepton (in short hand τ or τ−) is the heaviest lepton in the SM, having a mass of
1.777 GeV/c2. Its quantum numbers are: lepton number 1, electric charge -1 e, spin 1

2 , weak isospin−1
2

and τ-number 1. The anti-particle of the τ is the anti-τ (τ̄ or τ+). The symbol τ is also often
used as a generalisation of τ and τ̄.

1
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Figure 1.1: Particles of the Standard Model (omitting the postulated Higgs Boson) [1].

Due to its short lifetime of Tτ = 2.9×1035s the τ lepton can only be measured indirectly by its
decay products. This and the relatively high energy required to produce τ leptons in collisions
are reasons for its late experimental discovery in the 1970s, as opposed to the discoveries of
the other leptons in 1897 (electron) and 1936 (muon). It was the first lepton to be discovered
at a particle collider (electron: cathode rays, muon: cosmic rays).

1.2.2 Scientific Significance

Today the scientifically most relevant applications of τ leptons are searches for undiscovered
elementary particles. Among the most prominent examples are the search and measurement of
the Higgs boson and particles predicted by models beyond SM, e. g. Supersymmetry (SUSY)
models. Many of these undiscovered particles can decay into one or more τ leptons, thus
making an excellent knowledge of their properties and decay channels as well as their accurate
identification essential requirements to new physics discoveries.

1.2.3 Identification and Decay Modes

Unfortunately there are severe challenges in τ lepton identification. As mentioned above, the
short lifetime induces the necessity of indirect measurement, which is complicated because of
the variety of decay channels accessible to the τ lepton. Since the τ lepton’s rest mass, unlike
the other leptons’, is high enough for it to decay even into hadrons, the resulting tracks of the
newly formed particles make the decay look very similar to a hadronic jet induced by gluons
or quarks (QCD jet).

2
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Decay Mode Short Hand Fraction Process
1 prong 1p0n 10.8 % τ− → ντ + 1π− + 0π0

1 prong 1 neutral 1p1n 25.5 % τ− → ντ + 1π− + 1π0

1 prong > 1 neutral 1pXn 10.4 % τ− → ντ + 1π− + [2..]π0

3 prong 3p0n 9.3 % τ− → ντ + 2π− + 1π+ + 0π0

3 prong ≥ 1 neutral 3pXn 4.6 % τ− → ντ + 2π− + 1π+ + [1..]π0

leptonical lep 35.2 % τ− → ντ +

{
1µ− + ν̄µ
1e− + ν̄e

Table 1.1: Decay Modes

The τ− decays into a ντ and a virtual W−, which in turn decays either into a lepton and the
corresponding anti-neutrino (µ− + ν̄µ or e− + ν̄e) or into two quarks q, q̄′ forming a meson
(mostly a π−; possibly more than one meson is formed via a resonance like ρ− or a−1 ), as seen
in Eq. 1.1. The decays for τ+ are analogue.

hadronical: τ− → ντ + W− → ντ + qq̄′
(ρ−)(a−1 )
−−−−−→



π−

π− + π0

2π− + π+

K−
...

(1.1a)

leptonical: τ− → ντ + W− → ντ +

{
µ− + ν̄µ
e− + ν̄e

(1.1b)

These cases are further divided into a set of categories (in the following: decay modes)
according to their quantity of charged and neutral end products, where rare variants (like decays
into more than three charged particles or those involving K− for instance) are disregarded.
In Table 1.1 these decay modes are defined, where ‘p’ stands for prong and ‘n’ for neutral
particles. The letter ‘X’ stands for either ‘2 or more’ (in the 1pXn case) or ‘1 or more’ (in
3pXn). This ambiguous nomenclature was chosen because of the particular importance (i. e.
relative high branching ratio) of the 1p1n mode compared to the 1-prong modes involving more
than one neutral particle, as opposed to the relatively low branching ratio of 3pXn. Given in
parenthesis are the respective branching ratios for each mode [2]. Even though π0 mesons are
short-lived particles and therefore arguably no end products in the narrower sense, they are
listed directly due to their relatively straightforward reconstruction (they decay into 2γ with a
branching fraction of 98.8 %). Again, decays are stated for τ−, while τ+ decays analogously.

3
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Chapter 2

The ATLAS Experiment

The acronym ATLAS stands for A Toroidal LHC Apparatus and refers both to a particle de-
tector and the corresponding physics collaboration. It is named after the particle accelerator
Large Hadron Collider (LHC), which it is connected to.

The description of ATLAS and the LHC in this chapter are limited to a brief summary and
focus on those facts which are referred to throughout this document. A more complete portrayal
of the detector can be found in the given references [3, 4].

2.1 Large Hadron Collider

The LHC is a toroidal particle accelerator with a circumference of 27 km [5]. It was built
approximately 100 m underground the Swiss-French border in the pre-existing tunnel of the
previous accelerator named LEP for Large Electron-Positron Collider (see Fig. 2.1). It is
based at the European Organization for Nuclear Research (CERN, short for the original name
Conseil Européen pour la Recherche Nucléaire).

In the LHC, two beams of either protons or lead ions are accelerated and driven to a con-
trolled collision at the experiments based at each of the four collision points. The building
process of the collider and detectors took from 1998 to 2008, but due to a technical problem
the LHC did not start operating till November 2009. Since March 2010 it is run at beam en-
ergies of 3.5 TeV (in 2010–2011) to 4 TeV (in 2012). In 2013–2014, the LHC will not be
operational during a 20 month phase, planned for maintenance and upgrades. The new launch
is planned for 2015 at 6.5 TeV beam energy.

2.2 ATLAS Detector

Among various experiments based at the LHC (most mentionable ALICE, CMS and LHCb),
the largest collaboration – incorporating a total of about 3 000 scientists for the experiment –
is associated with the ATLAS detector, which is a so-called general-purpose detector: It was
designed in a way that a wide range of analyses in the context of searches for new physics as
well as confirmation of known physics (e. g. limit settings in both situations) are possible. To
achieve this, the machine had to include mechanisms to detect any known particles (except for
neutrinos).

5
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Figure 2.1: The LHC ring in the LEP/LHC tunnel at CERN near Geneva [6]. Illustrated are the four
largest experiments at the LHC: ATLAS, ALICE, CMS and LHCb (here denoted as LHC-B).
The former Super Proton Synchrotron (SPS), now functioning as a pre-accelerator for the
LHC, is also depicted.

The ATLAS detector consists of multiple layers to achieve means of identification for diverse
particle types (Fig. 2.2). It can approximately be described as a cylinder (this is also called
barrel design) of 25 m diameter and 44 m length and weighs 7 000 t. The separate detecting
layers are arranged in cylindrical shapes around the interaction point: the inner detector, the
calorimeters and the muon chambers (outwards from the centre).

2.2.1 Inner Detector: Pixel, SCT and TRT

The inner detector is built as a cylinder with a 2.1 m diameter and a length of 6.2 m around
the interaction point, at which the protons are lead to collision (Fig. 2.3a). It consists of pixel
detectors, semiconductor trackers (SCT) and transition radiation trackers (TRT). Each of these
detector types are arranged for one in barrel form around the detector’s centre and, secondly,
in form of disc-shaped end-caps (also called forward detectors or wheels), perpendicular to
the beam axis. The central solenoid magnet surrounds the inner detector, providing it with a
magnetic field of 2 T (cp. Ch. 2.2.4).

The main purpose of the inner detector is to achieve a good resolution for the vertices’
positions and the particles’ impact parameters and momenta.

The pixel detector has three layers of barrels with 5 cm, 9 cm and 12 cm radius, respectively,
all located directly around the interaction point. This structure is bordered on each side by three
end-cap pixel detector discs, each with 12 cm radius and an enclosed cavity of 9 cm radius.

The eight layers of the barrel SCT are fixed on four carbon-fibre cylinders and surround

6
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Figure 2.2: ATLAS detector [3]. The design is structured by means of several layers: inner detector,
calorimeters and muon chambers. Magnets are located between the inner detector and the
calorimeters, as well as inside the muon system.

(a) Overview [3]. (b) Barrel layers [7].

Figure 2.3: Design of the inner detector. The pixel detectors are placed in the centre, enclosed by the
SRT. Both are surrounded by the TRT. Each of these layers are structured as a barrel plus
end-caps.

7
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the pixel detector at radii between 30 cm and 52 cm. These are complemented by forward
detectors on both sides of the barrel. Both parts of SCT are microstrip detectors using silicon
as a semiconductor.

The outermost layer of the inner detector is the TRT and is based on straw chambers. Like
the other parts of the inner detector, the TRT consists of a barrel and end-caps. The gaseous
mixture used in the straws consists of 70 % Xe, 27 % CO2 and 3 % O2, with Xe being used
to detect transition radiation induced from radiators located in between the straws. The wires
inside the straws are made of gold-coated tungsten. The barrel TRT consists of 50 000 straws
parallel to the beam axis (see Fig. 2.3b) and ranges from a radius of 56 cm to 107 cm, while the
36 end-cap discs are composed of 320 000 straws perpendicular to the beam.[4]

2.2.2 Calorimeters

Calorimeters are installed outside the inner detector to measure the particles’ energies by let-
ting them interact with dense matter, the absorber, thus producing electromagnetic or hadronic
particle showers (depending on the given particle’s physical properties). The showers in turn
induce signals in a second material, the sensor.1

There are two kinds of calorimeters in the ATLAS detector (see Fig. 2.4). The inner part
uses liquid argon (LAr) as a sensor, while the outer tile calorimeters (TileCal) use plastic
scintillators. The particles emitted by the sensors are electrons in case of LAr and photons in
case of plastic.

A more event-based approach of classifying the calorimeters is by nature of the analysed
particle showers (electromagnetic or hadronic). In this manner, the LAr calorimeters can fur-
ther be divided into the electromagnetic barrel (EMB), electromagnetic end-caps (EMEC) and
hadronic end-caps (HEC). Additionally, there are two LAr forward calorimeters (FCal).

The tile calorimeter consists of the tile barrel and the tile extended barrel.
Used absorber materials are Pb in EMB and EMEC, Cu in HEC, W in FCal and steel in

TileCal.

2.2.3 Muon Chambers

To detect muons, straw chambers are installed outside of the calorimeters (cp. Fig. 2.2). Mainly
muons reach this part of the detector, since other types of particles are stopped in large part in
the calorimeters – except for neutrinos, which pass through the muon system undetected as
well. The muon chambers form the outermost barrel of ATLAS and in addition feature several
end-cap wheels.

To induce the magnetic field needed to measure the muons’ momenta by means of curved
tracks, toroidal magnets are installed within the barrel (cp. Ch. 2.2.4).

1 It is also possible to have one and the same material functioning as absorber and sensor (homogeneous calorime-
ter). However, this technique is not used in ATLAS.

8
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Figure 2.4: LAr and tile calorimeters [3].

2.2.4 Magnetic System

The muon chambers are pervaded by eight toroidal magnets, which are referred to as barrel
toroid. Along with two end-cap magnets, each in turn consisting of eight toroidal magnets,
and a central solenoid (Fig. 2.5a), they provide the magnetic field for the particle deflection in
the detector (Fig. 2.5b). All magnets are superconducting and therefore need to be held in a
cryostat. ATLAS uses liquid helium at a temperature of 4.8 K for cooling [8].

(a) Barrel toroid, end-cap toroids and central
solenoid.

(b) Toroids and induced magnetic
field.

Figure 2.5: Magnets and their induced field [8].
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2.2.5 Pileup and Noise

One of the aims at the LHC and in ATLAS is to produce high luminosities in order to detect
events with very low branching ratios in sufficient statistics to analyse them scientifically. This
is realised by colliding bunches of 1011 protons at a rate of 40 MHz.

The such achieved luminosities reached values of up to 550 pb−1 per week in 2011 (see
Fig. 2.6).

Figure 2.6: Luminosity in ATLAS for 2011, binned in weeks. [9]
Over time, higher luminosities can be reached due to optimisation of the machines.

One of the drawbacks of this practise is that several proton-proton collisions can occur during
one bunch crossing, or processes from two consecutive crossings can follow too fast, that they
overlap in the reconstructed event. These types of complications are called pileup.

Most analysed processes have relatively low cross sections compared to QCD jets. Since it
is unlikely for two or more processes with relatively low cross sections to happen in one event,
most pileup processes are QCD jets with low energy (and thus low momentum).

Pileup can become a problem in physics studies, when an unexpected process influences
the measurements of the analysed particles. Techniques to avoid this are often based on the
expected low momentum of the jets induced by means of pileup events.

Further unwanted QCD jets originate in the proton remnants from the main collision. When
two partons from the protons interact with each other, the proton remnants are not color-neutral
anymore, which resolves in QCD jets. This is called the ‘underlying event’ and suppressed by
similar means as pileup events, since the assumption of low momentum holds here as well.

Another nuisance is any form of electronic noise in the detector. While easy to understand,
it is impossible to predict, and difficult to implement in simulations. In analyses it is usually
handled by ignoring signals below a certain momentum threshold.

2.3 Data Processing and Software

In a physics experiment of grand proportions such as ATLAS, a complex software machinery is
crucial. It spans from the interface between hardware and software, the triggers, to the physics

10
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analyses software.
The parts that are most important for the analysis at hand are sketched in the following

chapters.

2.3.1 Triggers and Data Size Reduction

The large amount of observable events in ATLAS (40 MHz) is far too high to be stored in full.
To reduce the unnecessary data flow as much as possible without losing significant numbers of
interesting events, a combination of three trigger levels is used. At each level, multiple triggers
exist to give physics analysts the opportunity to chose suitable conditions for their analysis,
e. g. the presence of a particular kind of particle with a given energy in the event. No event is
stored, which did not fulfil the conditions of any of the LVL1 and LVL2 triggers.

First level triggers (LVL1) are implemented purely electronically to make decisions within
2 µs possible. Only event properties that can be accessed within this time scale can be used
by the LVL1 triggers, e. g. coarse information about calorimeter and muon chamber hits. The
event rate is reduced to 75 kHz by these means.

The events passing at least one of the LVL1 triggers are analysed by the LVL2 triggers,
which have access to the complete calorimeter and tracker information and scale the event rate
down to 1 kHz.

The third level of triggers is represented by the ‘event filters’. These perform detailed anal-
yses on all events passing one or more of the LVL2 triggers to decide which events are finally
saved. The resulting event rate is 0.2 kHz.

The triggers’ task is not only to dispose of defective events. As already mentioned in
Ch. 2.2.5, The LHC and ATLAS operate at high luminosities in order to be able to measure
physics processes with very low branching ratios in sufficient quantities to obtain significant
results in analyses. Hence, the triggers must also prevent common events from flooding the
storage and at the same time take care to keep the more infrequent ones.

Therefore, triggers which are frequently released during a given run carry a ‘prescale’ P.
This lets them only use every P-th event firing that trigger, while the rest are disregarded. The
prescales for all triggers are stored, so they can be accounted for in physics analyses. However,
triggers with high prescales are often avoided because the statistical error is larger and becomes
complicated to calculate if several triggers with different prescales are used.

To further decrease the disk space for the data files needed in a particular analysis, three
different techniques can be used that are tailored to the given purpose. Either one can remove
more events according to an adjustable scheme. This process is called ‘skimming’. Another
possibility is to remove specific data containers from all events, if there are containers that are
generally not needed in the analysis. This option is referred to as ‘slimming’. Finally, the
removal of only certain parts of a data container (i. e. a subset of variables or other objects)
from all events is called ‘thinning’. Naturally, these three methods can be combined.

