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Introduction

With inspiration (and some material) from very nice
talks from

Roger Barlow, Alex Read, Kyle Cranmer
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Introduction

The Task
Statistics can be used for very many purposes
I guess here we are most concerned about

Finding or excluding a signal
Determining uncertainties
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Introduction

The Definition of the Probability

For most of the talk: Define Probability P of X as

P(X ) = N(X )/N for N → ∞

Examples: coins, dice, cards

For continuous x extend to Probability Density

P(x to x + dx) = p(x)dx

p(x) is the probability density function (pdf)

Examples:

Measuring continuous quantities (p(x) often Gaussian, Poisson, . . . )
Counting rates
Physical Quantities: Parton momentum fractions (proton pdfs) . . .

Alternative: Define Probability P(X ) as “degree of belief that X is
true”
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Introduction

The Likelihood

Probability distribution of random variable x often depends on some
parameter a

Joint function p(x , a):

Considered as p(x)|a this is the pdf.
Normalised:

∫
p(x)dx = 1

Considered as p(a)|x this is the Likelihood L(a) (or L(a))
Not “likelihood of a” but “likelihood that a would give x”
Not normalised. Indeed, must never be integrated.

This is going to be one of the central concepts/quantities for the rest
of the talk

If we want to know a parameter a, we are looking for the point where
the likelihood that a would predict the data x is maximized

If we want to test a Hypothesis H0 against another one (H1), we want
to compare their likelihoods

If we want to know what a cannot be, we want to know where L(a)|x
is small
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Interpretation of Statistics

Examples for Frequentist and Bayesian
Interpretations
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Quantify the agreement between each model point and the data:

χ2 =

nObs∑
i=1

(Mi − Oi(~P))
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i

+ Constraints

Advanced MCMC scans with automatically adapting proposal density
width
Huge difference between different statistical philosophies
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Interpretation of Statistics

Frequentist Reasoning

It’s pretty simple, I think:

Probability of an event is the relative frequency of its occurrence
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Interpretation of Statistics

Frequentist Reasoning

It’s pretty simple, I think:

Probability of an event is the relative frequency of its occurrence

Need something which (at least in a simulation) can in principle
repeated indefinitely, otherwise there exists no probability
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It’s pretty simple, I think:

Probability of an event is the relative frequency of its occurrence

Need something which (at least in a simulation) can in principle
repeated indefinitely, otherwise there exists no probability

Since the universe can’t be repeated (we don’t know how to simulate
its genesis before the big bang, therefore the parameters of the
Universe are not random variables): there exists no probability density
in theory/parameter space
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Interpretation of Statistics

Frequentist Reasoning

It’s pretty simple, I think:

Probability of an event is the relative frequency of its occurrence

Need something which (at least in a simulation) can in principle
repeated indefinitely, otherwise there exists no probability

Since the universe can’t be repeated (we don’t know how to simulate
its genesis before the big bang, therefore the parameters of the
Universe are not random variables): there exists no probability density
in theory/parameter space

Therefore, the only statements we can make are:
If theory H is true (which we will never know), then the probability of
the observed outcome D of our experiment P(D|H) is . . .
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Interpretation of Statistics

Frequentist Reasoning: Examples

Can’t say
“It will probably rain tomorrow.”
There is only one tomorrow. P is either 1 or 0

Have to say
“The statement ‘It will rain tomorrow.’ is probably true.”
Can then even quantify (meteorology).
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Interpretation of Statistics

Frequentist Reasoning: Examples for interpeting
physics results

Can’t say
“mt has a 68% probability of lying between 171 and 175 GeV”

Have to say “The statement ‘mt lies between 171 and 175 GeV’ has a
68% probability of being true”

Be aware:

In this context, a certain value of mt has no probability. It is either true
or false.
But the interval [171, 175] depends on the data and does fluctuate. If
you repeat the experiment, you will get different intervals each time, and
68% of them should cover the invariant true value.

if you always say a value lies within its error bars, you will be right
68% of the time

Say “mt lies between 171 and 175 GeV” with 68% Confidence. Or 169
to 177 with 95% confidence.

