

Measurement of τ -spin correlations in $Z/\gamma^* \rightarrow \tau \tau$ decays DPG Frühjahrstagung 2016 Hamburg 01/03/2015 Maike Hansen

Bonn-Cologne Graduate School of Physics and Astronomy

Motivation

- BSM models predict CP even & odd H with mixing angle φ_τ
- Extract mixing angle from transverse τ spin correlations in H $\rightarrow \tau_{had} \tau_{had}$

- Reconstruct τ decay planes & measure angle $\phi^*{}_{\mathsf{CP}}$ between them
- Plot differential x-section as a function of $\phi^*{}_{\mathsf{CP}}$
- → Mixing angle from phase shift with respect to CP-even prediction
- → Need Run-2 Tau Reconstruction (T87.1 P. Wagner Thursday 13.45)

Reconstruction of the τ decay planes

Reconstruction of the τ decay planes

Maike Hansen

Differential cross-section as a function of ϕ^*_{CP}

Apply methods to H and $Z/\gamma^* \rightarrow \tau_{had} \tau_{had}$ events (13TeV, 720 fb⁻¹)

•

- Apply methods to H and $Z/\gamma^* \rightarrow \tau_{had} \tau_{had}$ events
- Use $Z/\gamma^* \rightarrow \tau_{had} \tau_{had}$ events to calibrate the methods & estimate the expected sensitivity

Maike Hansen

- Apply methods to H and $Z/\gamma^* \rightarrow \tau_{had} \tau_{had}$ events
- Use $Z/\gamma^* \rightarrow \tau_{had} \tau_{had}$ events to calibrate the methods & estimate the expected sensitivity

But in $Z \rightarrow \tau \tau$ there is no ϕ^*_{CP} dependence of the x-section...

- Apply methods to H and $Z/\gamma^* \rightarrow \tau_{had} \tau_{had}$ events
- Use $Z/\gamma^* \rightarrow \tau_{had} \tau_{had}$ events to calibrate the methods & estimate the expected sensitivity

But in $Z \rightarrow \tau \tau$ there is no ϕ^*_{CP} dependence of the x-section...

However, we can generate an artificial cosine dependence by splitting the phase space!

- Apply methods to H and $Z/\gamma^* \rightarrow \tau_{had} \tau_{had}$ events
- Use $Z/\gamma^* \rightarrow \tau_{had} \tau_{had}$ events to calibrate the methods & estimate the expected sensitivity

How to split the phase space?

- Split phase space based on π^- being rather parallel or perpendicular to τ^-/ρ^- -production plane
- Plot diff. cross-section vs. ϕ^*_{CP} for each subsets

- One shows CP-even, the other CP-odd like distribution
- → Generate artificial cosine dependence in $Z/\gamma^* \rightarrow \tau \tau$

Asymmetry in simulated $Z/\gamma^* \rightarrow \tau \tau$ (13TeV,10 fb⁻¹)

Generator-Level

After Reconstruction

01.03.2016

Maike Hansen

Event selection

Preselection

- 1 medium, 1 tight (isolated, opposite sign)
- pT(τ1)> 40 GeV, pT(τ2)> 30 GeV
- *τ*s have 1 or 3 tracks
- Lepton Veto
- Δη < 1.5
- MET>20 GeV
- 0.8<ΔR<2.4

Higgs Signal Region

Preselection

+ M_{mmc} > 115 GeV VBF

Z 0-jet Region

Preselection

- + 2 tight τ s (suppress QCD)
- + 70 < M_{mmc} < 115 GeV (Z-peak)
- # Jets = 0 (Modelling of transverse spin correlations well understood here, working on validation of Z+jets together with Stefan Berge)
- → Region to select mostly Z's but not optimised for Z→τ_{had}τ_{had} yet!

Z Control Region

Preselection

- + 70 < M_{mmc} < 115 GeV (Z-peak)
- → Close to Higgs signal region

Selection

11

Run

as

same

Boosted

Data Monte-Carlo comparison

- Powheg-Pythia Monte Carlo
- Sherpa 2.2 MC will be available soon
- Validation of the modelling of transverse spin correlations in Z+jets events together with Stefan Berge is ongoing

Multijet

 Estimated from Data using OS-SS Method

Everything else

From Monte Carlo

Data

LHC Run-2, 2015 dataset, 3.21 fb⁻¹ at 13 TeV

Control distributions in Z regions (13 TeV, 3.21 fb⁻¹)

Z 0-jet Region

Z control region

First Look at φ^*_{CP} modulation in the1p1n-1p1n τ - τ decay channel (13 TeV, 3.21 fb⁻¹)

Z control region

α- < π/4

α- > π/4

01.03.2016

Maike Hansen

Summary & Outlook

- CP admixture in H $\rightarrow \tau_{had} \tau_{had}$ can be extracted from distribution of the angle between the τ -decay planes ϕ^*_{CP}
- Decay plane reconstruction depends on τ -decay mode \Rightarrow Need Run-2 τ -reco
- Introduce artificial ϕ^*_{CP} modulation in $Z/\gamma^* \rightarrow \tau \tau$ events by splitting the decay phase space \Rightarrow Study systematics & calibrate all reconstruction methods
- → Fit ϕ^*_{CP} modulation in the Z-Regions for all τ -decay mode combinations
- Basic event selection identical to Run-1 H $\rightarrow \tau \tau$ preselection
- Challenging to get pure Z-sample in fully hadronic mode \rightarrow optimise event selection in Z-regions for Z $\rightarrow \tau_{had} \tau_{had}$
- → Looks already promising given that we expect much more data for 2016

Summary & Outlook

- CP admixture in H $\rightarrow \tau_{had} \tau_{had}$ can be extracted from distribution of the angle between the τ -decay planes ϕ^*_{CP}
- Decay plane reconstruction depends on τ -decay mode \Rightarrow Need Run-2 τ -reco
- Introduce artificial ϕ^*_{CP} modulation in $Z/\gamma^* \rightarrow \tau \tau$ events by splitting the decay phase space \Rightarrow Study systematics & calibrate all reconstruction methods
- → Fit ϕ^*_{CP} modulation in the Z-Regions for all τ -decay mode combinations
- Basic event selection identical to Run-1 H $\rightarrow \tau \tau$ preselection
- Challenging to get pure Z-sample in fully hadronic mode \rightarrow optimise event selection in Z-regions for Z $\rightarrow \tau_{had} \tau_{had}$
- → Looks already promising given that we expect much more data for 2016

Thank you for your attention!

Maike Hansen