2.3.2 Analysis Tools

Data Analysis is divided into two steps: reconstruction and physics analysis. Both can be
performed within the software framework ATHENA, which is explained in some detail in

11
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Ch. 3.1.1.
Some analyses, however, are executed externally on root ntuples created by ATHENA. At

the University of Bonn, the analysis framework SFM, based on sframe (which itself is an anal-
ysis framework based on ROOT), has been developed to simplify and unite several distinctive
physics analyses [10]. This tool has also been used extensively for the studies in Ch. 5.

In the course of this analysis, several extensions were contributed to SFM (e. g. the deviation
plotter described in Ch. 5.1.3, and some more technical algorithms like a dumper for latex-
formatted cut flow tables) and various external root tools were created to optimise interfaces
and control over the program.

2.3.3 Coordinates and Related Variables

The common coordinate system at ATLAS uses the centre of the detector as origin. The x-axis
points to the centre of the LHC, the y-axis to the top of the detector, and the z-axis in beam
direction (towards LHCb). The projection of a particle’s track into the xy-plane can be defined
as r(x, y). The angles φ and θ lie in the xy- and zr(x, y)-plane, respectively, and are measured
with respect to the x- and z-axis. Rather than θ, the pseudorapidity η is often used, which is a
transformation of θ (Eq. 2.1).

η = − log
(
tan

θ

2

)
(2.1)

The advantage of η as a variable, rather than θ, is that it naturally provides a grid in which
collision products are approximately equally distributed. This is due to the particles’ relativistic
boost in beam direction and the typical η-segmentation getting finer towards the (positive and
negative) z-axis.

Distances are often indicated in terms of ∆R, which is the square root of the quadratic sum
of differences in η and φ (Eq. 2.2). A cone spanned by these differences is a ∆R cone and, for
a given value, referred to as e. g. 0.1-cone (for ∆R = 0.1).

∆R =
√

(∆η)2 + (∆φ)2 (2.2)

The impact parameter in z-direction (longitudinal impact parameter) is denoted as z0 and the
longitudinal impact parameter, i. e. the closest approach to the origin in the xy-plane, as d0.

Also the momentum p and energy E of a particle are separated into their longitudinal (pL,
EL) and transverse (pT, ET) parts. The relative momenta of the partons within each proton
before the collision are impossible to predict or measure. While the transverse components
are negligible compared to the energies present in the collision, the longitudinal momenta are
boosted because of the protons’ relativistic speed. Therefore, the longitudinal components are
normally avoided by grounding the physics analysis on transverse variables.

Since neutrinos are not detected in ATLAS, and neither are particles with |η| > 4.9, parts of
the collision energy leave the detector unnoticed. This energy is called ‘missing energy’. Its
transverse component can be calculated easily from the detected particles’ ET’s using trans-
verse energy conservation, assuming a starting condition of

∑
ET = 0 (see above). The re-

sulting missing transverse energy is abbreviated with MET or the symbol /ET. Often, it is
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also referred to just as ‘missing energy’ – if not stated otherwise, usually the transverse part is
meant.

2.3.4 Unit System

Calculations are performed in ‘natural units’ in ATLAS, which means the reduced Planck con-
stant ~, the speed of light in vacuum c, and the Boltzmann constant kB are set to 1 (Eq. 2.3).

~ = c = kB = 1 (2.3)

Energy, momentum and mass are measured in eV, length and time in eV−1 (Eq. 2.4). How-
ever, lengths and times are often used with SI units ( mm, s) instead, and cross sections (lumi-
nosities) in the SI-related unit ‘barn’ b (inverse barn b−1), with 1 b = (10-28 m2).

[energy] = [momentum] = [mass] = [length]−1 = [time]−1 = eV (2.4)

Energy and momentum do not only share the same unit, but are also closely related (Eq. 2.5a).
Since for relativistic particles, the mass can often be neglected, the terms energy and momen-
tum are sometimes used equivalently (Eq. 2.5b).

E2 = p2 + m2 (2.5a)

lim
β→1

E2 = p2 (2.5b)
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PanTau

This chapter covers the idea and scope of the τ lepton particle and decay mode reconstruction
algorithm PanTau, as well as a summary of the used methods and their physical motivation. It
also aims to explain how PanTau is embedded as a package within the ATHENA framework,
which will help to point out the importance of validation tests (cp. Ch. 4) due to the complexity
of its structure.

After a short guide about file formats used with respect to ATHENA, the reconstruction of
τ leptons with TauRec, eflowRec and PanTau is addressed. The aim, however, is not to give a
full description of these algorithms, which can be found in a more thorough form within the
respective ATLAS papers (or other documents) on TauRec [11, 12], eflowRec [13, 14] and
PanTau [15, 16, 17, 18]. The given explanations are rather intended as a sufficient preparation
for the studies reported within this document.

3.1 Structure around PanTau

PanTau as a package of the analysis framework ATHENA depends on other packages’ output,
especially TauRec and eflowRec, which will be explained here.

3.1.1 ATHENA and Types of Data Files

ATHENA is a C++-based computing framework (configuration implemented in python) used
to reconstruct and analyse collision events from ATLAS, based on real or simulated data.

Simulated data is produced by means of a Monte Carlo simulation tool (MC), including a
simulation of the detector. Commonly used simulation tools are Alpgen and Pythia. Simulated
as well as real data (‘data’ will mean measured data in the following where not stated otherwise,
whereas ‘MC’ will stand for simulated data) are both stored in RDOs (Raw Data Objects),
which is the input format for the ATHENA reconstruction tools. The output these tools provide
are Analysis Data Objects (AODs), Event Summary Data (ESDs) and/or root ntuples, which are
– if they obey certain ATHENA-internal standards – referred to as D3PDs (‘Derived Physics
Data in its 3rd version’). The physics analysis tools usually run on AODs, ESDs or D3PDs, but
the latter ones are more commonly used. There are, however, official tools (‘D3PD Makers’),
which create D3PDs from arbitrary AODs for a particular analysis. The tool TauD3PDMaker,
for instance, builds D3PDs including information for τ lepton analysis.
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While data is stored in an object oriented manner in the AODs and ESDs, ntuples are ‘flat’,
i. e. the class information is lost. Compared to AODs, ESDs additionally contain more specific
information, e. g. the deposited energy in the calorimeter cells.

There is a huge variety of core and optional packages for use within ATHENA, most of
which can be divided into reconstruction or physics analysis packages. PanTau is one of the
official reconstruction packages. It is, however, not run by default, but has to be activated
manually.

3.1.2 Reconstruction Using Particle Flow

TauRec (short for Tau Reconstruction) is the current τ lepton identification tool in ATHENA.
Since TauRec uses a rather traditional identification approach based on tracks in the inner
detector and energy clusters in the calorimeter, PanTau was originally created as an alternative
approach using so-called particle flow (or pflow).

While traditional methods handle information according to its origin, i. e. (in ATLAS) de-
pending on whether it comes from the tracker or the calorimeter, pflow algorithms try to use
more particle-like structures from the beginning. In Fig. 3.1 an example is shown for both
a traditional reconstruction and one based on pflow.1 While the former stores and processes
information depending on which part of the detector it comes from, the pflow algorithm aims
for a more physics-inspired reconstruction concept by arranging data in particle-like structures
from the beginning.

Figure 3.1: Concepts of particle reconstruction for traditional methods like TauRec (left) and pflow-
based methods like PanTau (right) [19].
Charged mesons (pink) pass through the electromagnetic calorimeter (respective left blue
box) and start hadronic showers in the hadronic calorimeter (respective right blue box). The
traditional identification algorithm distinguishes between energies measured in the electro-
magnetic calorimeter (red dots) and those taken from the hadronic calorimeter (black dots).
The pink dots in the hadronic calorimeter were matched to the pink tracks and help associ-
ating the black dots with the mesons’ energy. The pflow algorithm on the other hand aims
to distinguish the energy originating from the meson (pink dots) from the neutral energy
induced by γ’s (red dots) or neutral hadrons (black dots).

In ATLAS, the concept of particle flow is titled energy flow (or eflow). Accordingly, a pflow
object is called an eflow object (EFO).

1 Fig. 3.1 is actually taken from a talk about pflow-based particle identification in the International Linear Collider
project rather than ATLAS.
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Currently, no eflow algorithm is being used by default for particle reconstruction in ATLAS.
In 2007, M. Hodgkinson, D. Tovey and R. Duxfield developed eflowRec (short for eflow recon-
struction), a program to find and store EFOs. Due to CPU constraints, it only runs on certain
parts of each event (compare Ch. 3.1.3) [13, 14].

3.1.3 TauRec, EflowRec and PanTau

PanTau was originally developed as a new τ lepton identifier based on EFOs by S. Fleischmann,
R. Prabhu and C. Limbach [15, 16, 17]. Currently, the main goal of PanTau is to reconstruct the
decay mode of τ leptons found by TauRec. Although it would take too much time for eflowRec
to run on whole events, using it to analyse regions around τ lepton candidates found by TauRec
is a feasible approach. In this way, PanTau can run on EFOs in the important areas of an event
(near possible τ leptons identified by TauRec) and examine these with respect to decay modes
– and, in theory, also further fake suppression.

The important reconstruction steps of TauRec and eflowRec are described the following
sections, while the PanTau algorithm is explained in more detail in Ch. 3.2.

TauRec

TauRec and eflowRec both make use of the TopoCluster algorithm, which is a program
arranging calorimeter cells in small sets (clusters) that are likely to originate from the same
particle or jet. To do so, it searches for cells with an absorbed absolute energy of more than four
sigma above the expected value due to electromagnetic and pileup noise. Neighbouring cells
with an absolute energy of more than two sigma above total noise expectation are recursively
added to the cluster. Finally, all cells adjacent to the current outer border of the cluster are
added as well, in case they have a finite energy value (in principle it is possible to have a
sigma-relative threshold here also, but by default this is set to 0). If there is more than one
local maximum of absolute energy in the cluster, it is split. [20]

While eflowRec uses the TopoClusters directly, TauRec takes advantage of an additional
algorithm’s output: The TopoJet finder groups TopoClusters together by searching 0.4-cones
around clusters with energies of more than 1 GeV. All clusters in the cone are associated with
the TopoJet. TopoJets with ET > 10 GeV and |η| < 2.5 are used as seeds for tau candidates by
TauRec. These are matched in an 0.3-cone to tracks which pass certain quality requirements
(namely pT > 1 GeV, d0 < 1.5 mm and a minimum number of detector hits). [11, 12]

EflowRec

As stated above, this chapter will merely give a brief description of the elfowRec algorithm. A
more thorough report is given in the referenced documents [13, 14].

The input for eflowRec are tracks and clusters in the vicinity of those TauRec tau candidates
with a number of reconstructed tracks within a predefined range (currently nTracks ∈ [1, 5]).

Each track is extrapolated to the EM calorimeter’s second layer, where it is matched to the
TopoCluster closest to it in η and φ.2 If the energy deposit Ecalo in the cluster exceeds the

2 In fact, the clusters’ sizes in η and φ are also considered in the algorithm, effectively accounting for the standard
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expected energy Eexp considering the track, minus its standard deviation σexp, weighted by an
empirical factor k2, this cluster is believed to contain the full energy corresponding to the track
(Eq. 3.1). The TopoCluster is then removed, and the energy measurement by means of the
calorimeter entries is replaced by the one from the tracker.

Ecalo > Eexp − k2σexp (3.1)

The expected energy Eexp is calculated by multiplying the track energy Etrack with the average
ratio of deposited energy Ecalo to particle momentum ptrack (Eq. 3.2). This ratio is obtained from
single pions in MC and stored in reference tables, binned in pT and η.

Eexp = Etrack

Ecalo

ptrack

(3.2)

If the condition in Eq. 3.1 is not satisfied, the charged particle’s energy appears to have split
between several clusters. EflowRec then considers calorimeter cells in an 0.2-cone around the
track and removes them cell by cell, until the total subtracted energy equals the expected energy
deposit Eexp.

The order in which cells are deleted is optimised for shower shapes in the respective pT and
η bin. Like in the first case, the calorimeter energy measurement is replaced by the tracker’s.

The combination of a track and its matched TopoCluster is stored as a charged EFO and the
remaining TopoClusters as neutral EFOs.

EflowRec adds an EM or HAD flag to neutral EFOs, which is set by the Local Hadron
Calibration tools, depending on whether the largest amount of energy is deposited in the EM
or HAD calorimeter. Currently, algorithms are being developed to distinguish π0’s from other
neutral EFOs by means of Multivariate Analysis (MVA) within eflowRec. The outcome of this
MVA is also stored with each neutral EFO.

All EFOs are stored in a container, which is the information PanTau uses to discriminate
decay channels and (if desired) for fake suppression. Naturally, this structure implies that
PanTau can only find τ leptons which were considered as tau candidates by TauRec in the first
place.

3.2 PanTau Algorithm

The idea of PanTau is to run on EFOs around TauRec tau candidates. The sets of EFOs associ-
ated to a TauRec tau candidate are called seeds, and for each of those seeds a set of decay mode
discriminating variables is calculated. These PanTau-specific variables are also called PanTau
features.

deviations σ of the clusters’ coordinates. Instead of choosing the cluster with the lowest ∆R to the track’s
extrapolation, the following term is minimised to find the matching cluster: [14]√

(ηTrack − ηCluster)2

σ2
η

+
(φTrack − φCluster)2

σ2
φ

.

18



DRAFT
3.2 PanTau Algorithm

The procedure is divided into four separate algorithms, which will be explained in the fol-
lowing sections. [15, 16, 17, 18]

3.2.1 Seed Building and Feature Extraction

The seed building takes place in the PanTau algorithm TauSeedBuilderAlg, which loops over
all TauRec candidates with nTracks ∈ [1, 5] and collects the EFOs within an 0.4-cone. These are
associated with the tau candidate. All tau candidates with at least one associated charged EFO
serve as seed for PanTau and are then ‘PanTau tau candidates ’.

For all seeds, each EFO’s momentum is corrected by setting the EFO’s mass to the pion mass
(139.57 MeV for π± and 134.98 MeV for π0). There are six different type flags which can be
saved for each EFO, given it fulfils the respective conditions (see Table 3.1, for the conditions
cp. Ch. 3.1.3: EflowRec). Every EFO has one of the two basic flags ‘Neutral’ or ‘Charged’,
while the other flags are further specifications for one of the two basic types.

Flag Conditions
Charged nonzero charge
Neutral zero charge
QualifiedTrack Charged, track passing track selection3

EmNeutral Neutral, tagged EM, ET > 1 GeV, E > 1 GeV
HadNeutral Neutral, tagged HAD, ET > 1 GeV, E > 1 GeV
Pi0 Neutral, π0 MVA result > x (x is adjustable)

Table 3.1: Type flags assigned to EFOs by PanTau.
One of ‘Neutral’ or ‘Charged’ is always set, the other flags are optional. The requirements
for ET in EmNeutral and HadNeutral are redundant, because E > 1 GeV already implies
ET > 1 GeV. The given expressions are still stated, to reflect the current implementation in
the code.

Note that the currently implemented conditions on TauRec tracks are stronger than the Pan-
Tau conditions for a ‘QualifiedTrack’, which makes every charged EFO a charged qualified
EFO. This is, however, subject to change.