That is the Confidence Level CL
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Interpretation of Statistics

Bayesian Reasoning

“I’m a frequentist”, thus probably I cannot do justice to Bayesian
resoning, even though I try
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Interpretation of Statistics

Bayesian Reasoning

“I’m a frequentist”, thus probably I cannot do justice to Bayesian
resoning, even though I try

Mathematically, Bayes theorem is unquestioned and simple:

P(H|D) =
P(D|H)

P(D)
P(H)

P(D) =

i<n∑
i=1

P(D|Hi)P(Hi )

with

P(H |D): “Posterior”, belief in H given D
P(D|H): “Likelihood”, probability of D given H
P(H): “Prior” belief in H , given nothing
P(D): “Evidence”: believe in D, given all possible hypotheses H

P. Bechtle: Statistics (as used at LHC) HAP Workshop HU Berlin 13.03.2014 13



Interpretation of Statistics

My Thoughts on Bayesian Reasoning

The math is certainly fine.
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Interpretation of Statistics

My Thoughts on Bayesian Reasoning

The math is certainly fine.

There is no problem if

You can “measure” P(H) (e.g. systematics measured elsewhere).
Probabaly this is not always easy, and there might be guesswork
involved, but at least one can get an objective hint.
You know P(H) from your model (but wait . . . where in physics do we
know the model? Then we would not need to do physics . . . )
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Interpretation of Statistics

My Thoughts on Bayesian Reasoning

The math is certainly fine.

There is no problem if

You can “measure” P(H) (e.g. systematics measured elsewhere).
Probabaly this is not always easy, and there might be guesswork
involved, but at least one can get an objective hint.
You know P(H) from your model (but wait . . . where in physics do we
know the model? Then we would not need to do physics . . . )

I have big problems with the physical and philosophical meaning of
what is done here if applied to fundamental parameters
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Interpretation of Statistics

Bayesian Reasoning – oh, why?

Given this – in my very personal view – philosophical mess: Why is it
used by many people?
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Interpretation of Statistics

Bayesian Reasoning – oh, why?

Given this – in my very personal view – philosophical mess: Why is it
used by many people?

Stolen from

Ben Farmer and

Martin White

P(ball under cup i) = P(i) = 1/1000
Assume we looked under 999 cups. No ball found (D)!

P(1000|D) =
P(D|1000)∑

i≤1000
i=1 P(D, i)P(i)

P(1000)

P(1000|D) =
1

999× 0 + 1× 1/1000
× 1

1000
= 1
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Interpretation of Statistics

Bayesian Reasoning – oh, why?

Given this – in my very personal view – philosophical mess: Why is it
used by many people?

Stolen from

Ben Farmer and

Martin White

P(ball under cup i) = P(i) = 1/1000
Assume we looked under 999 cups. No ball found (D)!

P(1000|D) =
P(D|1000)∑

i≤1000
i=1 P(D, i)P(i)

P(1000)

P(1000|D) =
1

999× 0 + 1× 1/1000
× 1

1000
= 1

In an “experiment” where the “theory” consists of a fixed number of
known individually testable basic theorems this is fine.

P. Bechtle: Statistics (as used at LHC) HAP Workshop HU Berlin 13.03.2014 15



Interpretation of Statistics

Bayesian Reasoning – oh, why?

But on second thought, isn’t that result from the previous slide a bit
strange?
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Interpretation of Statistics

Bayesian Reasoning – oh, why?

But on second thought, isn’t that result from the previous slide a bit
strange?

We have a hypothesis “There is exactly one ball under one of the 1000
cups”.

We look under 999 cups and don’t find a ball

We do the bayesian math and realize that the fact that we did not find
the ball in 99.9% of the possible experiments increased or belief that
we will find it in the next trial
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Interpretation of Statistics

Bayesian Reasoning – oh, why?

But on second thought, isn’t that result from the previous slide a bit
strange?

We have a hypothesis “There is exactly one ball under one of the 1000
cups”.

We look under 999 cups and don’t find a ball

We do the bayesian math and realize that the fact that we did not find
the ball in 99.9% of the possible experiments increased or belief that
we will find it in the next trial

Of course this is mathematically correct

But in reality we never are sure about our hypothesis. So we cannot
use the prior, and thus we cannot say that not fining the ball can
increase our degree of belief that we will find it next time.
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Interpretation of Statistics

Bayesian Reasoning – why not?

Can we apply this to the belief in the CMSSM parameter point x?

P(CMSSM x |D) =
P(D|CMSSM x)∑∞

i=1 P(D|CMSSM i)P(CMSSM i)
P(CMSSM x)

P. Bechtle: Statistics (as used at LHC) HAP Workshop HU Berlin 13.03.2014 17
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Bayesian Reasoning – why not?

