Constrained SUSY after the Higgs discovery

Björn Sarrazin for the Fittino Collaboration

Rheinische Friedrich-Wilhelms-Universität Bonn

DPG Mainz, 24 March 2014

The status of the CMSSM

pretty dull?

almost dead?

Björn Sarrazin (University of Bonn)

Fittino

 $C{++}\xspace$ program for model testing and parameter analysis using

- all kind of available experimental measurements
- public theory codes to calculate predictions
- \blacktriangleright a χ^2 function to compare measurements and predictions
- ► an auto-adaptive Markov Chain to sample the parameter space
- frequentist interpretation

Publications:

arXiv:0412012[hep-ph], arXiv:0511006[hep-ph], arXiv:0907.2589[hep-ph], arXiv:0909.1820[hep-ph], arXiv:1102.4693[hep-ph], arXiv:1105.5398[hep-ph], 1204.4199[hep-ph], arXiv:1310.3045 [hep-ph]

The CMSSM

Constrained MSSM reduces 124 parameters of MSSM to 4 and a sign:

 M_0 common scalar mass parameter

 $M_{1/2}$ common gaugino mass parameter

 A_0 common trilinear coupling

 $\tan \beta$ ratio of Higgs VEVs

sgn μ sign of Higgsino mass parameter

We fix sgn $\mu = +1$

We use m_t as additional free fit parameter.

Björn Sarrazin (University of Bonn)

Fitting the CMSSM

CMSSM is experimentally constrained by

- indirect constraints from low energy precision measurements
- SM-like Higgs boson
- direct searches for sparticles and Higgs bosons
- astrophysical observations

To evaluate the corresponding model predictions we use:

- SPheno for spectrum calculation
- FeynHiggs for Higgs properties, $(g 2)_{\mu} \& \Delta m_s$
- Superlso for other B-Physics observables
- Prospino, Herwig++, Delphes for direct sparticle searches
- MicrOMEGAs for dark matter relic density
- DarkSUSY via Astrofit for direct detection cross section

Björn Sarrazin (University of Bonn)

Measurements

Low energy observables

$\mathcal{B}(B_s o \mu^+ \mu^-)$	$(3.20 \pm 1.50 \pm 0.76) imes 10^{-9}$
${\cal B}(B^\pm o au^\pm u)$	$(0.72\pm0.27\pm0.11\pm0.07) imes10^{-4}$
${\cal B}(b o s \gamma)$	$(3.43\pm0.21\pm0.07\pm0.23)\times10^{-4}$
Δm_s	$(17.719\pm0.043\pm4.200){ m ps}^{-1}$
$\pmb{a}_{\mu} - \pmb{a}^{ ext{SM}}_{\mu}$	$(28.7\pm8.0\pm2.0) imes10^{-10}$
m_W	$80.385 \pm 0.015 \pm 0.010$
m_t	$(173.18\pm0.94) ext{GeV}$
$\sin^2 heta_{ m eff}$	0.23113 ± 0.00021

Björn Sarrazin (University of Bonn)

Constrained SUSY...

DPG Mainz, 24 March 2014 6 / 18

SM-like Higgs boson

Higgs signals via HiggsSignals

Direct searches for sparticles and Higgs Bosons

- Higgs limits via HiggsBounds
- LEP chargino mass limit
- ATLAS MET + jets + 0 lepton search (20fb⁻¹)

Astrophysical observables

- We require χ_1^0 to be the LSP
- Dark matter relic density: $\Omega_{\rm CDM} h^2 = 0.1187 \pm 0.0017 \pm 0.0119$ (Planck '13)
- Direct detection limit from 225 live days of Xenon100 ('12)

Björn Sarrazin (University of Bonn)

χ^2 contributions

At each parameter point \vec{P} calculate:

$$\chi^2 = \left(ec{O}_{ ext{meas}} - ec{O}_{ ext{pred}}(ec{P})
ight)^{ au} ext{cov}^{-1} \left(ec{O}_{ ext{meas}} - ec{O}_{ ext{pred}}(ec{P})
ight) + \chi^2_{ ext{limits}}$$

Björn Sarrazin (University of Bonn)

Constrained SUSY...