EFOs within ∆R < 0.2 around the tau candidate (‘core region’) are used to calculate the
candidate’s 4-momentum, while all EFOs within ∆R < 0.4 (‘sum region’) are used for the
calculation of PanTau features by the algorithm JetFeatureExtractionTool.

The TauSeedBuilderAlg then classifies the seeds as ‘good’ or ‘bad’. Bad seeds are those
with invalid TauRec information (like a null pointer to the tau candidate or nTracks outside the
allowed range). An additional seed preselection with cuts on ET, η, charge, and/or number of
EFOs can also be applied to optimise this classification.

3 These are the conditions for the track selection: pT ≥ 1 GeV, d0 ≤ 2 mm, z0 sin(θ) ≤ 10 mm, z0 ≤ 9999 mm,
and at least 2 hits in the pixel detector and 7 in the SCT.
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3.2.2 Tau Building

The algorithm TauJetBuilderAlg runs on each PanTau seed. For the bad seeds, it adds the
variable isPanTauCandidate=0 to the candidate, to indicate they failed the selection and are
thus no valid PanTau candidates. For the good seeds, the five TauDiscriminantTools are
called to get the likeliness for each decay mode (cp. Ch. 3.2.3).

One TauDiscriminantTool exists for every decay mode to be tested, which are currently
1p0n, 1p1n, 1pXn, 3p0n and 3pXn (cp. Table 1.1). Although in principle it is possible to
discriminate any set of decay modes against any second set, by default each single of the above
modes is discriminated against the rest.4

The likeliness values form a five-dimensional vector (in ‘decay mode space’). This vector is
normalised to 1, and its angle to each axis is computed to quantify how likely the corresponding
decay mode is (the smaller the angle, the more probable the mode).

The mode whose axis spans the smallest angle to the candidate’s vector is then assigned as
the loose decay mode to the tau candidate. If this angle is below 45◦, it is also assigned as
medium mode5, and for an angle smaller than 15◦ as tight. Hence, the loose flag has the lowest
purity and highest efficiency, and vice versa for the tight flag. Note that this way, one particular
tau candidate can never have different modes assigned for different purity flags. A loose mode
is always assigned, while medium and tight can be set to ‘none of the above’. Trivially, if the
tight flag is set to one of the decay modes, the loose and medium flag are set as well (for the
same mode).

3.2.3 Likeliness Calculation

To find each tau candidate’s likeliness for each decay mode, the TauDiscriminantTool uses
the root-based MVA program TMVA. Currently, the default MVA algorithm is BDT (Boosted
Decision Trees).

BDT values are typically used to separate one signal against one background by placing a
cut. They are not a feasible measure for comparisons of different decay modes, because the
values can in principle be shifted with respect to each other. One and the same BDT cut can
thus resolve in different efficiencies and purities for different modes, and will most likely not
be optimal for more than one of them.

Instead, a reference table is created for each decay mode to link BDT values to the cor-
responding likeliness. In order to achieve this, a signal and background BDT histogram are
created from MC for each decay mode. The signal sample contains only τ leptons of that
mode, and the background sample all other ones, summed in their natural respective ratios,

4 In principle, it is possible to also include ‘fake’ as a decay mode in this sense and use a TauDiscriminant-
Tool to implement a fake suppression at this stage of PanTau. The main reason to separate these steps is that
the fake suppression, if conducted at a later stage, can benefit from the information gained here, namely the
classification in decay modes. The MVA to discriminate fakes from true τ leptons can thus be trained separately
for performance on each of the above modes.

5 The maximum angle of 45◦ was chosen for the medium flag because, in any number of dimensions, this criterion
can never apply to more than one axis. The medium (and tight) flag therefore never applies to more than one
decay mode, even without the additional criterion to take the axis with the lowest angle, which is necessary for
the loose flag [18].
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i. e. taking into account their branching fractions. Scanning through the BDT bins i, the sig-
nal efficiency ei

sig is divided by the background efficiency ei
bkg to get the likeliness li (Eq. 3.3a).

The efficiencies are defined as the fraction of signal or background entries Bsig/bkg, respectively,
above the current BDT value Bi (Eq. 3.3b, where nbins is the number of bins in the histogram).

li =
ei

sig

ei
bkg

(3.3a)

ei
sig/bkg =

nbins∑
j=i+1

B j
sig/bkg

nbins∑
j=1

B j
sig/bkg

(3.3b)

The mapping of BDT values B to the corresponding likeliness l is saved as a reference table
for that mode. The value l, being a fraction of efficiencies, is comparable among different
modes.

3.3 Calculating PanTau Features

The PanTau algorithm JetFeatureExtractionTool calculates the features for each tau can-
didate. There are two kinds of storage in ATHENA: Information that is stored in the ‘persis-
tent’ part of the storage will be written to the AOD after execution of PanTau, whereas anything
stored in the ‘transient’ part is lost by default. However, PanTau can be configured to create a
D3PD during its execution, in which the transient information is saved.

For good seeds, the JetFeatureExtractionTool writes all features into the transient part
of the storage, and all features that are used by the TauDiscriminantTool into the persistent
part. For bad seeds, only the variable isPanTauCandidate is stored, in both the transient and
the persistent storage.

Since there exist a variety of 121 PanTau features, it is impossible to present them all in
suitable detail within the scope of this document.6 The variables chosen to be described in
this chapter have good separation power with respect to the different decay modes and are also
subject matter of the studies in Ch. 5.

A more explicit list of PanTau features and their definitions is available online at the cor-
responding ATLAS TWiki page [21], and the algorithm itself can be enquired for more de-
tails [22].

One of the most intuitive PanTau features is NEFO, which is the number of EFOs in the
tau candidate (cp. Ch. 3.2.1). There are a few other features that also correspond to numbers
of EFOs, but only count a particular type of these, based on the classifications introduced in
Ch. 3.2.1 (Table 3.1). These are NNeutralEFO (number of EFOs flagged ‘Neutral’), NCharged-
EFO (number of ‘Charged’ EFOs) and NChargedQualifiedEFO (EFOs with ‘QualifiedTrack’
flag),7 NEMNeutralEFO (EFOs with ‘EmNeutral’ flag) and NHADNeutralEFO (EFOs with

6 Recently, the design of the JetFeatureExtractionTool was changed, and the number of variables increased
to over 600. These are, however, similar in structure and purpose to the ones described within this document.

7 Note that, currently, NChargedQualifiedEFO is identical to NChargedEFO by construction (cp. Ch. 3.2.1).
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‘HadNeutral’ flag).8

Neutral EFOs are often also referred to as EFO0, charged EFOs as EFO± and charged quali-
fied EFOs as EFO∗±.

Several variables in PanTau are fractions of ET. A sub-category of these are features named
EflowMeanEtXToSumEt, where X is either Chrg, Neut, HADNeut or All. The intuitive formula
to calculate them is given in Eq. 3.4, where the mean < ET >X only takes into account EFOs
of type X.

< ET >X∑
ET

(3.4)

These features are a main focus in Ch. 5.3.
Since the purpose of the variables in PanTau is to separate the different decay modes against

each other, and possibly to separate true from fake τ leptons, the separation power has to be
evaluated, which is an ongoing process conducted by C. Limbach [23, 24, 25, 26, 27].

Some variables showing a good separation for at least one of the decay modes are given
in Fig. 3.2. Note that the nomenclature for the modes was different at the time these graphs
were produced: ‘1p’ corresponds to 1p0n defined above, ‘1pn’ to 1p1n and 1pXn combined,
‘3p’ to 3p0n and ‘3pn’ to 3pXn. In ‘tau vs fake’, all these modes are separated against fake
tau candidates.

The variable EflowNeutralSumEt (Fig. 3.2a) describes the summed ET of all neutral EFOs.
It serves well to separate 1p0n against the other modes, since due to the τ lepton’s branching
fractions (cp. Table 1.1), the main background there is 1p1n and 1pXn. Since there are no
neutral pions in 1p0n, the signal obtains far lower values for EflowNeutralSumEt than the rest
of the modes. Only 3p0n is accountable for the non-negligible number of background entries
at low values.

EflowChargedSumEt (Fig. 3.2b) is defined analogously, i. e. as the sum of the charged EFOs’
ET. Since for 3p0n, the main background is 1p0n, 1p1n and 1pXn (cp. the higher branching
fractions for 1-prong decays), the magnitude of the charged EFOs’ ET is obviously a good
measure for the separation. The 3p0n τ leptons have on average higher values than the 1-prong
ones – and even than 3pXn, since less energy is left for the three charged pions if neutral pions
are emitted as well.

For the same reasons as just stated, the 1-prong modes are also the main background for
3pXn. One variable with reasonable separation power is SumCharge (Fig. 3.2c), the sum of
all EFOs’ charges, which can only have ±1 as true values. However, it can become any other
integer value if the number of tracks is not reconstructed correctly. In the 3-prong cases, the
probability of counting too many or too few tracks is higher than for 1-prong, because there
are three times as many tracks that could in principle get lost. If one of the tracks is lost,
SumCharge becomes 0 or ±2, depending on which of the pions is the lost one. These values
have more entries for 3pXn than for 1-prong. The same holds, for the same reasons, also for
3p0n, as can be seen in the respective reference [25]. This is not a major problem, due to the
lower branching fraction, but is one of the factors reducing the separation power.

EflowStdDevEt is a variable suitable to separate true τ leptons from fakes (Fig. 3.2d). It

8 There is not yet a variable corresponding to the ‘Pi0’ flag, which was added only recently.
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(a) EflowNeutralSumEt, 1p vs rest [23]. (b) EflowChargedSumEt, 3p vs rest [25].

(c) SumCharge, 3pn vs rest [26]. (d) EflowStdDevEt, tau vs fake [27].

Figure 3.2: Separation power of different PanTau features for different decay modes.
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calculates the standard deviation σ(ET) of all EFOs’ transverse energies (Eq. 3.5, where N is
the number of EFOs).

σ(ET) =

√
1
N

∑
i

(
Ei

T− < ET >
)2

(3.5)

The standard deviation is smaller for fakes than for true τ leptons. One of the reasons for
this effect could be the higher multiplicity in jets, which results in a lower average for ET and
thus lower absolute deviations from the average. Furthermore, QCD jets have relatively high
branching fractions for emitting low ET gluons, which reduces the value of σ(ET).
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Consistency Checks

PanTau is a complex algorithm, and before it can be used by physics analysts, it has to be made
sure that it works as expected and gives appropriate results. These consistency checks are the
scope of this chapter.

Both of the described tests use Pythia MC samples for the processes Z → ττ, W → τν,
Z′SSM 250 → ττ, Z′SSM 500 → ττ and several jet processes (Pythia J0-J5). The exact sample names
are stated in Appendix A (Table A.3).

4.1 Container Storage

As mentioned before, PanTau uses EFOs as seeds that eflowRec finds in the vicinity of Tau-
Rec tau candidates. TauRec writes information for each of its tau candidates into a ‘De-
tailsContainer’. The names of the variables inside this container are preceded by the prefix
TauDetails.

The variables created by PanTau have the prefix PanTauDetails and by default are only
stored transiently, i. e. not written into the AOD. However, PanTau generates a second, persis-
tent container, in which the variables have the prefix TauPanTauDetails, and which is linked
in the original DetailsContainer TauRec created (see Fig. 4.1).

TauRec DetailsContainer

-TauDetails

-TauPanTauDetails

eflowRec

PanTau DetailsContainer

-PanTauDetails

writes

writes

writes

Figure 4.1: Details Containers from TauRec and PanTau

Trying to confirm PanTau’s consistency, the first step was to cross-check if the internal
PanTau DetailsContainer (PanTauDetails) and the transient one, linked inside the TauRec
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DetailsContainer (TauPanTauDetails), indeed share the same information. This check was
successfully made by comparing each variable’s histogram for a variety of ten different MC
samples (see above) with 1000 events each (for examples see Fig. 4.2).

(a) Jet Sphericity (b) ET in 0.1∆R over ET in 0.4∆R

Figure 4.2: Plot of one and the same variable from TauPanTauDetails (red) and PanTauDetails
(dashed black) for a W → τν sample with 1000 events.
Histograms should – and do – match exactly.

The only visual mismatches were due to technical necessary casting of integer valued vari-
ables to floating point numbers. This, combined with an imperfect binning routine, resulted in
histograms not coinciding as obviously (Fig. 4.3). The reason is that only integer valued bins
are filled with PanTauDetails, while TauPanTauDetails have an ‘integer-friendly’ binning
and are thus easier to read. To prove the equality of histograms, only bins with non-zero entries
were compared. This test was successfully as well for these cases.

(a) absolute value of sum of charges (b) number of neutral EFOs

Figure 4.3: Plot of one and the same variable from TauPanTauDetails (red) and PanTauDetails
(dashed black) for a W → τν sample with 1000 events.
Histograms match, disregarding the different binning.
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4.2 Output Channel Supervision

There are three stages of information in PanTau (see Fig. 4.4): When PanTau evaluates the
input, the information is first stored internally (in form of the above mentioned DetailsCon-
tainers). This can optionally be written to a D3PD (cp. Ch. 3.3), the ‘internal D3PD’. Then
the persistent part of the TauRec DetailsContainer (also containing the TauPanTau variables)
is written to the AOD, from where one can access this information and manually write it to
a second D3PD for validation purposes, the ‘validation D3PD’. Finally, the official ATHENA
D3PDMaker is the package most people use to create D3PDs from AODs, so this ‘official
D3PD’ is the one that will most commonly be utilised for further analysis.

Monte Carlo Real Data

PanTau
(ATHENA)

Analysis Object Data (AOD)

official D3PD

internal D3PD

validation D3PD

Further Analysis

D3PDMaker

Figure 4.4: Creation of D3PDs with PanTau information

To control the PanTau output, it had to be made sure that the information in all three layers is
absolutely identical. This implies a comparison of the internal, validation and official D3PDs,
leading to similar kinds of plots as for the TauPanTau/PanTau DetailsContainer comparison –
and unsurprising results, since the expectation for this validation was to find nothing unreck-
oned. Again, this was performed for ten different MC samples (see above), each containing
1000 events (for examples see Fig. 4.5).
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(a) invariant mass M of all EFOs, for official (red) and
internal (dashed black) D3PD for a J0 sample.

(b) ET in 0.1∆R over ET in 0.2∆R (inverse sig-
moid transformed), for internal (red) and validation
(dashed black) D3PD for a J3 sample

(c) mean angle between leading charged qualified
EFO components, for official (red) and validation
(dashed black) D3PD for a Z′ → ττ sample

(d) number of charged EFOs, for official (red) and in-
ternal (dashed black) D3PD for a Z → ττ sample

Figure 4.5: Plot of some variables from two different D3PDs for different samples with 1000 events
each.
Histograms evidently match exactly.
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Background Validation

Since usually a large fraction of analysed tau candidates are fakes (mostly QCD jets), it is
essential that these jets are well-described by PanTau. It is arguably even as important as the
performance on real τ leptons: If for instance 80 % of the tau candidates in a sample are fakes
and 90 % of these can be identified as such, the purity of the remaining 28 % of candidates
has become higher significantly. However, if real τ leptons are not described well at all, even
a good understanding of fakes cannot help, e. g. if 98 % of real τ leptons are rejected due to
misbehaviour of the program. Thus, the validation of PanTau’s behaviour on background is
only the first step and should be followed up by an analysis for true τ leptons.

5.1 Matching of Measured against Simulated Data

The outcome of data analysis has to be compared against MC simulations; it has to be checked
if assumptions being made about the physics in the algorithm are in fact valid. Therefore, the
data results have to be described by MC as well as possible.