Can we apply this to the belief in the CMSSM parameter point x?

P(CMSSM x |D) =
P(D|CMSSM x)∑∞

i=1 P(D|CMSSM i)P(CMSSM i)
P(CMSSM x)

no, we clearly can’t; We can’t execute the sum, and we don’t know
anything about P(CMSSM x), it does not exist for philosophical
reasons! Our theories are never finite sums of basic theorems
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Interpretation of Statistics

Bayesian Reasoning – why not?

Can we apply this to the belief in the CMSSM parameter point x?

P(CMSSM x |D) =
P(D|CMSSM x)∑∞

i=1 P(D|CMSSM i)P(CMSSM i)
P(CMSSM x)

no, we clearly can’t; We can’t execute the sum, and we don’t know
anything about P(CMSSM x), it does not exist for philosophical
reasons! Our theories are never finite sums of basic theorems

So can we apply it to answer the question: How unlikely did the
CMSSM become relative to the SM, given that we found no SUSY?

P(CMSSM|D)

P(SM|D)
=

P(D|CMSSM)

P(D|SM)

P(CMSSM)

P(SM)

It looks like we at least could say something about how the present
data D modifies our prior belief in the CMSSM and the SM
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Interpretation of Statistics

Bayesian Reasoning – why not?

Can we apply this to the belief in the CMSSM parameter point x?

P(CMSSM x |D) =
P(D|CMSSM x)∑∞

i=1 P(D|CMSSM i)P(CMSSM i)
P(CMSSM x)

no, we clearly can’t; We can’t execute the sum, and we don’t know
anything about P(CMSSM x), it does not exist for philosophical
reasons! Our theories are never finite sums of basic theorems

So can we apply it to answer the question: How unlikely did the
CMSSM become relative to the SM, given that we found no SUSY?

P(CMSSM|D)

P(SM|D)
=

P(D|CMSSM)

P(D|SM)

P(CMSSM)

P(SM)

It looks like we at least could say something about how the present
data D modifies our prior belief in the CMSSM and the SM

Well, actually no:

P(D|CMSSM) =
∏
i

∫
θi

P(D|CMSSM θi)P(CMSSM θi)dθi
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Limits and Measurements at LHC Introductory Example

Do we see a Higgs mass peak? Use LEP for
simplcity

Are there many of these candidates?
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Limits and Measurements at LHC Introductory Example

The Neyman Interval

Let’s neglect systematics
for the time being . . .

Use Poisson-Distribution
p(n;λ) = e−λλn/n!

For any true λ the
probability that (n|λ) is
within the belt is 68%
(or more) by construction

For any n, [λ−, λ+]
covers the true λ at 68%
confidence

Only integrated over n,
not over λ!

Technique technically works for every CL, and single or double sided
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Limits and Measurements at LHC Introductory Example

Getting the most out of the availale events?

If hypothesis exists with d≈ s+b on a significant level: Higgs found

If not: Calculate, how improbable d is under a certain hypothesis s:
→ exclusion

First example: Add all s, b, d of all channels (Counting Experiment)

If s 6=0 only in one channel: this degrades sensitivity

Poisson-distributions for s=4,b=2

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

2 4 6 8 10 12 14

b=2, s=4b=2, s=4b=2, s=4

Background

Signal+Background

Poisson-distributions for s=4,b=40

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

10 20 30 40 50 60 70

b=40, s=4b=40, s=4b=40, s=4

Background Signal +

Background

Not the most sensitive method . . .
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Limits and Measurements at LHC Introductory Example

Avoiding a big problem?

Observe d = 5 events. Expected background b of 0.9 events
Data d = signal s + background b

Say with 68% confidence: [2.84, 8.38] covers s + b

So say with 68% confidence: [1.94, 7.48] covers s
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Observe d = 5 events. Expected background b of 0.9 events
Data d = signal s + background b

Say with 68% confidence: [2.84, 8.38] covers s + b

So say with 68% confidence: [1.94, 7.48] covers s

Suppose expected background 10.9 events?
“We say at 68% confidence that [−8.06,−2.52] covers s with 68% CL”
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Avoiding a big problem?

