Studien zu Gaseigenschaften in InGrid-basierten Röntgendetektoren

DPG Frühjahrstagung 2014 Mainz Jonathan Ottnad Universität Bonn 24.03.2014

Cern Axion Solar Telescope

- Quantenchromodynamik erlaubt CP-Verletzung,
- Bisher CP-Verletzung unbeobachtet
- Einführen der Peccei-Quinn Symmetrie löst dieses sog. starke CP-Problem
- Damit einhergehend: Einführung Axion:
 - Neutral, leicht, langlebig
 - Koppelt an Gluonen
 - Kandidat für dunkle Materie

CERN Axion Solar Telescope

- Produziert in der Sonne via Primakoff Effekt
- Rekonversion via inversen Primakoff Effekt

Versuchsanordnung – Der Röntgendetektor

- Gasgefüllter Detektor entwickelt von C. Krieger
- Basiert auf CAST Micromegas
- 3 cm Drift-Distanz
- Kombination von pixelierter Auslese & integrierter Gasverstärkung

Versuchsanordnung – Timepix & InGrid

- 256 \times 256 Pixel zu je 55 \times 55 μm^2
- Gesamtfläche von $1.4 \times 1.4 \text{ cm}^2$
 - "Time over threshold" (ToT) oder "time of arrival" (ToA) Messungen

Versuchsanordnung

- ⁵⁵Fe-Quelle
- Ar/iC₄H₁₀ Gasgemische
- FPGA basiertes
 Auslesesystem,
 entwickelt von
 M. Lupberger (*T 33.2*)
- Ladungskalibration mittels externer
 Testpulse möglich

Datenaufbereitung

Datenaufbereitung

Elektronen pro Cluster Spektrum klar χ^2 / ndf 45.2 / 46 Häufigkeit 1000 erkennbar 1050 ± 9.0 constant mean 302.4 ± 0.1 800 • $N_{exp.} = \frac{E}{W} \approx 222$ sigma 16.34 ± 0.09 600 • $N_D \approx 302$ 400 • Wieso $N_D > N_{exp}$? 200 100 150 200 250 300 350 400 450 500 0^L 0

50

Elektronen

Ladungsaustausch – Die Polya-Verteilung

Ladungsaustausch - Korrektur Ladungs-Asymmetrie

- Ladungsfluss zu benachbarten Pixeln
- Bevorzugte Paarung von Treffern mit hoher und niedriger Ladung

Ladungsaustausch - Korrektur

Effizienz

Gasverstärkungseigenschaften

- Exponentielle
 Abhängigkeit von U_{Grid}
- Bei gegebenem U_{Grid}
 ist Gasverstärkung
 kleiner für mehr
 Isobutan
- Maximale Gasverstärkung ist größer für mehr Isobutan

Gasverstärkung

Gasverstärkungseigenschaften – Energieauflösung

99/1

275

- $R = \sigma_D / N_D$
- *R* weist ein Minimum auf
- *R* ist besser f
 ür mehr Quencher
- $R_{meas} = F \frac{\sigma}{\sqrt{N}}$
- $F_{(90/10)} = 0.338 \pm 0.008$
- Bekannte Werte f
 ür Argon ~0.25 – 0.35

169

Zusammenfassung

- Energieauflösungen von bis zu 3.85 ± 0.06 %
- Ladungsaustausch konnte identizifiert und (teilweise) korrigiert werden
- Arbeitspunkt f
 ür R
 öntgendetektor in verschiedenen Gasgemischen wurde bestimmt
- Detektor bereit f
 ür Einsatz am CERN Axion Solar Telescope

CERN Axion Solar Telescope – **Requirements on a detector**

- Sensitive in the soft Xray regime
- Good rejection of background and noise
- Highest efficiency at low rates

Experimental setup – Micromegas

Experimental setup – Expectations

- ⁵⁵Fe decays via electron capture
- Emits photons at 5.9 keV and 6.4 keV
- 6.4 keV filtered out by a Cr-foil
- Two lines expected from the 5.9 keV photons:
 - 5.755 keV: the photo peak
 - 2.689 keV: the escape peak
- Mean ionization energy in argon is 26 eV
 - 222 electrons in the photo peak
 - 103 electrons in the escape peak

InGrid production

Damaged InGrid

Collection efficiency

Field studies – Diffusion

- $D_T = \frac{\sigma_y}{\sqrt{z}}$
- Maximum width achieved for maximum drift distance
- Assume z = 3 cm
- σ_y from fit

Field studies – Diffusion

Detection efficiency

Data preparation – Cleaning

Data preparation – Reconstruction

- ⁵⁵Fe spectrum already visible
- Photo peak deviates from Gaussian on the left edge
- This hints at events with insufficient diffusion

Detector geometry

Example of insufficient diffusion

Cut on center positions

Data preparation – Cleaning

Ladungsaustausch – Einfluss der Schutzschicht

Amplification properties – Gas gain

- Number of detected electrons N_D depends on the gas gain
- Charge sharing effects are 'under control' for high quencher fractions

Amplification properties – Detection efficiency

- Fit function can be derived from the Polya function
- p0 determines the number of electrons that reached the amplification stage

Amplification properties – Detection efficiency

Ar/iC ₄ H ₁₀	N_{pixel}^{photo}	p_0	δ
90/10	219.80 ± 0.09	220.64 ± 0.12	0.9962 ± 0.0007
95/5	253.48 ± 0.09	273.5 ± 0.6	0.9368 ± 0.0021
96/4	251.91 ± 0.10	271.7 ± 0.4	0.9272 ± 0.0014
97/3	239.63 ± 0.08	279.40 ± 0.30	0.8577 ± 0.0010
97.7/2.3	278.20 ± 0.09	325.0 ± 0.4	0.8560 ± 0.0011
98/2	262.27 ± 0.10	353.3 ± 0.5	0.7423 ± 0.0011

 $N_P^{Theo} \approx 222 \rightarrow$ high collection efficiency

Amplification properties – Mean ionization energy

Ar/iC_4H_{10}	N_D	W / eV	W_{theo} / eV
90/10	219.80 ± 0.09	26.182 ± 0.010	25.7
95/5	253.48 ± 0.09	22.704 ± 0.008	25.85
96/4	251.91 ± 0.10	22.845 ± 0.009	25.88
97/3	239.63 ± 0.08	24.016 ± 0.008	25.91
97.7/2.3	278.20 ± 0.09	20.687 ± 0.007	25.93
98/2	262.27 ± 0.10	21.943 ± 0.008	25.94

 $W = 5755 \, \text{eV} / N_D$