However, QCD jets are impossible to calculate precisely and can thus only be modelled by
means of approximation algorithms, whose optimisation is still a subject of current research.
Imprecisions therefore arise whenever QCD plays a great role. Since the scope of this study
are solely QCD jets, discrepancies between data and MC are in principle unavoidable. The aim
is rather to find the weakest spots, and to estimate the quality of the agreement in general in
order to judge if the differences are explicable by QCD approximations alone.

Should a considerable part of PanTau features indeed be described poorly by MC, a pos-
sible work-around would be to train the background BDTs on real data rather than on MC.
The huge disadvantage in that case would be that it is virtually impossible to control exactly
which processes a data sample consists of. Training on MC, if possible, is therefore more trust-
worthy, which makes for another reason that a good accordance of data and MC (within the
aforementioned limitations) is desirable.

5.1.1 Choosing the Physics Process for the Analysis

The background analysis can in principle be performed on any kind of process without large
fractions of events including τ leptons. One aim is to find a process which produces ‘τ-like’
objects, i. e. such objects that could, in a physics analysis, easily be mistaken for actual τ lep-
tons. This is mostly the case with QCD jets. Another intention is to have an easily accessible
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process, i. e. one that is straightforward to select by applying the right cuts (compare Ch. 5.1.2).
Furthermore, high data statistics due to large cross sections are a desirable feature.

The process that was chosen as basis for this study is a Z boson decaying into two muons
while recoiling against a QCD jet. The quantum processes leading to such an event are shown
as Feynman diagrams in Fig. 5.1.
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(a) t-channel with gluon jet
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(b) t-channel with quark jet
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(c) s-channel with quark jet

Figure 5.1: Feynman diagrams of Z → µµ decays involving a recoil jet.
Five more can be produced by reverting the time direction of the (anti-)quark paths and/or
swapping the two protons. Note that for the t-channel with gluon jet (Fig. 5.1a), these
changes are equivalent. In the s-channel, no gluon jet can be produced.

In the proton-proton collision, a quark q and an antiquark q̄ interact to produce a Z boson,
which in turn decays into a muon µ and an antimuon µ̄. One of the (anti-)quarks emits a gluon
g (initial state radiation) before the Z boson is formed. This gluon in turn produces a QCD jet,
which is likely to be reconstructed as a tau candidate (if certain requirements are met, e. g. for
it not to have too many tracks). The Feynman diagram for this part of the process is depicted
in Fig. 5.1a. When the paths of the initial quark and the gluon it emits are switched in the
graph, another part evolves, resulting in a quark producing the QCD jet rather than the gluon
(Fig. 5.1b). Although physically independent processes, there is no way of controlling if the
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interacting partons from the protons are two quarks or a quark and a gluon. Since the aim
of this study is the analysis of QCD jets regardless their nature (quarkonic or gluonic), this
difference will be neglected and the processes are analysed by means of their combination.

Trivially, the paths of the (anti-)quarks can be reversed in time in both of the Feynman
graphs, resulting in two more first order contributions to the process. In Fig. 5.1b, yet another
contribution is obtained by swapping the two protons, while in Fig. 5.1a this procedure is
equivalent to reverting the quark edges.

Finally, three more contributions come from the s-channel of the quark-gluon-process and
its alterations with reversed quark direction and/or swapped protons (Fig. 5.1c).

Another Feynman diagram that might play a role consists of two gluons (from the protons),
interacting by means of a quark loop (box diagram) to form the Z and a gluon, which emerges as
a gluonic jet. In spite of being a higher order diagram, this might still have a significant impact,
because the probability is higher for gluons to be the interacting partons than for quarks.

Assuming negligible pT of the colliding partons (cp. Ch. 2.3.3), the Z boson’s and the QCD
jet’s transverse momenta have to add up to zero. The jet is then called a ‘recoil jet’ of the Z,
because it recoils against the boson. If the Z boson then decays into two muons, it is relatively
easy to reconstruct, since muons are the only particles detected in the muon chambers, and the
QCD jet has to be opposite of their combined direction in the xy-plane (Fig. 5.2).

vtx

Z

µ

µ

JetJet

µ

µ

Figure 5.2: Z → µµ process with a recoil jet, projected onto the xy-plane. At the vertex (yellow) a QCD
jet (black/green) and a Z boson (red) are formed. The Z boson continues to decay into two
muons (blue).

The Z → µµ process has a relatively high cross section and is easily selectable by requiring
two muons with an invariant mass Mµµ near the Z-mass. Identification of muons is far less
complicated than that of τ leptons, since they can be recognised in the muon chamber due to
their relatively long lifetime of 2.2×10-6s [2].

In the chosen process, most of the recoil jets are gluonic, i. e. produced by a gluon rather
than a quark. While in this study, the jets’ origins are not differentiated, it might be preferable
in later studies to distinguish them in order to gain performance by taking advantage of their
different shower shapes and multiplicities.

31



DRAFT
Chapter 5 Background Validation

5.1.2 Selecting Events and Tau Candidates

To filter out the desired events from the magnitude of recorded collisions at ATLAS, a selection
of several cuts is needed. These cuts are applied to real data as well as to MC in order to achieve
a fair comparison between both. In the following, cuts on events will be referred to as event cuts
and cuts on tau candidates as tau cuts. The first few event cuts, being necessary regardless the
aim of the analysis, are called cleaning cuts.

The used sequence of cuts (cut flow) is based on one stated in an article by the Muon WG
(ATLAS Muon Working Group) [28]. Some of their cuts had to be adapted to be suitable for
2011 data (as opposed to 2010 data in the original paper), and a few additional cuts were added
concerning tau candidates. The resulting cut flow is presented in the following paragraphs
and – in short – in Table 5.1. The corresponding histograms can be found in Fig. 5.3 (lumi-
weighted, cp. Ch. 5.1.6) and Fig. 5.4 (event cuts, in percentage of the number of events before
cuts).

All corrections and weightings that are explained in the chapters to come (muon corrections,
luminosity and pileup weights, global MC scale) are already implied in all histograms, unless
stated otherwise. This way, conclusions can be drawn from any graphs without worrying about
effects that are explained in subsequent parts of the document.

Used Samples

The used MC samples were produced by the Alpgen generator. For processes of type Z →
µµ + Jets, these are divided into Np0, Np1, . . . , Np5. The respective number indicates how
many jets emerge in the main process (‘main jets’). Nevertheless, in each of these samples
more QCD jets can be evident, which come from the underlying event and/or pileup collisions.
These usually carry far lower energies (cp. Ch. 2.2.5) and can thus be easily suppressed by
cutting on a minimum pT (cp. Fig. 5.8). The samples that were generated for this study also
require the main jet(s) to have a pT of 20 GeV or more.

The data samples in this study are from data periods M6 to M10 (without M7, for which no
eflowRec containers were available) of 2011. The collision energy is 7 TeV , and the integrated
luminosity of the used runs totals 332.02 pb−1.1

All used samples are listed in Appendix A (MC samples in Table A.4, data samples in
Table A.5). The D3PDs were produced by means of ATHENA 17.2.3.7.4 with development
versions of PanTau and the TauD3PDMaker-01-08-15.

Cleaning Cuts

The cleaning cuts’ purpose is to get a reliable set of events for the analysis.
Only runs mentioned in the Good Run List (GRLs) can be used for analysis. These are sets

of usable runs for each period of data taking. Runs not included in these lists should not be

1 Note that no run from period M9 is included in the good run list (the good run list is defined within this chapter),
and the runs from M6 only account for 28.26 pb−1. Thus, the used data effectively consists of periods M8 and
M10 (cp. Table A.5).
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Cleaning Cuts
Good Run List
Trigger EF_mu18_MG_medium
Jet Cleaning

Cuts on Events
exactly 2 µ’s with opposing charge
both µ’s: pmuon

T > 20 GeV
both µ’s: |ηmuon| < 2.4
at least 1 τcand: pT > 10 GeV
µ’s: medium quality
µ’s: combined
S (d0) < 3
z0 < 10 mm
both µ’s: pmuon

T (∆R < 0.2) < 0.1pT

Mµµ = (91 ± 5) GeV
∠φ(µ1, µ2) ≤ 2.8

Cuts on τcand’s
pT > 15 GeV
opposite µ’s within Dφ = 0.3
|η| < 2.4
|η| < [1.37, 1.52]

Table 5.1: Event and tau cut flow.
Event cuts regard properties of events and are thus applied once per event (note that cleaning
cuts, per definition, are event cuts as well). Tau cuts apply to each tau candidate in every
event.

33



DRAFT
Chapter 5 Background Validation

(a) Number of events after each cut. Note that data is skimmed (cp. Ch. 5.1.4).

(b) Number of tau candidates after each cut. All event cuts are already applied before ‘NoCut’.

Figure 5.3: Cut flow histograms (curves lumi-weighted, cp. Ch. 5.1.6).
Data and MC match almost perfectly after the event cut on Mµµ (by construction, see
Ch. 5.1.8). After the tau cut requiring a recoil jet (i. e. for the tau candidate to be oppo-
site the Z), there are more candidates in MC than in data.
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Figure 5.4: Event cut flow (numbers relative to first bin). Note that data is skimmed (cp. Ch. 5.1.4).

used for analyses, as they might contain physically wrong information. According flags are set
after run time according to the present conditions of the detector.

The trigger (‘EF_mu18_MG_medium’) filters all events without muons having at least a
momentum of 18 GeV. The Muon WG used triggers requiring 10 GeV and 13 GeV, depending
on the respective data taking period of 2010, but for 2011 the 18 GeV trigger was the lowest
working trigger without a prescale (with exception of one single run, having a prescale of
1.015). The subsequent jet cleaning removes every event from the selection which contains
any ‘bad jets’.

Event Cuts

For obvious reasons, the first physics cut requires two muons of opposing charge in the event
(sometimes also referred to as a di-muon), and the first condition involving tau candidates is to
have at least one of reasonable transverse momentum (here: pT > 10 GeV) in the event. From
Fig. 5.4, it is obvious that the Np0 sample loses about half its events in the latter cut, which is
expected because it is the sample with the lowest pT jets.

Furthermore, both muons should fulfil certain quality conditions such that their reconstruc-
tion by means of the muon identification algorithm (in this case ‘STACO’) can be trusted.
These requirements are a minimum transverse momentum (here: pmuon

T > 20 GeV), a maximum
absolute η-angle (|ηmuon| < 2.4), the STACO tag medium (which in turn requires a minimum
of detector hits), and a positive combined flag (meaning that the muon could be matched to a
track). The Muon WG did not cut on STACO medium muons. They did, however, demand a
minimum number of detector hits in each of the pixel, SCT and TRT detectors. This constraint
is in turn part of the STACO medium flag. In addition, the muons have to be isolated, which
is to say the transverse momentum measured within a ∆R-cone around each muon is not to
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exceed a percentage of its own transverse momentum (here: pmuon
T (∆R < 0.2) < 0.1pmuon

T ).
The pT histogram for muons is shown in Fig. 5.5. The Np0 sample peaks just below 45 GeV,

which is compatible to half the mass of the Z boson the muons originate from (which is
(91.1876 ± 0.0021) GeV [2]). In the other samples, this energy is shared with one or more
(high pT) jets. The more main jets are present in the sample, the broader the curve becomes,
since more combinatorial possibilities arise to distribute the momentum in the event.

Evidently, only a small fraction of muons have a pT of less than 20 GeV (partly due to the
trigger already requiring at least one muon with 20 GeV for MC and 18 GeV for data), so the
respective cut does not alter the distributions significantly. The only visible effect is that it
slightly favours the Np0 sample, which is not a desirable feature, since the sample of interest
is Np1. However, the effect is not critical due to its proportions. Another important impact of
this cut is that it neutralises the different trigger thresholds for MC and data.

Figure 5.5: pmuon
T before cut on pmuon

T > 20 GeV (curves normalised to unit area).
The fraction of muons cut away is small. The sample with the least fraction in the region of
pmuon

T < 20 GeV is Np0.

Two cuts are applied on the muons’ impact parameters to ensure they actually originated
from the primary vertex (as opposed to the majority of cosmic rays). One is for the longitu-
dinal impact parameter z0 not to exceed 10 mm, while the other prohibits a transverse impact
parameter significance of 3 and higher. For a transverse impact parameter d0 with uncertainty
σ(d0), the definition of the impact parameter significance S (d0) is stated in Eq. 5.1.

S (d0) =
d0

σ(d0)
(5.1)

To assert the actual origin of the muons from a Z boson, their invariant mass has to lie in a
certain range around the Z mass. The cut used here is Mµµ = (91 ± 5) GeV. In Fig. 5.6, the
invariant mass is shown before the cut. The histograms’ shapes are all consistent with the sum
of a Gaussian, peaking at 91 GeV, and a polynomial of degree 1 with a small intercept and a
minor negative slope. Since the polynomial part can be used to estimate the data’s background
and to find the correct MC scale in one step, this histogram will be discussed in more detail in
Ch. 5.1.8.
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Figure 5.6: Mµµ before cut on Mµµ = (91 ± 5) GeV (curves normalised to unit area).
All curves can be described as a sum of a Gaussian, peaking at 91 GeV, and a small back-
ground with a slightly negative slope.

In case a recoil jet occurred with a finite transverse momentum (or more than one jet, with a
finite sum of transverse momenta), the Z boson must balance it with an equal pT in the opposite
direction. The two muons, emerging back-to-back in the Z boson’s rest frame, therefore cannot
be back-to-back in the laboratory rest frame, but include a φ-angle of ∠φ(µ1, µ2) , π. The
greater the muon’s pT gets, the smaller is the angle ∠φ(µ1, µ2). Thus, a cut can be applied
on this included φ-angle to select the events with a recoil jet (here: ∠φ(µ1, µ2) ≤ 2.8). An
illustration is given in Fig. 5.7a, and the histogram of ∠φ(µ1, µ2) before the cut is shown in
Fig. 5.7b.
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(a) Illustration of the angle ∠φ(µ1, µ2). (b) ∠φ(µ1, µ2) before cut (curves normalised to unit area).

Figure 5.7: Event cut on ∠φ(µ1, µ2) ≤ 2.8 (graphical illustration and variable histogram).
The Np0 sample peaks at π and will be affected by the cut to the most extent. Of the other
samples, Np1 and Np2 have the largest fractions in the region above 2.8.

As expected, Np0 peaks at π due to the absence of a jet to recoil against, while in Np1 some

37



DRAFT
Chapter 5 Background Validation

transverse momentum is given to the jet, which results in a smaller φ-angle between the muons.
In Np2, smaller angles are made possible again by the second jet (if they point roughly in the
same direction), as are greater angles (if they point in opposite directions). For even higher
jet multiplicities, there are more and more possibilities to combine the jet vectors, which lets
the angle obtain nearly arbitrary values (except that very small angles are suppressed, since the
muons still emerge back-to-back in the Z boson’s rest frame).

While the cut clearly reduces the share of the unwanted Np0 events considerably, it also cuts
away about a third of Np1 events (also cp. Fig. 5.4, which substantiates these estimations).
Though the decision on the exact value for the optimal cut is in the eye of the beholder, the
main argument for such a low cut is that the magnitude of accessible statistics permits this
sacrifice of signal for the sake of a higher background suppression.