Observe d = 5 events. Expected background b of 0.9 events
Data d = signal s + background b

Say with 68% confidence: [2.84, 8.38] covers s + b

So say with 68% confidence: [1.94, 7.48] covers s

Suppose expected background 10.9 events?
“We say at 68% confidence that [−8.06,−2.52] covers s with 68% CL”

This is technically correct. We are allowed to be wrong 32% of the
times
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So say with 68% confidence: [1.94, 7.48] covers s

Suppose expected background 10.9 events?
“We say at 68% confidence that [−8.06,−2.52] covers s with 68% CL”

This is technically correct. We are allowed to be wrong 32% of the
times
While it is mathematically correct, it makes no sense physically
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Limits and Measurements at LHC Introductory Example

Avoiding a big problem?

Observe d = 5 events. Expected background b of 0.9 events
Data d = signal s + background b

Say with 68% confidence: [2.84, 8.38] covers s + b

So say with 68% confidence: [1.94, 7.48] covers s

Suppose expected background 10.9 events?
“We say at 68% confidence that [−8.06,−2.52] covers s with 68% CL”

This is technically correct. We are allowed to be wrong 32% of the
times
While it is mathematically correct, it makes no sense physically

We know that the background happens to have a downward
fluctuation. How can we incorporate that knowledge?

We assume here that the background is calculated correctly
Deal with systematics later using nuisance parameters
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Limits and Measurements at LHC Introductory Example

A simple choice of a better test statistics Q

For optimal sensitivity, do just
not add the total channel
contents
but use the information of full
(mass) distributions

Define the test statistics Q as a
likelihood ratio
Q =

∏
i
Pdi

(si + bi)/Pdi
(bi )

Define 1− CLb: Probability of
a b-experiment to give a less
background like result than the
observed one

Define CLs+b: Probability of a
s+b-experiment to give a more
background like result than the
observed one

Conservative limit:
CLs = CLs+b/CLb
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Limits and Measurements at LHC Introductory Example

The Likelihood Ratio: Neyman-Pearson-Lemma

We are performing a hypothesis test between two hypotheses
H0: θ = θ0 and H1: θ = θ1

the likelihood-ratio test which rejects H0 in favour of H1 when the test
statistics

Q(d) =
L(d |θ0)
L(d |θ1)

≤ η

with
P(Q(d) ≤ η | H0) = α

is the most powerful test of size α

What does that mean? And what are H0 and H1?
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Limits and Measurements at LHC Introductory Example

The Likelihood Ratio: Neyman-Pearson-Lemma

We are performing a hypothesis test between two hypotheses
H0: θ = θ0 and H1: θ = θ1

the likelihood-ratio test which rejects H0 in favour of H1 when the test
statistics

Q(d) =
L(d |θ0)
L(d |θ1)

≤ η

with
P(Q(d) ≤ η | H0) = α

is the most powerful test of size α

What does that mean? And what are H0 and H1?

We want α (“Type I” error) very small

We want the power

P(rejectH0|H0 is false) = β

to be as large as possible. 1− β is the “Type II” error.
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Limits and Measurements at LHC Introductory Example

The Likelihood Ratio: Neyman-Pearson-Lemma
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Limits and Measurements at LHC Introductory Example

Is there a Significant Excess?
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(1− CLb) is a measure of the
’background-likeness’ of an
experiment. If (1− CLb) is e.g.
5%, then the probability of this
outcome to be caused by a
fluctuation of the background is
5%

No excess above 3σ

Be aware of the ’look-elsewhere’
effect!
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Limits and Measurements at LHC Introductory Example

No Significant Excess: What’s the Limit?
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CLs is a measure of how
signal-like the outcome of an
experiment is. If CLs is small, it
is very unlikely that there is a
signal. Hence, a 95% CL
corresponds to CLs = 0.05

Final word from LEP on the SM
Higgs:

mh > 114.4GeV
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Limits and Measurements at LHC The Profile Likelihood Technique at the LHC

Developments since LEP: Profile Likelihood

Already at LEP: The important thing is to split the the statistics in bins with high
si/bi and low si/bi

New: Introduce signal strength scaling parameter µ

Assume you measure di and try to explain it with µsi + bi as assumed expectation
values

In addition, measure mk background bins and try to explain with uk(~θ) as
expectation value

Significance test is based on profile likelihood test statistics:

See how this is similar to a fit?
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Limits and Measurements at LHC The Profile Likelihood Technique at the LHC

The Profile Likelihood Technique in a fit
In a fit to measurements ~x , you vary the parameters ~a and either
maximize the Likelihood lnL(~x ;~a) (or minimize the χ2)

In special cases:

−2 lnL = χ2 = (~x − ~̄x(~a))TC−1(~x − ~̄x(~a))
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Toy Higgs mass distribution
 / ndf 2χ  69.83 / 55