DPG Mainz, 24 March 2014 8 / 18

χ^2 contribution from ATLAS SUSY searches

- Depending on value of A_0 and tan β stop-production increases
- ► Along exclusion line we produced grids of correction factors in A₀-tan β

Björn Sarrazin (University of Bonn)

Preferred parameter space

... with $m_h = (125.5 \pm 2 \pm 3)$ GeV but without Higgs rates

▶ $\chi^2/\text{ndf} = 13.6/9$

 \blacktriangleright FP / Higgs funnel region allowed at 2σ

Björn Sarrazin (University of Bonn)

Constrained SUSY...

DPG Mainz, 24 March 2014 10 / 18

Preferred parameter space

... with mass und Higgs rates measurements via HiggsSignals

- $\chi^2/\mathrm{ndf} = 49.6/59$: SM-like Higgs well described by CMSSM
- Fit quality seems to improve
- \blacktriangleright FP / Higgs funnel region disfavored at 2σ

Björn Sarrazin (University of Bonn)

Predicted mass spectrum

- Lower bound of 1 TeV on heavy Higgs bosons
- Relative light $\tilde{\tau}_1$ because of coannihilation region
- Relative light \tilde{t}_1 because of large stop mixing
- q̃ and g̃ masses at best fit point about 2 TeV

Björn Sarrazin (University of Bonn)

Predicted Higgs properties

- SM-like Higgs boson
- not much room left for deviations

Björn Sarrazin (University of Bonn)

Predicted direct detection cross section

- Xenon 100 currently not sensitive
- Xenon1T will start to probe 2σ region

Björn Sarrazin (University of Bonn)

Agreement of observations with model predictions

,	M ₀ =504GeV, M _{1/2} =1016GeV, A	₀ =-2870GeV, m _t =	:174GeV, tan β=18	
$\text{BR(B}_{\text{s}} \rightarrow \mu^{\text{+}}\mu^{\text{-}}\text{) / 10}^{\text{-9}}$	3.20 +- 1.50+- 0.76	3.59		PRELIMINARY
BR(b \rightarrow $\tau\nu$) / 10 ⁻⁴	0.72 +- 0.27 +- 0.11+- 0.07	0.80		
BR(b \rightarrow s γ) / 10 ⁻⁴	3.43 +- 0.21 +- 0.07+- 0.23	2.97		
Δ m _s / ps ⁻¹	17.719 +- 0.043+- 4.200	21.058		
(a _µ - a SM) / 10 ⁻¹⁰	28.7 +- 8.0+- 2.0	2.9		
m _w / GeV	80.385 +- 0.015+- 0.010	80.390		
$sin^2 \theta^{I}_{eff}$	0.23113 +- 0.00021	0.23136		
$\Omega_{\rm CDM} {\rm h}^2$	0.1187 +- 0.0017+- 0.0119	0.1165		
m,	173.18 +- 0.94	173.74		
σ ^{si} / pb		1.3e-11		
LHC				
m _h / GeV		125.2		
μ _h				
		Ċ) 1 IMeasF	2 3 -itl/σ

SM like region of parameter space SUSY is losing its advantage in prediction of g - 2

Björn Sarrazin (University of Bonn)

Goodness of fit: Toy toys

- χ^2 function only guaranteed to be $\chi^2\text{-distributed}$ if
 - uncertainties are Gaussian
 - observables depend linearly on parameters
- χ^2/ndf might overestimate the goodness of fit
 - here: proof of principle using (toy) toy fits
- bonus: toy distributions of parameters and observables

Björn Sarrazin (University of Bonn)

Why all results are preliminary

- Shown results use FeynHiggs 2.9.4
- The Higgs mass calculations used are not designed to work well for large values of mSUSY
- This has been improved in FeynHiggs 2.10.0

Björn Sarrazin (University of Bonn)

Summary & Outlook

Summary:

- Best fit region of the CMSSM is very SM like
- CMSSM \sim SM + DM
- Difficult to distinguish them experimentally
- But: Relative light $\tilde{\tau}_1$, \tilde{t}_1 predicted
- To judge over the CMSSM, toy fits are needed

Outlook:

Stay tuned for results using

- Higgs mass calculation from FeynHiggs 2.10.0
- toy fits including Higgs rate measurements for calculation of \mathcal{P} -values