Tau Cuts

So far, the only requirement regarding tau candidates is to have at least one with pT > 10 GeV
in the whole event. The next cut is for each candidate to have pT > 15 GeV. The pT spectrum
before this cut is presented in Fig. 5.8. Despite its main purpose to increase the particles’
reconstruction quality, the cut also diminishes the Np0 fraction once again due to its high
presence in the pT bins below 15 GeV.

Figure 5.8: pτcand
T before cut on pτcand

T > 15 GeV (curves normalised to unit area).
The distributions have very similar shapes, but Np0 has the highest ratio of pτcand

T values
below 15 GeV.

Another condition on the tau candidates is for them to be opposite in φ to the supposed
Z boson (cp. Fig. 5.9a), which insures a candidate to be consistent with a Z’s recoil jet. To
achieve this, the bisection of the muons’ φ-angles is calculated. The angle ∆φZ j included by
the bisection and the tau candidate has to be close to π (here: ∆φZ j ∈ [π − 0.3, π]). Note that
∆φZ j is defined here as the absolute difference in φ, so ∆φZ j ∈ [0, π]. The tolerance level will
be called Dφ, thus Dφ = 0.3 here (cp. Table 5.1).

From the ∆φZ j histogram in Fig. 5.9b it is evident that the the Np1 sample indeed peaks at π
and is favoured by the cut as a consequence. The cut flow histogram in Fig. 5.3b supports this
fact, but also shows that in MC, more tau candidates survive this cut than in data. A possible
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reason is that too many candidates from Np2 and Np3 are kept. However, the effect is relatively
small.
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(a) Tau cut: opposite µ’s within Dφ = 0.3. (b) ∆φZ j before cut (curves normalised to unit area).

Figure 5.9: Tau cut on ∆φZ j ∈ [π − 0.3, π] (graphical illustration and variable histogram).
The main sample in the remaining ∆φZ j region is the desired Np1.

Lastly, two cuts on the tau candidates’ η were added to certify their detection in a detector
regime where a reliable reconstruction is possible (|η| < 2.4 and |η| < [1.37, 1.52]).

5.1.3 Error Bars and Deviation Histograms

For statistical data, uncertainties are Poisson-distributed. Since only one of the two parameters
for this distribution is usually known, the Gaussian approximation is used to compute errors
simply as

√
N for N bin entries, even though, strictly speaking, this is only valid for large

values of N.
In many analyses, as in the one at hand, this does not have a big impact on the results.

Although methods exist to give better approximations for Poisson errors at low multiplicities
(J. Heinrich proposed several approaches in 2003 [29]), the exact quantity is impossible to
determine.

For the qualitative purpose of this study, it was sufficient to assume Gaussian errors even
for bins with low multiplicity. For plots highlighting data/MC differences, like the deviation
plots introduced within this chapter, a nonzero error has to be defined to avoid division by 0.
The choice was made to set the error to 1, though this is not optimal and should be replaced
by a mathematically more consistent approach (e. g. one if those given in the aforementioned
document by J. Heinrich).

Up to this point, all histograms were area-normalised in order to compare their shapes. In
fact, for decay mode reconstruction, only the shapes matter, since PanTau uses efficiencies to
train the MVA (cp. Ch. 3.2.3). However, it makes sense to have a look at plots normalised
by luminosity (cp. Ch. 5.1.6) to be able to compare histograms intuitively. The sum of MC
samples then has to match the data histogram, if the modelling was accurate.
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To quantify how well the histograms match, several techniques can be applied, some of
which are explained in detail in Ch. 5.2. For the moment, it is sufficient to visualise the di-
vergence in the plots and its proportion to the errors. A commonly used way to achieve this is
by adding a second graph below the histograms, showing the data/MC ratio (‘ratio plot’), with
a straight line at 1 indicating accordance. This has the disadvantage of being asymmetric: If,
for example, there are double as many data events as MC in one bin, the graph has an entry
at 2, while for the reverse case, the value is 0.5. This implicates that, when looking at such a
plot, one has to view downward divergences as more crucial than upwards ones, which is not
intuitive. One way to solve this is to apply a logarithmic scale, which still is not helpful for fast
intuitive interpretation.

An alternative approach is to plot the difference of the two histograms (number of data events
N i

data minus number for MC N i
MC), scaled by their combined errors σi

comb for each bin i. The result
is denoted as ‘deviation’ (devi) in this document (Eq. 5.2a). The combined error is calculated
by adding the squared errors for data (σi

data) and MC (σi
MC) and taking the square root (Eq. 5.2b).

devi =
N i

data − N i
MC

σi
comb

i = bin number (5.2a)

σi
comb =

(
σi

data

)2
+

(
σi

MC

)2
(5.2b)

While the data error (in the Gaussian approximation, see above) is obtained by taking the
square root of the number of bin entries N i

data (Eq. 5.3a), for MC all applied scaling factors, i. e.
smuon, slumi, spileup and sglobal, have to be included (Eq. 5.3b). The factor smuon will be introduced in
the course of muon corrections (Ch. 5.1.5), slumi is needed to scale the N i

gen generated MC events
to the data’s integrated luminosity (Ch. 5.1.6), spileup accounts for different pileup conditions in
data and MC (same chapter) and depends on the average interactions per bunch crossing µ, and
finally, sglobal is a global weighting factor obtained by a fit (Ch. 5.1.8).

σi
data =

√
N i

data (5.3a)

σi
MC = smuonslumispileupsglobal

√
N i

gen =

√
smuonslumispileupsglobalN i

MC (5.3b)

Analogously to the line at 1 in ratio plots, a line at 0 is shown in deviation histograms to
indicate the position of MC. To this line, the MC error, also scaled by the combined error, can
be appended, as the data’s error (scaled in the same way) is drawn at the deviation values. This
makes it possible to identify the separate errors’ impact on the combined error.

When used to ratio plots, one has to read deviation histograms with care, since (in this
comparison) they tend to overemphasise differences in certain N-ranges. To illustrate this,
both values were computed for five different numbers of N i

data and arbitrary N i
MC between 0 and

3N i
data (Fig. 5.10).2

The deviation gives the data/MC difference in direct proportion to the combined error, but
the ratio overemphasises differences for small numbers in bins, and understates those at high

2 Note that N i
MC, unlike N i

data, can take non-integer values due to the scaling factor slumi.
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numbers. In ratio plots, it is therefore always important to analyse the error bars as well, while
in deviation histograms these are optional and rather give additional information on the errors’
main origin.

Figure 5.10: Deviation and data/MC ratio for simulated bin entries. Errors were taken as square root of
the respective values, for data and MC.

For low numbers of N, the deviation suffers strongly from the Gaussian error approximation,
as visible in the black line for N i

data = 5 in Fig. 5.10.
As already mentioned, the error was set to 1 for N = 0 to avoid technical problems. This

mathematical inaccuracy will not have a great impact on the analysis. However, it should be
kept in mind when reading the deviation histograms: Black dots with nonzero error bars do
not imply a finite number of data entries in the corresponding bin. The error could be set to
1 because there were no data entries, in which case the point is still drawn in the deviation
histogram due to technical imperfections of the implementation.

These minor technical flaws will soon be corrected in the SFM framework, but the mentioned
implications still hold for the graphs in this document.

5.1.4 Skimming

Working at an integrated luminosity of 332.02 pb−1, file sizes can reach unmanageable magni-
tudes. To reduce disk usage as well as download and computing time, the used D3PDs were
skimmed, i. e. some pre-cuts were applied before even running the cycle (cp. Ch. 2.3.1). These
cuts clearly have to be looser than the ones in the cycle, but tighter than the used trigger(s).
They are stated in Table 5.2.

Also, it has to be confirmed that the skimming does not cut off more than it is supposed to.
One simple method to achieve this is by comparing the skimmed and the original D3PD of one
of the samples. If the test is successful, the skimming algorithm is assumed to work correctly
and the other samples’ skimmed versions can be trusted to include all desired events.

The result is shown in Fig. 5.11: As expected, the normal and the skimmed D3PD are a match
after the cut on the muons’ invariant mass, which corresponds to the last of the skimming cuts.
Henceforward, the skimmed version is an equivalent replacement of the full D3PD.
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Trigger EF_mu18_MG_medium
at least 2 µ’s: pT > 20 GeV
at least 1 τcand: pT > 10 GeV
at least 2 µ’s: loose quality
at least 2 µ’s: combined
at least 2 µ’s: Mµµ = (90 ± 30) GeV

Table 5.2: Skimming cuts.
Before skimmed data can be compared to MC, these represent the minimum cuts that have to
be applied beforehand.

NoCut
EF_mu18_MG_medium

hasNoBadJet

hasDiMuonOfOppCharge

bothMu20GeV

bothMuAbsEta<2.4

min1TauCand10GeV

mediumMuons

combinedMuons

ImpParamSignificance<3

z0<10
pT(DR<.2)<10% 5±

muInvMass=91
2.8≤)µµ(Φ∆

410

510

610

710

Figure 5.11: Event- and tau-wise cut flow: Number of events after each event cut for full (red) and
skimmed (green) D3PD, tested on data period M10/2011.
Their difference decreases with every cut. Starting from the Mµµ cut, the D3PDs are iden-
tical.
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5.1.5 Necessary Corrections

In addition to the cleaning cuts, some further corrections are necessary in order to achieve
sensible results in the analysis. Some proposals for these can be retrieved from the Muon WG.

When dealing with muons, particular care has to be taken regarding the reconstruction due
to general misbehaviour of the MC with reference to the muon momenta. Because the assumed
reconstruction resolution in MC is too optimistic, the muon momentum is smeared over with a
Gaussian distribution to correct this (momentum smearing). The Muon WG provides assigned
tools for this, as well as for the muon efficiency corrections, which are required for similar
reasons and add another weighting factor to MC events.

The effect these corrections have on the reconstructed muons’ momentum is shown in Fig. 5.12.
Evidently, the overestimation in the peak region (Fig. 5.12a) is fixed after their application
(Fig. 5.12b). The weighting factor smuon introduced by the muon corrections is 0.9755. Note
that the altered pmuon

T resolution also has an impact on the behaviour of some of the cuts: Due to
the corrections, the number of MC events decrease by about 2.34 % (in addition to the scaling
factor).
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(a) pmuon
T before corrections.
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(b) pmuon
T after corrections.

Figure 5.12: pmuon
T before and after muon corrections are applied (curves lumi-weighted, cp. Ch. 5.1.6).

The corrections mainly serve to artificially deteriorate the pmuon
T resolution to compensate

for a bug in the MC. As a result, the data is described far better by MC than without the
corrections.

5.1.6 Luminosity and Pileup Weights

Two kinds of preparations have to be made before the actual analysis even starts: The luminos-
ity (short hand lumi) and pileup weights have to be calculated (compare Fig. 5.13).

To be able to compare data and MC, the integrated luminosity L (cp. Eq. 5.4a) which the
generated MC samples correspond to has to be calculated, and an according luminosity weight
slumi has to be applied to all MC events. The generated luminosity Lgen equals the number Ngen of
generated MC events divided by the total cross section σ of the process (Eq. 5.4b). Trivially,
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MC

cross section

generated luminosity

Data

good run list

integrated luminosity

divide

luminosity weight for MC (Sample)

pileup histogram pileup histogram

divide

pileup weight for MC (µ)

Figure 5.13: Necessary preparations regarding MC and data samples (dependencies of weights are stated
in brackets).

the luminosity weight slumi is the ratio of data luminosity Ldata and Lgen (Eq. 5.4c).

L :=
∫
Ldt (5.4a)

Lgen =
Ngen

σ
(5.4b)

slumi =
Ldata

Lgen

(5.4c)

For the luminosity calculation of data, only runs from the GRL are considered, since other
runs are not allowed to be used for analyses.

During the running of the experiment, pileup conditions vary critically over time. During a
run, the luminosity decreases naturally, so µ is lower for late events in a run than for early ones.
During a year, luminosity typically increases due to optimisation of the machine.

To account for these effects in MC samples, pileup reweighting has to be applied. This
means that each MC event is weighted by a factor dependent on its pileup conditions (i. e. the
average number of interactions per bunch crossing µ). This weighting factor spileup is determined
by simply dividing the µ-histogram for the used MC sample by the one for the applicable data
periods. In other words, each MC event is weighted by the quotient of the number Ndata(µe) of
data events with the same µ as the current event e and the analogue number NMC(µe) of MC
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events with the same µ (Eq. 5.5).

spileup =
Ndata(µe)
NMC(µe)

(5.5)

In this manner, events differing strongly from real data with respect to pileup conditions will
be weighted by a small factor, whereas more ‘data-like’ MC events will be multiplied by a
larger weighting factor. The resulting µ-histogram for MC is therefore be a considerably better
match to the one for data (Fig. 5.14).
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(a) µ before pileup reweighting.
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(b) µ after pileup reweighting.

Figure 5.14: Average interactions per bunch crossing µ before and after pileup reweighting of MC
(curves lumi-weighted).
Before the reweighting, pileup conditions of data and MC are completely different. The
reweighting remodels the MC histogram’s shape to fit the data.

This can have a huge impact on pileup-sensitive variables, such as the ∆R to the closest jet
(Fig. 5.15). From Fig. 5.15a it is evident that the MC hugely overestimates the values before
pileup reweighting is applied: In the low-∆R region, MC has far smaller bin entries than data,
and for high ∆R the MC entries are too high (although the effect is less visible there, due to the
curve’s lower gradient). In the 0-bin, there are more than double the entries for MC compared
to data, which shows a lower jet multiplicity per event for MC.

All of these effects are a direct consequence of the lower µ in MC, as seen in Fig. 5.14a:
With low pileup, the overall jet multiplicity is lower and therefore the ∆R between two jets is
higher on average. The number of single jets in an event (0-bin) is also higher for lower values
of µ.

After the pileup reweighting, the data/MC differences are reduced immensely (Fig. 5.15b),
which proves the distinctive pileup conditions as their origin.

5.1.7 Analysis Cycle

Due to the complex structure of the cycle, particular caution has to be applied when designing
the arrangement of loops, especially the ones embedded within each other. Therefore, the used
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(a) ∆R to closest jet before pileup reweighting.
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(b) ∆R to closest jet after pileup reweighting.

Figure 5.15: ∆R to closest jet before and after pileup reweighting (curves lumi-weighted). Values below
0.4 are not allowed, to avoid counting the ∆R between the tau candidate and its own re-
constructed jet (cp. Ch. 3.2). Values at 0 are filled whenever no second jet could be found
outside the 0.4-cone.
Before the reweighting, huge deviations are evident, in particular in the lower regions and
the 0-bin. The reweighting eliminates these differences almost completely.

cycle for the background analysis deserves some explaining. The basic design of the cycle is
illustrated in Fig. 5.16.

The main loop is executed per event and begins with some preparations, which, in the MC
case, are dependent on the current sample and pileup conditions. The last preparation step is
a loop over the muons in the event and depends on the different measured pT values of the
respective muon.

Subsequently, the fundamental operations are arranged in two double loops: First all event
cuts are scanned. Whenever a cut criterion is not met, the rest of the steps for the current
event are skipped and the next event is examined. As long as the criterion for the present
event cut is fulfilled, firstly histograms are filled for variables regarding the whole event (as
opposed to τ lepton related variables). In Fig. 5.16, these are referred to as event histograms
(and tau histograms, respectively). Secondly, tau histograms are filled for all tau candidates
(inner loop). Thirdly, the second double loop is executed if all event cuts have been passed. For
each tau cut, tau histograms are filled in a loop over all tau candidates, given that the particular
tau cut is satisfied by the active tau candidate (otherwise the algorithm continues with the next
tau candidate in the current event). Also, for each tau cut the number of tau candidates passing
it is stored. For each tau candidate passing the last demanded tau cut, the binned histograms
(as described in Ch. 5.1.10) are filled as well.