Prob   0.08596
nsig      10.27± 32.33 
mass      0.7± 125.7 
width     0.578± 1.825 
backg1    0.066± 7.917 
backg2    0.00053± -0.02012 

Toy Higgs mass distribution
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Limits and Measurements at LHC The Profile Likelihood Technique at the LHC

The Profile Likelihood Technique in a fit
In a fit to measurements ~x , you vary the parameters ~a and either
maximize the Likelihood lnL(~x ;~a) (or minimize the χ2)
In special cases: (and no correlations)

−2 lnL = χ2 =
∑
i

(xi − x̄i (~a))
2

σ2
i
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mass      0.7± 125.7 
width     0.578± 1.825 
backg1    0.066± 7.917 
backg2    0.00053± -0.02012 

Toy Higgs mass distribution
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The Profile Likelihood Technique in a fit

In the above fit, the uncertainty on the number of signal events seems
to be larger than the poisson uncertainty

√
N . Why?
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The Profile Likelihood Technique in a fit

In the above fit, the uncertainty on the number of signal events seems
to be larger than the poisson uncertainty

√
N . Why?

Obviously that is because there is an uncertainty on the background
model. Let’s fix everything apart from NSig:

 / ndf 2χ  69.83 / 55
Prob   0.08596
nsig      10.27± 32.33 
mass      0.7± 125.7 
width     0.578± 1.825 
backg1    0.066± 7.917 
backg2    0.00053± -0.02012 
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 / ndf 2χ  69.83 / 59

Prob   0.1581

nsig      8.69± 32.33 

Toy Higgs mass distribution
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The Profile Likelihood Technique in a fit

So what does “profiling” mean?
Study how the χ2 (or more precisely −2 lnL) behaves if one parameter
of interest is varied and if all other nuisance parameters are varied such
that they give the lowest possible −2 lnL for each given parameter of
interest
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The Profile Likelihood Technique in a fit

So what does “profiling” mean?
Study how the χ2 (or more precisely −2 lnL) behaves if one parameter
of interest is varied and if all other nuisance parameters are varied such
that they give the lowest possible −2 lnL for each given parameter of
interest

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

chi2profileHistNSigchi2profileHistNSig

P. Bechtle: Statistics (as used at LHC) HAP Workshop HU Berlin 13.03.2014 31



Limits and Measurements at LHC The Profile Likelihood Technique at the LHC

The Profile Likelihood Technique in a fit

The test statistics chosen at LHC for the exclusion of a given signal
hypothesis with strength µ is

λ(µ) =
L(d ;µ,

ˆ̂
~θ)

L(d ; µ̂, ~̂θ)
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The Profile Likelihood Technique in a fit

The test statistics chosen at LHC for the exclusion of a given signal
hypothesis with strength µ is

λ(µ) =
L(d ;µ,

ˆ̂
~θ)

L(d ; µ̂, ~̂θ)
Let’s rewrite that:

−2 lnλ(µ) = −2 lnL(d ;µ,
ˆ̂
~θ) + 2 lnL(d ; µ̂, ~̂θ)

that looks mightily familiar to the fit. There, we plotted

−2∆ lnL ≈ ∆χ2 = χ2(µ)− χ2
min
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The Profile Likelihood Technique in a fit

The test statistics chosen at LHC for the exclusion of a given signal
hypothesis with strength µ is

λ(µ) =
L(d ;µ,

ˆ̂
~θ)

L(d ; µ̂, ~̂θ)
Let’s rewrite that:

−2 lnλ(µ) = −2 lnL(d ;µ,
ˆ̂
~θ) + 2 lnL(d ; µ̂, ~̂θ)

that looks mightily familiar to the fit. There, we plotted

−2∆ lnL ≈ ∆χ2 = χ2(µ)− χ2
min

The choice of λ(µ) is optimal (Neyman-Pearson) for distinguishing the
hypothesis µ from what is observed (µ̂). I.e. it is optimal for excluding
ranges of µ.
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The Profile Likelihood Technique in a fit

The test statistics chosen at LHC for the exclusion of a given signal
hypothesis with strength µ is

λ(µ) =
L(d ;µ,

ˆ̂
~θ)

L(d ; µ̂, ~̂θ)
Let’s rewrite that:

−2 lnλ(µ) = −2 lnL(d ;µ,
ˆ̂
~θ) + 2 lnL(d ; µ̂, ~̂θ)

that looks mightily familiar to the fit. There, we plotted

−2∆ lnL ≈ ∆χ2 = χ2(µ)− χ2
min

The choice of λ(µ) is optimal (Neyman-Pearson) for distinguishing the
hypothesis µ from what is observed (µ̂). I.e. it is optimal for excluding
ranges of µ.
Example: If we exclude µ = 0: Exclude that there is no Higgs
If we exclude µ = 1: Exclude that there is a SM Higgs

P. Bechtle: Statistics (as used at LHC) HAP Workshop HU Berlin 13.03.2014 32



Limits and Measurements at LHC The Profile Likelihood Technique at the LHC

The Profile Likelihood Technique in a fit

We can do this with every parameter . . . here it’s the mass:
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The Profile Likelihood Technique in a fit

So fitting the nuisance parameters is a great thing because we
automatically include our systematics (i.e. the uncertainty of the
background description) into the limit or fit result.
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The Profile Likelihood Technique in a fit

So fitting the nuisance parameters is a great thing because we
automatically include our systematics (i.e. the uncertainty of the
background description) into the limit or fit result.
In addition, it can be (depends on the experimental situation) an
elegant way of determining the background in the first place:

 / ndf 2χ  69.83 / 59

Prob   0.1581

nsig      8.69± 32.33 
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Toy Higgs mass distribution
 / ndf 2χ   2.87 / 5

Prob    0.72
nsig      31.4± 202.6 
mass      0.6±   127 
width     1.153± 4.654 
backg1    10.04± 32.03 
backg2    0.085± -0.223 

Toy Higgs mass distribution
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The Profile Likelihood Technique in a fit
So how do we know the uncertainty of our measurements?
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The Profile Likelihood Technique in a fit
So how do we know the uncertainty of our measurements?

Either we just read it off at ∆χ2 = 1 (or ∆ lnL = 1/2)
If we know that the errors are gaussian, and the relation between all
parameters and all observables is linear
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The Profile Likelihood Technique in a fit
So how do we know the uncertainty of our measurements?

Either we just read it off at ∆χ2 = 1 (or ∆ lnL = 1/2)
If we know that the errors are gaussian, and the relation between all
parameters and all observables is linear

Or we throw toys

 / ndf 2χ  903.4 / 35
Prob       0
nEvents   88.7±  3935 
mean      0.36± 37.36 
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Prob   1.058e-23
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Sigma     0.15± 10.37 
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The Profile Likelihood Technique in a fit
So how do we know the uncertainty of our measurements?

Either we just read it off at ∆χ2 = 1 (or ∆ lnL = 1/2)
If we know that the errors are gaussian, and the relation between all
parameters and all observables is linear

Or we throw toys
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Developments since LEP

P. Bechtle: Statistics (as used at LHC) HAP Workshop HU Berlin 13.03.2014 36



Limits and Measurements at LHC The Profile Likelihood Technique at the LHC

Limits at the LHC: Setting the CL

Try to reject the background hypothesis based on q0, independent of si

E.g. could get the following: if p0 small, reject SM! Found new physics!
But it doesn’t tell us whether we found the SM Higgs. We might have found
something else!

To get a hint whether a new observation could be the SM Higgs, µ̂ must be
compatible with 1
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Limits at the LHC: How to control θ

The big thing since LEP: Ged rid of partly bayesian techniques by
fitting the systematic uncertainties to the data during limit setting at
each toy MC
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CLs based Exclusions
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Measurements of Signal Rates
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Examples: Present Results from ATLAS

The observables: E.g. binned mass distributions
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Examples: Present Results from ATLAS

The observables: E.g. binned mass distributions
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Examples: Present Results from ATLAS

With signal regions and control regions, all used in the same fit
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Examples: Present Results from ATLAS

With signal regions and control regions, all used in the same fit
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Examples: Present Results from ATLAS

Make sure that we are sure we measured a signal
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Examples: Present Results from ATLAS

Make sure that we are sure we measured a signal
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Examples: Present Results from ATLAS

And measure properties of the signal

Signal strength
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Examples: Present Results from ATLAS

And measure properties of the signal
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Summary

I hope that’s kind of what you were interested in

Too much to summarize on one slide anyway . . .

There are so many things I could not cover in the available time (I
guess), like

So much on variances, expectation values, pdfs, . . .
The Look Elsewhere Effect
Doing justice to careful applications of Bayesian statistics
. . .
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Backup Slides
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