A final loop over all tau cuts fills the event histograms for each cut which was passed by one
or more tau candidates in the previous loop.
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Loop: Events

if data: check good run list

if MC: lumi weight (sample),

pileup weight (µ),

global MC scale

Loop: Muons

momentum smearing (pT ’s)
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Figure 5.16: Graphical presentation of the analysis cycle (dependencies of actions are stated in brack-
ets).
After some initial preparations for data and MC events, including a loop over all muons to
apply basic corrections (cp. Ch. 5.1.5), the cycle consists of two double loops over tau can-
didates and either event cuts or tau cuts, as well as a final loop over tau cuts.
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5.1.8 Background Estimation

For the analysis, data samples are taken from the muon stream. The choice of MC samples
is based on the desired Z → µµ processes. Since no further MC samples are added for com-
pleteness, it might well be that even after all physics cuts some data events remain, which have
other origins and can therefore not be expected to be described by the used MC samples.

Note that in τ lepton studies all fake taus are background, while in this background study
fake taus are signal, so the term ‘background’ here only refers to those tau candidates which
do not represent Z → µµ recoil jets.

Since for the above reasons, these background events cannot be described by MC, it has to be
shown that their magnitude is small compared to the signal. To achieve this, the invariant mass
Mµµ of the two muons (before the cut on the Z mass) is fitted with a discontinuous function
f , which is composed of the bin entries of the MC histogram h(Mµµ), multiplied by a scaling
factor sglobal, and a linear part aMµµ + b, where the slope a and the intercept b are further fit
parameters (Eq. 5.6).

f (Mµµ) = sglobal · h(Mµµ) + aMµµ + b (5.6)

The plot of the fit is shown in Fig. 5.17.
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Figure 5.17: Invariant mass Mµµ of the di-muon. The data histogram (black) is fitted with the sum of a
linear function (red) and a multiple of the MC histogram (blue). The green area represents
the optimised fit function.
Results for the fit parameters are presented in the first row of Table 5.3.

The value of the scaling factor sglobal obtained from the fit result can be used as an additional
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MC weighting factor (in fact, all lumi-weighted histograms that appeared so far already include
this weighting). The physical interpretation of this global MC scale is a correction of the
branching ratio that was used to calculate the samples’ generated luminosity (cp. Ch. 5.1.6).

The linear part of the fit, integrated over the later-used region of [86, 96] GeV, gives the
estimation of background events in the analysis. Dividing it by the data integral over the same
region produces the ratio of background to total events of 0.23 %. This is small enough for it
to be be neglected in the further analysis.

As a sensitivity check, the fit is re-evaluated for smaller Mµµ intervals to find out how severe
the change in the background ratio would be (see Table 5.3 and Fig. 5.18). With values varying
between 0.23 % and 0.61 %, the increase indeed is not severe enough to doubt the original
estimate.

Fit Region Scale sglobal Slope a Offset b BG
Data in [86, 96] GeV

[62, 120] GeV 1.042 ± 0.004 −0.40 ± 0.09 48.3 ± 9.7 0.23 %
[67, 115] GeV 1.039 ± 0.005 −0.72 ± 0.14 82.5 ± 14.5 0.33 %
[72, 110] GeV 1.035 ± 0.005 −0.95 ± 0.23 111.4 ± 23.6 0.49 %
[77, 105] GeV 1.033 ± 0.005 −0.90 ± 0.45 113.1 ± 44.4 0.61 %

Table 5.3: Fit results for background estimation and MC scaling.

After applying the global scaling to MC, the difference between data and MC regarding the
number of events is only due to the background events. By cutting on the Z-mass in the next
step, a large fraction of these is removed, which leaves a very good data/MC match at this
point, with slightly too many MC events (cp. Fig. 5.3a).

5.1.9 First Results

After confirming that no background events must be expected to corrupt the analysis, the study
of PanTau features can finally begin.

As described in Ch. 3.3, a variety of 121 variables are calculated by the JetFeatureExtractionTool.
Obviously, the entirety of their histograms cannot be included within this chapter, so only some
examples are shown in Fig. 5.19.

The presented variables are the ones that were argued to have good separation power in
Ch. 3.3 (EflowNeutralSumEt works well to separate 1p0n against other modes, the same holds
for EflowChargedSumEt and 3p0n, SumCharge and 3pXn, as well as EflowStdDevEt and
3pXn).

The variables all show very good data/MC agreement, especially EflowNeutralSumEt. Con-
sequently, they can be utilised for their respective separation purposes in PanTau’s MVA (cp. Ch. 3.2.3).

Most PanTau features display a similarly good accordance of data and MC, but are not
discussed in detail due to the proportions of this document.

3 Note that Fig. 5.18a is identical to Fig. 5.17 and is only included here for sake of comparison.
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(a) Mµµ ∈ [62, 120] GeV 3

15
9

13
9

16
1

16
1

19
4

21
0

20
3

23
8

22
8

26
9

27
6 31

7

32
1

37
5

39
7

41
1 46
7 51

2 58
5 67

5

79
7

95
3

11
45

15
56

19
90

26
92

38
61

53
58

66
33

77
65

74
33

61
99

44
58

30
70

19
15

12
58

88
4

63
7

46
9

33
1

29
2

24
4

19
5

17
5

13
4

11
4

11
0

10
8

89 73 68 60 71 53 36 58 50 44 27 36

 inv M [GeV]µDi-

70 80 90 100 110 120

1000

2000

3000

4000

5000

6000

7000

8000

 inv M [GeV]µDi-
70 80 90 100 110 120

de
v

-5

0

5

(b) Mµµ ∈ [67, 115] GeV
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(c) Mµµ ∈ [72, 110] GeV
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(d) Mµµ ∈ [77, 105] GeV

Figure 5.18: Background fits for different Mµµ ranges. As before, the data histogram (black) is fitted
with the sum of a linear function (red) and a multiple of the MC histogram (blue). The
green area represents the respectively optimised fit function (cp. Fig. 5.17).
Evidently, the fit parameters are not sensitive on the length of the interval.
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(a) EflowNeutralSumEt. (b) EflowChargedSumEt.
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(c) SumCharge.
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(d) EflowStdDevEt

Figure 5.19: Histograms for different PanTau features (curves normalised to unit area).
These are variables with good separation power for at least one of the decay modes, or
against fakes (cp. Ch. 3.3).
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5.1.10 Physics Binnings

Apart from analysing the PanTau features’ liabilities, another reason to perform the data/MC
comparison is to spot the physical circumstances under which the variables perform particularly
well and rather poorly, respectively.

Therefore, all histograms were divided into different binnings. To avoid confusion, this kind
of binning will also be referred to as ‘physics binnings’ and the binning in each histogram’s
x-axis as ‘variable binnings’. The physics binnings will enable the opportunity to not only
inspect each variable under different circumstances (e. g. a particular pT region), but also to
study the general performance of PanTau variables in that region itself (see Ch. 5.2.2).

The used binnings are listed in Table 5.4, where N(EFO∗±) denotes the number of charged
qualified EFOs.4

Binning Variable Ranges
µ [10; 13), [13; 14), [14; 15), [15; 16), [16; 18]
ET [15; 18), [18; 26), [26; 43), [43; 200)
η [−2.8;−1.2), [−1.2;−0.4), [−0.4; 0.4), [0.4; 1.2),

[1.2; 2.8)
φ [−π;−0.5π), [−0.5π; 0), [0; 0.5π), [0.5π; π)
N(EFO∗±) [1], [2], [3], [4], [5], [6; 7]
∆R to closest jet [0.4; 0.55), [0.55; 0.65), [0.65; 0.725), [0.725; 0.975),

[0.975; 1.475), [1.475; 5)

Table 5.4: List of physical binnings and their respective bin ranges. The intervals were chosen to create
approximately equal numbers of tau candidates in each bin (except for the highest N(EFO∗±)
bin) and virtually no tau candidate in the overflow and underflow bins. Energies are given in
GeV.
For ∆R to the closest jet, values below 0.4 are not allowed to avoid counting the ∆R between
the tau candidate and its own reconstructed jet (cp. Ch. 3.2). Values at 0 are filled whenever
no second jet could be found outside the 0.4-cone.

To exemplify the resulting histograms, the variable SumCharge is given in all ET bins in
Fig. 5.20. Overall agreement of data and MC is very good. The 0-bin for ET ∈ [15; 18) GeV is
overestimated by MC a bit, but the data value lies almost within the error bars. The deviation
plot shows that the difference is less than 2σcomb.

Most PanTau variables share the positive data/MC comparison, as well as the indifference
with regards to ET and other binnings. However, the total number of histograms to be analysed
amounts to 121 × 30 = 3 630 at this point, which makes it difficult to keep an overview over
general trends.

In order to prioritise the variables and physics bins to be inspected first, an attempt was made
to quantify the data/MC agreement mathematically. This is described in the following chapter.

4 Note that the inclusive upper border of the last µ bin in Table 5.4 is not a typo.
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(a) ET ∈ [15; 18).
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(b) ET ∈ [18; 26).
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(c) ET ∈ [26; 43).
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(d) ET ∈ [43; 200).

Figure 5.20: SumCharge in different ET bins (curves normalised to unit area). Energies are given in
GeV.
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5.2 Quantifiers for the Degree of Accordance

The actual data/MC comparison is a process which is hard to be quantified in objective metrics.
For each PanTau variable and each physics binning, the histograms for data and MC have to be
checked for regions (or whole histograms) with bad agreement, which then can be investigated
further. To assist with the inspecting of the vast quantities of graphs, and also to substantiate
the otherwise subjective classification in well and poorly agreeing histograms, it is reasonable
to develop an algorithm to statistically analyse the graphs, thus providing a first classification.

The aim, however, is not to find a substitute for the rational investigation of graphs with
the naked eye, which no computational method can provide (some of the different methods’
shortcomings are elaborated in the following sections). It is still practical to have one or two
quantifiers at hand in order to get a first overview over the huge amount of histograms that are
to be considered and help prioritise further studies.

5.2.1 χ2 and Kolmogorov-Smirnov Tests

A very common statistical test to estimate the probability that two histograms originate from
the same distribution is the χ2 test. The χ2 value is calculated by summing the squared differ-
ence of the bin entries of the data (N i

data) and MC histogram (N i
MC), divided by the square of their

combined error σi
comb (cp. Eq. 5.2b), over all bins i in the region of interest (Eq. 5.7).

χ2 =
∑

i

(
N i

data − N i
MC

)2

(
σi

comb

)2 i = bin number (5.7)

Under consideration of the number of degrees of freedom ndf, the resolving χ2 value can
be transformed into a p-value by means of the inverse distribution function. The number of
bins with finite entries corresponds to ndf and the p-value represents the probability to achieve a
data/MC agreement of the present quality or worse, given that they originate from the same dis-
tribution. The p-value thus equals the integral over the χ2 probability density function f (x; ndf)
from the realised value of χ2 to infinity (Eq. 5.8).

p =

∞∫
χ2

f (x; ndf) dx (5.8)

The formula for the probability density function f (x; ndf) is stated in Eq. 5.9a, where Γ(z)
is the Gamma function (Eq. 5.9b). Most computer programs, however, equivalently use the
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inverse distribution function F−1(x; ndf) for the computation of p.

f (x; ndf) =
x (ndf−2)/2 e− x/2

2ndf/2 Γ(ndf/2)
(5.9a)

Γ(z) =

∞∫
0

e−ttz−1 dt (5.9b)

The main drawback of the χ2 test is that is only valid for large enough statistics, which
is one of the reasons the Kolmogorov-Smirnov test (KS test) is often used as an alternative
approach. This is despite the fact that the KS test in principle is only valid when comparing a
histogram to a known, continuous function (as opposed to an unknown function approximated
by a histogram, as is the case here). For the sake of comparison, it is still legitimate to perform
both tests.

In the KS method, the test value d is the supremum of the differences between cumulative
data (S i

data) and MC (S i
MC) histograms up to bin i (Eq. 5.10a, with S i defined in Eq. 5.10b).5

d = sup
i

∣∣∣S i
data − S i

MC

∣∣∣ (5.10a)

S i =

i∑
j=1

N j (5.10b)

To find the corresponding p-value, the distribution function for d has to be found, which is
not trivial if both histograms follow an unknown distribution. It can be achieved by sampling
data points while using the given histograms as approximation for the distribution functions.

A consequence of using the cumulative functions S i in the KS test is that the histograms’
shapes are accounted for, while the χ2 test is a pure bin-by-bin comparison. An advantage of
the χ2 test is that the bin errors are taken into account, as opposed to the KS test. On the other
hand, the common approximations often used to calculate the errors yield incorrect results for
bin entries (cp. Ch. 5.1.3), which could weaken this advantage.

For the purpose of this analysis, these differences do not play a huge role, since the aim is
merely to pick the variables with the worst agreement, rather than to categorise each single
variable. The expectation is that the two algorithms do not differ to a great extent in this task,
which will be proven to be a valid assumption in Ch. 5.2.2 (also see Fig. 5.21).

5 If the KS test is used to compare a histogram to a known continuous function f (x), its values xi have to be
compared to both the respective upper (i) and lower (i − 1) bin borders of the histogram. This corresponds to
changing Eq. 5.10a to

d = sup
i

(∣∣∣F(xi) − S (xi)
∣∣∣ , ∣∣∣F(xi) − S (xi−1)

∣∣∣) .
This is not necessary here, because all histograms in the analysis have the same variable binning for data and
MC.
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5.2.2 Optimising the Tests’ Reasonability

One of the main problems with both described mathematical methods is that they produce only
one (statistically independent) number.6

This suffices in mathematically clearer case studies, e. g. when testing if a given histogram
originates from a particular distribution function or not, or proving that an event cannot be
explained by classical physics. In the analysis at hand, this is not the case. The compared
histograms are known to deviate from one another to some extent (due to QCD approximations
in MC), and slight, but interesting, mismatches beyond this effect might not result in hugely
different p-values, regardless the test method.

For two histograms originating from the same distribution, the p-values are uniformly dis-
tributed. Thus, a small p is not a strong indicator to a great mismatch of data/MC – even though
the probability for a mismatch is obviously higher than if p is large. To get a better idea of the
distribution of p-values, one needs to perform the test multiple times on separate data sets.

If for example the test is performed five times, each time on one fifth of the present statis-
tics, and the five resolving p-values are all small, they are highly unlikely to be uniformly
distributed. Then again, each of them is less reliable than the one value was before, due to the
smaller samples. The presented method aims at a trade-off between these effects, while at the
same time using the subdivision itself to obtain more meaningful results.

This is realised by using the five pileup bins as the means of subdivision (cp. Ch. 5.1.10). By
construction, these bins share roughly the same number of entries. To find the variables with
the worst data/MC agreement, the resolving five p-values are categorised into the three bins
shown in Table 5.5, which will be referred to as ‘base’ binning.

Binning Variable Ranges
p A: [0 %; 1 %], B: [1 %; 50 %], C: [50 %; 100 %]

Table 5.5: Bins and their labels for histogram of p-values.
Being a probability, p can only take values in [0 %; 100 %], so the underflow and overflow
bins by definition are always empty.

When sorting the list of variables by decreasing entries in the above p-bins, the first variables
are likely to have a bad data/MC agreement.7 Since the five p-values correspond to different
pileup bins, this method uncovers PanTau features with bad agreement in all pileup regions,
rather than pileup-sensitive variables that are otherwise well-described.

To test how different the p-values from the two presented test algorithms are, a scatter plot
of the variables’ rankings was created (Fig. 5.21). It shows a very slight correlation between
the two methods, which proves the calculated p-values’ low significance as indicators for good
or bad data/MC agreement. However, for the purpose of quickly spotting the histograms with
the worst agreement among a large quantity of plots, it works well enough: Variables with
extremely high (or low) rankings in one method tend to score bad (or good, respectively) with

6 The p-value is derived from the χ2 or d variable, respectively, which technically is a second number. However,
this number yields no different statistical information, since they are connected by a bijective transformation.

7 Note that the p-bin entries are uniformly distributed for excellent data/MC agreement, i. e. expected to be
around (0, 2.5, 2.5).
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the other one. One particular type of variable that is highlighted in the correlation plot is the
‘N-EFO type’. These variables are the number of EFOs or of a subset of EFOs (e. g. charged
EFOs) and are described very poorly by MC, for reasons discussed in Ch. 5.3.1. It is evident
that for this variable type, the correlation between χ2 and KS test is quite high.
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Figure 5.21: Ranking correlation for χ2 and KS method (used ob variables). Low numbers stand for
high rankings, i. e. bad data/MC agreement according to the respective test algorithm.
The rankings are fairly uncorrelated, yet a slight correlation seems to apply, especially for
extreme values. Correspondingly, the entries for N-EFO-like variables (red triangles) have
a much higher correlation than the average of the unspecified variables (violet crosses), as
the former tend to very low rankings.

To make sure that the ranking exposes the most important PanTau features (i. e. the ones with
the worst agreement) at the top of the list, the p-values from both methods were filled into one
histogram, because the low correlation of χ2 and KS test shows their almost complementary
nature. To leave both methods’ results accessible, bin entries from both separate methods were
kept in the tables, although the sorting algorithm only took into account the summed bin entries
from both.

The upper part of the such produced list is given in Table 5.6, while the complete list can be
found in Appendix A (Table A.1).

For each of the physics binnings, p-values can be calculated from every PanTau feature’s
histogram, so there is no need to artificially subdivide the samples here. Because of the greater
magnitude of data points, plotting the p histograms (in linear or logarithmic binning) is more
sensible for physics binnings than for single variables. An example for such a plot is given in
Fig. 5.22 in all three kinds of mentioned p-binnings. For the most part of the analysis, however,
the base binning is used.

While for the features’ p histograms only the base binning is reasonable due to the few
entries, its main advantage also for the physics binnings’ p histograms is that the number of
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(c) Base binning.

Figure 5.22: Indicative p histogram for the ET bin [18;26] GeV.
In a standard uniform binning (Fig. 5.22a), the histogram is not well readable due to the
first bin’s magnitude. A logarithmic binning (Fog. 5.22b), on the other hand, makes the
important comparison between lower and upper half of the axis unintuitive to see. The plot
in base binning (Fig. 5.22c) makes it easy to spot the number of especially low p-values,
as well as the relation of values below and above 50 %.
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Sum χ2 KS Variable
A B C A B C A B C
10 0 0 5 0 0 5 0 0 NEFO
10 0 0 5 0 0 5 0 0 NNeutralEFO
9 1 0 4 1 0 5 0 0 NEFOOut02
8 2 0 4 1 0 4 1 0 EflowMeanEtAllToSumEt
8 2 0 4 1 0 4 1 0 EflowMeanEtNeutToSumEt
8 1 1 4 0 1 4 1 0 NEFOOut03
7 3 0 4 1 0 3 2 0 NHADNeutralEFO
7 3 0 3 2 0 4 1 0 RatioChargedToTotalNumber
7 2 1 2 2 1 5 0 0 NEFOIn02To04
6 3 1 2 2 1 4 1 0 NEFOIn03
6 3 1 2 2 1 4 1 0 NEFOOut01
...

...
...

...
...

...
...

...
...

...

Table 5.6: Quantifier outputs for PanTau features, sorted by their sum (top 11 entries). The subcolumns
represent the bins of the methods’ p-values (cp. Table 5.5). The first three columns give the
sum of the bin entries from the χ2 and the Kolmogorov-Smirnov method, the other columns
represent the methods’ separate outcomes. For the full list, see Table A.1.
Clearly, many N-EFO-like variables reach low p-values in both test methods.

values below 1 % can be spotted immediately, while the comparison to a uniform distribution
is still relatively straightforward (by comparing the third bin to the sum of the first two).

5.3 Analysis of Discrepancies

The discrepancies in PanTau features between data and MC are analysed with respect to the
distinct variables and different physics binnings. The prioritisation mainly follows Table 5.6.

The huge number of histograms could not be included within this document, but will be
available online for a limited time at the referenced address [30].

5.3.1 N-EFO-like Variables

As already indicated in Ch. 5.2.2, many of the N-EFO-like features show bad data/MC agree-
ment. Histograms for the basic variables of this type (namely, the ones not depending on
particular ∆R-cones) are depicted in Fig. 5.23. These are among the best separating PanTau
features (cp. Ch. 3.3) and are therefore very desirable to perform well. Hence, it is particularly
worth analysing where discrepancies come from and if they can be fixed.

The two variables obtaining only p-values below 1 % in both the χ2 and KS test are NEFO
and NNeutralEFO. The corresponding histograms are shown in Fig. 5.23a and Fig. 5.23b,
respectively. In both cases, MC overestimates the multiplicity of EFOs. In contrast to this,
NChargedEFO is underestimated by MC (Fig. 5.23c), but only to an extent consistent with
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Figure 5.23: Histograms for five basic N-EFO-like variables (curves normalised to unit area).
MC overestimates NEFO and NNeutralEFO by 1–2 EFOs. In NChargedEFO and NHAD-
NeutralEFO, the shift is directed in the opposite direction, and less critical. The differences
between data and MC are lowest in NEMNeutralEFO.
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known MC misbehaviour on QCD jets. This claim can be supported through comparison to
the number of Tracks for each tau candidate, calculated by TauRec, which shows the same
properties in data/MC deviations (Fig. 5.24). It can hence not be an effect caused by PanTau.

Note that, even though eflowRec only creates EFOs near TauRec candidates with 1–5 tracks
(cp. Ch. 3.1.3), a small fraction of PanTau candidates can still have more than 5 charged EFOs,
as seen in Fig. 5.23c. This happens when EFOs are assigned to more than one TauRec candi-
dates (if they are close to each other). The effect is small enough to be neglected and will be
fixed in later revisions of PanTau, by checking that EFOs are only allocated to one tau candi-
date.

NEFO is the sum of NNeutralEFO and NChargedEFO, but clearly dominated by the higher
values of NNeutralEFO and thus shares its shift to higher values (in MC).

Peculiarly, the two subsets of NNeutralEFO behave differently. In NHADNeutralEFO, only
a slight shift can be seen, and it points into the other direction (Fig. 5.23e). The data/MC
differences here are comparable in magnitude to the ones in NChargedEFO. In NEMNeutral-
EFO the shapes match very well (Fig. 5.23d).

The most obvious interpretation of this fact regards the additional energy cuts included in the
definition of the EM and HAD flags: Contrary to the other basic N-EFO-like variables, NEM-
NeutralEFO and NHADNeutralEFO require E > 1 GeV for each EFO (cp. Tab. 3.1), which
could improve the features’ reliabilities drastically due to reduction of pileup and calorimeter
noise (which is not unlikely to be described poorly by MC).

In fact, an energy cut on neutral calorimeter clusters is applied in other decay mode recon-
struction algorithms for τ leptons as well, e. g. in the π0-tagger by B. Winter, where it was
proven to reduce electromagnetic noise, as well as pileup deposits, by large amounts [31].

M. Hodgkinson and C. Limbach presently investigate if this is the reason for the different
results of NNeutralEFO and its EM-/HAD-flagged subsets. Furthermore, adding energy cuts
to all used EFOs could turn out not only to improve data/MC agreement, but also to have
a positive effect on decay mode reconstruction by PanTau due to the enhanced background
suppression.

In this case, the optimal cut values have to be tested. The background analysis hints at a
lower threshold for NEMNeutralEFO, since the data/MC agreement is very good and purity
could be reduced unnecessarily, and a higher one for NHADNeutralEFO, because a slight
shift between data and MC is still visible. However, these values will have to be identified
empirically by computing the efficiency and purity for different scenarios, while monitoring
the data/MC accordance.

For the mentioned features it was demonstrated that the main data/MC differences are likely
to share the same origin. Similar assumptions can be made for further variables based on
numbers of EFOs (or subsets of EFOs) also achieving high rankings in Table 5.6.

5.3.2 Variables Based on ET

Two further PanTau features obtaining poor results in χ2 and KS tests are EflowMeanEtAllTo-
SumEt and EflowMeanEtNeutToSumEt (Fig. 5.25, where EflowMeanEtChrgToSumEt is added
for comparison).
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Figure 5.24: Histogram for the number of Tracks for each tau candidate (normalised to unit area).
The data/MC agreement is analogue to the PanTau feature NChargedEFO (cp. Fig. 5.23c).
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(a) EflowMeanEtAllToSumEt.
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(b) EflowMeanEtNeutToSumEt.
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(c) EflowMeanEtChrgToSumEt.

Figure 5.25: Histograms for three variables based on ET-fractions (curves normalised to unit area).
In EflowMeanEtAllToSumEt and EflowMeanEtNeutToSumEt, data/MC discrepancies are
large for low values of the respective feature, but very small for high values. Eflow-
MeanEtChrgToSumEt shows an overall good agreement.
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Note that the fragmented structure of the EflowMeanEtAllToSumEt histogram in Fig. 5.25a
is a direct consequence of its formula (cp. Ch. 3.3):

< ET >∑
ET

=

∑
ET

N∑
ET

=
1
N
.

At low values, the intervals between obtainable values are smaller than the bin size and the
histogram looks continuous, while at higher values the intervals become larger.

In EflowMeanEtAllToSumEt, data and MC are a good match for values greater than 0.07,
and in EflowMeanEtNeutToSumEt (Fig. 5.25b), for values greater than 0.05. The lower parts of
the histograms, however, are overestimated by MC. The variable EflowMeanEtChrgToSumEt
(Fig. 5.25c) does not share this effect, but has a good agreement of data and MC over the whole
range.

These effects are perfectly consistent with the findings from Ch. 5.3.1: In MC, more neutral
EFOs are counted than in data, and the additional ones in MC seem to be the ones with low en-
ergy. Thus, the mean ET of neutral EFOs is shifted down in MC, and so is EflowMeanEtNeut-
ToSumEt. Since this variable is proportional to the inverse number of neutral EFOs, low values
are accentuated naturally (cp. structure of EflowMeanEtAllToSumEt, where this effect is not
smoothed by multiplication with an arbitrary number between 0 and 1). Hence, the shift is
most visible in the lower bins, while for high values, it is blurred.

This also holds for the relation between NEFO and EflowMeanEtAllToSumEt. The shift in
NEFO results in data/MC deviations in EflowMeanEtAllToSumEt which are more distinctive
for lower values than for high ones. In this case, the latter variable is the first one’s inverse,
which proves that it is a purely mathematical effect.

Since NChargedEFO is shifted in the other direction (compared to NEFO) and less strongly,
one would expect that EflowMeanEtChrgToSumEt behaves contrarily to EflowMeanEtAllTo-
SumEt, namely by having too much MC in the first few bins and a little bit too little in the
higher region. This is exactly what can be seen in the histogram, taking into account the
general presence of more MC than data (also cp. Fig. 5.23c).

5.3.3 Different Regions

To evaluate and compare data/MC agreement in different physics bins, χ2 and KS tests are
performed for all feature histograms in each bin. The full results are shown in Appendix A
(Table A.2).

Analogously to the variables analysis, a correlation plot for the two tests is inspected as a
first step in order to get an overview of how reliable the results seem to be (Fig. 5.26).

Even though the test statistics per p-histogram are higher here than for the feature analysis,
the obtained values should still be taken with care and only used to find the most interest-
ing regions. The correlation between the test methods is still not high enough to prove their
feasibility.

The tests agree about the two bins with the most occurrences of small p-values, Eτcand
T ∈

[43; 200) and φ ∈ [−0.5π; 0) (cp. Table 5.7). However, the results are more ambiguous than for
the variables’ p-values, as most entries are in the (50 %–100 %) bin.
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Figure 5.26: Ranking correlation for χ2 and KS method (used on physics bins). Low numbers stand for
high rankings, i. e. bad data/MC agreement according to the respective test algorithm.
The correlation is slightly higher than for the feature histograms (Fig. 5.21).

Sum χ2 KS Region
A B C A B C A B C
97 117 38 40 67 19 57 50 19 Eτcand

T ∈ [43; 200)
74 114 64 36 57 33 38 57 31 φ ∈ [−0.5π; 0)
...

...
...

...
...

...
...

...
...

...

Table 5.7: Quantifier outputs for physics bins, sorted by their sum (top 2 entries). The subcolumns
represent the bins of the methods’ p-values (cp. Table 5.5). The first three columns give the
sum of the bin entries from the χ2 and the Kolmogorov-Smirnov method, the other columns
represent the methods’ separate outcomes. For the full list, see Table A.2.
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The respective p histograms are shown in Fig. 5.27 and Fig. 5.28. In both cases, large
fractions (29 %–45 %) are in the first bin, but the rest is distributed plainly to some extent.
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(b) KS test.

Figure 5.27: p histograms for Eτcand
T ∈ [43; 200).
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(b) KS test.

Figure 5.28: p histograms for φ ∈ [−0.5π; 0).

The poor results for the ET bin indicate a negative energy dependency of the algorithm
(worse data/MC accordance for higher ET). On the other hand, the fact that one of the φ bins
scores a result just as bad, even though physics are symmetric in φ, hints at the low significance
of the test results.

Indeed, browsing through the graphs of the binned features [30], the effect of huge deviations
for high ET (or medium φ) could not be reproduced. In view of the fact that no other obvious
effects were found in terms of dependency on any one of the physics binnings, not even other
ET regions or pileup, PanTau can be acknowledged as a stable algorithm regarding the tested
parameters for the time being.

To authenticate this claim, the study has to be re-evaluated as soon as the cuts on minimum
ET for neutral EFOs (cp. Ch. 5.3.1) have been implemented and optimised.
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Furthermore, a study on true τ leptons is essential to substantiate this hypothesis.

5.3.4 Overall Performance

As already argued in the beginning of Ch. 5.2, the χ2 and KS tests are only meant to find a
good starting point for the analysis. Browsing through all the PanTau features’ inclusive and
binned histograms, it is obvious that PanTau achieves very good results and most variables are
well described by MC in all regions (at least when the statistics are sufficient).

Apart from the problems with N-EFO-like variables described in Ch. 5.3.1, that also have a
large impact on many of the other variables, and, trivially, on the binning in N(EFO∗±), the vast
majority of the plots show a very good data/MC agreement. Even for the mentioned problems,
a promising approach to fixing them is currently being implemented in eflowRec.

66



DRAFT
Chapter 6

Summary and Outlook

6.1 Conclusions from the Background Validation

The analysis of data/MC agreement in PanTau variables can be considered a success for Pan-
Tau.

Most variables perform very well (see Ch. 5.1.9). For the ones showing large discrepancies,
the conditions of the differences are well-understood, which mainly boil down to bad MC
description of noise and pileup in the calorimeter, i. e. calorimeter clusters with low energy. In
future revisions of eflowRec and PanTau, these problems will be attended to.

6.2 Sustainability of Developed Analysis Tools

Most of the tools that were created in order to perform these studies were integrated into the
SFM framework (cp. Ch. 2.3.2) and are available for further application in ATLAS related
analyses.

They can, for instance, be used to repeat the background analysis after changes in eflowRec
and PanTau have been implemented. A large part of the algorithm could in principle also be
re-used for similar studies on true τ leptons. However, these will be conducted by the ATLAS
Tau WG by means of more complex tools.

6.3 Future Tasks and Challenges

The next step that has to be taken from here, as explained in Ch. 5.3, is to study the impact
of energy cuts on neutral EFOs in eflowRec. Background studies have to be re-evaluated
afterwards.

Naturally, studies on true τ leptons have to follow, which will hopefully reconfirm the good
results of the background analysis.

This will provide sufficient evidence that PanTau is a reliable program and its results can
be trusted. Subsequently, PanTau’s performance with regards to decay mode separation (and,
possibly, fake suppression) will be one of the main focuses.
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Tables

Sum χ2 KS Variable
A B C A B C A B C
10 0 0 5 0 0 5 0 0 NEFO
10 0 0 5 0 0 5 0 0 NNeutralEFO
9 1 0 4 1 0 5 0 0 NEFOOut02
8 2 0 4 1 0 4 1 0 EflowMeanEtAllToSumEt
8 2 0 4 1 0 4 1 0 EflowMeanEtNeutToSumEt
8 1 1 4 0 1 4 1 0 NEFOOut03
7 3 0 4 1 0 3 2 0 NHADNeutralEFO
7 3 0 3 2 0 4 1 0 RatioChargedToTotalNumber
7 2 1 2 2 1 5 0 0 NEFOIn02To04
6 3 1 2 2 1 4 1 0 NEFOIn03
6 3 1 2 2 1 4 1 0 NEFOOut01
5 2 3 3 0 2 2 2 1 EflowJetMomentDRChrg
4 5 1 0 4 1 4 1 0 EflowInvariantMassAllAboveEtCut
4 4 2 1 3 1 3 1 1 EflowJetMomentDRAll
4 4 2 2 2 1 2 2 1 EflowMaxDeltaPtLeadingCharged-

QualifiedComponents
4 4 2 2 2 1 2 2 1 EflowMeanDeltaPtLeadingCharged-

QualifiedComponents
3 7 0 2 3 0 1 4 0 NEFOIn01To04
3 6 1 1 4 0 2 2 1 EtIn01OverEtIn04InvSigm
3 6 1 1 4 0 2 2 1 JetAplanarity
3 5 2 1 3 1 2 2 1 EtIn01OverEtIn02
3 5 2 0 3 2 3 2 0 EtIn01To02OverTotalEtInvSigm
3 4 3 2 0 3 1 4 0 EflowInvariantMassChargedQualified
3 4 3 0 2 3 3 2 0 EflowInvariantMassNeutral
3 4 3 1 3 1 2 1 2 NChargedEFO
3 4 3 1 3 1 2 1 2 NChargedQualifiedEFO
2 8 0 0 5 0 2 3 0 EtIn01To02OverTotalEt
2 7 1 2 3 0 0 4 1 EflowMaxDRToJetAxis

Table A.1: Quantifier outputs for PanTau features. (continued on next page)
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(continued from previous page)

Sum χ2 KS Variable
2 7 1 1 3 1 1 4 0 EtIn01To02ToJetAxis
2 7 1 2 3 0 0 4 1 JetThrustMinor
2 6 2 0 3 2 2 3 0 EflowLeadingHADNeutralEt-

ToSumHADNeutralEt
2 6 2 1 2 2 1 4 0 EflowMeanChrgDRToLeadingChrgEFO
2 6 2 1 4 0 1 2 2 EflowStdDevNeutDRToJetAxis
2 6 2 0 3 2 2 3 0 EtIn01OverEtIn02InvSigm
2 6 2 0 4 1 2 2 1 EtIn01OverEtIn04
2 6 2 1 3 1 1 3 1 JetSphericity
2 5 3 0 2 3 2 3 0 EflowHADNeutralEtToSumNeutralEt
2 5 3 1 3 1 1 2 2 EflowMeanChrgDR
2 5 3 0 3 2 2 2 1 EflowStdDevEtToSumEt
2 5 3 2 3 0 0 2 3 SeedRecoType
2 4 4 2 3 0 0 1 4 AbsSumCharge
2 4 4 1 2 2 1 2 2 EflowJetMomentDR2All
2 4 4 2 1 2 0 3 2 EtIn02To04OverTotalEtInvSigm
2 4 4 2 3 0 0 1 4 EtIn04To05OverTotalEt
2 4 4 2 3 0 0 1 4 EtIn04To05ToJetAxis
2 3 5 2 2 1 0 1 4 EflowAngleFirstNeutralSecondNeutral
2 3 5 2 1 2 0 2 3 EtIn02OverEtIn04InvSigm
2 3 5 2 1 2 0 2 3 EtIn02To03ToJetAxis
2 3 5 2 2 1 0 1 4 EtIn03To04ToJetAxis
2 3 5 2 1 2 0 2 3 SumCharge
2 2 6 2 1 2 0 1 4 EflowEMNeutralSumEt
2 2 6 2 2 1 0 0 5 JetFoxWolfram4
1 8 1 0 4 1 1 4 0 EflowLeadingHADNeutralEtToSumNeutralEt
1 7 2 0 3 2 1 4 0 EflowChargedToSumEt
1 7 2 0 4 1 1 3 1 EflowDRLeadingChargedLeadingNeutral
1 7 2 0 3 2 1 4 0 EflowHADNeutralEtToSumChargedEt
1 7 2 0 3 2 1 4 0 EflowHADNeutralEtToTotalEt
1 7 2 0 4 1 1 3 1 EflowInvariantMassCharged
1 7 2 1 3 1 0 4 1 EflowInvariantMassSignificantEFOs
1 7 2 1 3 1 0 4 1 EflowRatioDeltaPt12To13LeadingCharged-

QualifiedComponents
1 7 2 1 3 1 0 4 1 EflowRatioDeltaPt23To13LeadingCharged-

QualifiedComponents
1 7 2 1 4 0 0 3 2 JetThrustMajor
1 6 3 1 2 2 0 4 1 EflowEtLeadingChrgQualifiedOverTotalEt
1 6 3 1 3 1 0 3 2 EflowMeanEtHADNeutToSumEt

Table A.1: Quantifier outputs for PanTau features. (continued on next page)
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Sum χ2 KS Variable
1 6 3 1 4 0 0 2 3 EtIn02To04ToJetAxis
1 6 3 1 4 0 0 2 3 EtIn03To04OverEtIn04InvSigm
1 6 3 1 4 0 0 2 3 NEFOIn01
1 5 4 0 2 3 1 3 1 EflowStdDevE
1 5 4 1 2 2 0 3 2 EflowStdDevEtLeadingCharged-

QualifiedComponents
1 5 4 0 2 3 1 3 1 EtIn01ToJetAxis
1 4 5 1 1 3 0 3 2 EflowAngleJetAxisLeadingChargedQualified
1 4 5 0 1 4 1 3 1 EflowChargedToNeutralEt
1 4 5 1 0 4 0 4 1 EflowHADNeutralSumEt
1 4 5 0 1 4 1 3 1 EflowStdDevEt
1 4 5 1 2 2 0 2 3 JetFoxWolframRatioFW2OverFW1
1 3 6 1 1 3 0 2 3 EflowAngleChargedAxisEMNeutralAxis
1 3 6 1 1 3 0 2 3 EflowAngleEMNeutralAxisJetAxis
1 3 6 1 3 1 0 0 5 JetFoxWolfram2
1 3 6 1 3 1 0 0 5 JetFoxWolframRatioFW234OverFW1pow4
1 2 7 1 2 2 0 0 5 JetFoxWolfram3
1 1 8 1 0 4 0 1 4 EflowAngleFirstChargedSecondNeutral
0 8 2 0 5 0 0 3 2 EflowChargedSumEt
0 7 3 0 4 1 0 3 2 EflowInvariantMassAll
0 7 3 0 3 2 0 4 1 EflowJetMomentDRNeut
0 7 3 0 3 2 0 4 1 EflowMeanEtChrgToSumEt
0 7 3 0 4 1 0 3 2 EflowStdDevDRToJetAxis
0 7 3 0 4 1 0 3 2 EflowStdDevHADNeutDRToJetAxis
0 7 3 0 4 1 0 3 2 EtIn02To04OverTotalEt
0 7 3 0 4 1 0 3 2 NEFOIn02
0 6 4 0 3 2 0 3 2 EflowMaxDRLeadingCharged-

QualifiedComponents
0 6 4 0 3 2 0 3 2 EflowMeanHADNeutDR
0 6 4 0 3 2 0 3 2 EflowNeutralToSumEtInvSigm
0 6 4 0 2 3 0 4 1 EflowStdDevChrgE
0 6 4 0 3 2 0 3 2 JetPlanarity
0 5 5 0 3 2 0 2 3 EflowAngleChargedAxisJetAxis
0 5 5 0 3 2 0 2 3 EflowAngleChargedAxisNeutralAxis
0 5 5 0 2 3 0 3 2 EflowAnglePlaneFirstCharged-

FirstNeutralSecondNeutral
0 5 5 0 1 4 0 4 1 EflowChargedToSumEtInvSigm
0 5 5 0 1 4 0 4 1 EflowStdDevChrgEt
0 5 5 0 2 3 0 3 2 EflowStdDevHADNeutEt

Table A.1: Quantifier outputs for PanTau features. (continued on next page)
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(continued from previous page)

Sum χ2 KS Variable
0 5 5 0 3 2 0 2 3 NEMNeutralEFO
0 4 6 0 2 3 0 2 3 EflowEMNeutralEtToTotalEt
0 4 6 0 2 3 0 2 3 EflowLeadingHADNeutralEt
0 4 6 0 4 1 0 0 5 EflowMeanEMNeutDR
0 4 6 0 2 3 0 2 3 EflowStdDevChrgDRToJetAxis
0 4 6 0 1 4 0 3 2 EflowStdDevHADNeutE
0 4 6 0 3 2 0 1 4 JetFoxWolframRatioFW1PlusFW2OverFW4
0 4 6 0 4 1 0 0 5 JetThrust
0 3 7 0 1 4 0 2 3 EflowAngleLeadingChrgQualified-

2ndLeadingChrgQualified
0 3 7 0 2 3 0 1 4 EflowAngleNeutralAxisJetAxis
0 3 7 0 1 4 0 2 3 EflowInvariantMassEMNeutral
0 3 7 0 2 3 0 1 4 EflowMeanAngleBtwLeadingCharged-

QualifiedComponents
0 3 7 0 3 2 0 0 5 EflowMeanHADNeutEt
0 3 7 0 2 3 0 1 4 EflowStdDevEMNeutDRToJetAxis
0 3 7 0 2 3 0 1 4 EflowStdDevNeutEt
0 3 7 0 3 2 0 0 5 JetFoxWolfram1
0 3 7 0 3 2 0 0 5 JetFoxWolframRatioFW4pow4OverFW1
0 3 7 0 1 4 0 2 3 JetOblateness
0 2 8 0 0 5 0 2 3 EflowEMNeutralEtToTotalEtInvSigm
0 2 8 0 1 4 0 1 4 EflowMaxAngleLeadingCharged-

QualifiedComponents
0 2 8 0 2 3 0 0 5 EflowMeanHADNeutE
0 2 8 0 1 4 0 1 4 EflowNeutralSumEt
0 2 8 0 2 3 0 0 5 EflowStdDevNeutE
0 2 8 0 2 3 0 0 5 RatioChargedToNeutral
0 1 9 0 1 4 0 0 5 EflowDihedralAngleLeading-

ChargedQualified
0 1 9 0 1 4 0 0 5 EflowSecondNeutralEt
0 0 10 0 0 5 0 0 5 EflowSumEAll

Table A.1: Quantifier outputs for PanTau features.
The subcolumns represent the bins of the methods’ p-values (cp. Ta-
ble 5.5). The first three columns give the sum of the bin entries from the
χ2 and the Kolmogorov-Smirnov method, the other columns represent
the methods’ separate outcomes.
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Sum χ2 KS Region

A B C A B C A B C
97 117 38 40 67 19 57 50 19 Eτcand

T ∈ [43; 200)
74 114 64 36 57 33 38 57 31 φ ∈ [−0.5π; 0)
70 111 71 26 69 31 44 42 40 ∆R to closest jet ∈ [1.475; 5)
69 105 48 30 59 22 39 46 26 N(EFO∗±) = 1
66 112 74 32 46 48 34 66 26 η ∈ [1.2; 2.8)
65 109 78 32 57 37 33 52 41 Eτcand

T ∈ [18; 26)
64 114 74 27 60 39 37 54 35 φ ∈ [−π;−0.5π)
64 107 81 34 49 43 30 58 38 µ ∈ [14; 15)
63 109 66 26 57 36 37 52 30 N(EFO∗±) = 2
63 100 89 27 57 42 36 43 47 η ∈ [−2.8;−1.2)
60 105 87 29 57 40 31 48 47 N(EFO∗±) = 3
60 99 93 26 56 44 34 43 49 φ ∈ [0.5π; π)
58 124 70 25 67 34 33 57 36 η ∈ [0.4; 1.2)
55 126 71 20 73 33 35 53 38 µ ∈ [10; 13)
55 107 90 23 61 42 32 46 48 Eτcand

T ∈ [26; 43)
52 117 83 28 57 41 24 60 42 η ∈ [−1.2;−0.4)
50 111 91 24 61 41 26 50 50 µ ∈ [13; 14)
49 104 99 19 57 50 30 47 49 ∆R to closest jet ∈ [0.975; 1.475)
45 127 80 18 69 39 27 58 41 η ∈ [−0.4; 0.4)
44 105 103 18 57 51 26 48 52 φ ∈ [0; 0.5π)
43 122 87 22 64 40 21 58 47 Eτcand

T ∈ [15; 18)
39 112 101 16 64 46 23 48 55 ∆R to closest jet ∈ [0.55; 0.65)
34 121 97 16 60 50 18 61 47 ∆R to closest jet ∈ [0.4; 0.55)
34 118 100 20 53 53 14 65 47 N(EFO∗±) = 4
31 113 108 17 60 49 14 53 59 ∆R to closest jet ∈ [0.725; 0.975)
29 117 106 18 63 45 11 54 61 µ ∈ [15; 16)
28 102 122 21 42 63 7 60 59 N(EFO∗±) = 5
25 121 106 15 58 53 10 63 53 ∆R to closest jet ∈ [0.65; 0.725)
25 74 151 25 44 56 0 30 95 N(EFO∗±) ∈ [6; 7]
17 92 143 13 48 65 4 44 78 µ ∈ [16; 18]

Table A.2: Quantifier outputs for physics bins.
The subcolumns represent the bins of the methods’ p-values (cp. Table 5.5). The first three
columns give the sum of the bin entries from the χ2 and the Kolmogorov-Smirnov method,
the other columns represent the methods’ separate outcomes.
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