

Pixelized TPC readout status and prospects

Y. Bilevych, C. Brezina, K. Desch, *J. Kaminski*, T. Krautscheid, C. Krieger, M. Lupberger University of Bonn

> F. Müller DESY, Hamburg

in collaboration with NIKHEF (J.Timmermans) and CEA Saclay (D. Attie, A. Chauss, P. Colas, M. Titov)

TPCs at high rate experiments Bonn

1.3.2013

Content

- I. Motivation for highly pixelized readout
- II. The Ingredients: Chip, Protection Layer, Grid, Detector, ... Timepix, Readout Electronics, Software Production of grids Protection layer Some results
- III. Necessity for operation in large scale experiments New chip Industrial production of Grids Readout electronics
- IV. Summary and Outlook

universität**bonn**

MPGD

i)

iii)

Micro-Mesh Gaseous Detectors

Gas Electron Multipliers

ii)

F. Sauli, Nucl. Instrum. Meth. A386:531-534,1997.

J. Kaminski TPCs at high rate experiments, 1.3.2013, Bonn

3

TPC + MPGD

- ion backflow can be reduced significantly
 => continuous readout might be possible
- small pitch of gas amplification regions (i.e. holes)
 => strong reduction of E×B-effects
- no preference in direction (as with wires)
 => all 2 dim. readout geometries can be used
- no ion tail => very fast signal (O(10 ns))
 => good timing and double track resolution
- no induced signal, but direct e-collection
 - => small transverse width => good double track resolution

Standard charge collection: Pads of several mm²

Long strips (I~10 cm, pitch ~200 μ m)

Could the spatial resolution of single electrons be improved? Ar:CO₂ 70:30 \rightarrow D₁ = 187 µm/ $\sqrt{cm} \rightarrow \sigma$ = 21 µm

Ar: CH_{4}^{-} 90:10 \rightarrow D_{1}^{-} = 208 μ m/ \sqrt{cm} \rightarrow σ = 24 μ m

Ar:iButan 95:5 \rightarrow D₁ = 211 µm/ $\sqrt{cm} \rightarrow \sigma$ = 24 µm

Smaller pads/pixels could result in better resolution!

Timepix Chip

Timepix chip (1st version) derived from MediPix-2

Available for tests since Nov. 2006 Number of pixel: 256×256 pixel Pixel pitch: $55 \times 55 \ \mu m^2$ Chip dimensions: $1.4 \times 1.4 \ cm^2$ ENC: $\sim 90 \ e^{-1}$

Each pixel can be set to one of these modes:

- Hit counting
- TOT = time over threshold gives integrated charge
- Time between hit and shutter end
- Hit/no-hit

Limitations: no multi-hit capability, charge and time measurement not possible for one pixel

Readout Electronics

MUROS 2.1 designed at NIKHEF - still in wide use today, but not in production anymore, can handle up to 8 chips, needs outdated NI card

USB interface designed by TU Prague very easy to handle/transport but limited speed and functionality

ReLaXd designed at NIKHEF – fast readout for 4 Medipix/Timepix chips

FITPix improved version of the USBinterface designed by TU Prague can handle up to 16 detectors

Most systems are operated by the Pixelman software developed at the TU Prague.

GEMs with Pixelized Readout

Prototype at Bonn Drift length: 26 cm Gas Amplification: Stack of 3 standard CERN GEMs 1 Timepix chip Gas mixture: He:CO₂ 70:30

Properties of Charge Depositions

Charge depositions can be separated with higher probability after longer drift (better separated by diffusion).

 \wedge \wedge \wedge \wedge \wedge \wedge Gas gain of about 200,000 was used. Charge depositions cover >65 pixels.

Spatial Resolution

Spatial resolution of single electrons should increase with $\sigma = D_t \sqrt{z}$

Due to limited separation power at short drift distances, one charge deposition may result from several electrons: $n = 1 + a e^b$

$$=> \sigma = \sqrt{\sigma_0^2 + D_t^2 z / (1 + a e^{bz})}$$

Longitudinal spatial resolution is also close to the diffusion limit: $\sigma = D_1\sqrt{z}$

Similar good performance was observed in high magnetic fields up to B = 4 T.

Production of InGrids

The production of InGrids was pioneered by the University of Twente/MESA+.

- 1. Dicing of Wafer
- 2. Formation of Si_xN_y protection layer
- 3. Deposition of SU-8
- 4. Pillars-like structure formation
- 5. Deposition of thin Al layer
- 6. Formation of Al grid
- 7. Development of SU-8

Optimization of InGrids

Detailed studies have been performed to optimize the layout of the structure. (NIMA 591, pp. 147, 2008, PhD. Thesis of M. Chefdeville, NIKHEF)

Also the layout of the supporting structures (pillars and dykes) was optimized to give the highest mechanical strength. The influence of the gap size and hole diameters on gain, energy resolution, ion feedback and collection efficiency were measured.

Protection Layer

Discharge triggered for example by highly ionizing particles could easily destroy the the chip. The charge collected by one pixel was too high.

A protection layer is placed on the chip to disperse the charge on many pixels and thus lower the input current per pixels. Besides, the charge is removed slowly and thus quenches the discharge.

<u>high resistive material</u> 15 μm aSi:H (~10¹¹ Ω·cm) 8 μm Si_xN_y (~10¹⁴ Ω·cm)

Chips survives several thousand discharges triggered by α s.

Energy Resolution

1.3.2013, Bonn

InGrids in a TPC

Same setup as with GEMs: Max. drift length: 26 cm Measures cosmic muons Drift field: 450 V/cm Gas: He:CO₂ (70:30)

anode plane

wire bonds

HV contact

universität**bon**

Field Distortions (I) 4v

due to wire bonds and space between grid and anode plane

=> Good area was chosen to indicate best performance

Electrical field in x-direction V/cm

Z

InGrid

universität**bonr**

Field Distortions (II)

Spatial Resolution

Transverse spatial resolution right on diffusion limit of single electrons.

Theoretical limit:

$$\sigma = D_{t}\sqrt{z}$$

with diffusion coefficient D_{f} calculated with Magboltz.

J. Kaminski TPCs at high rate experiments, 1.3.2013, Bonn

Spatial Resolution on the complete chip and on the good area only.

Principle of a highly pixelized readout has been demonstrated successfully!

But what is missing for application in particle physics experiments?

Better chip → Timepix-3
 Mass production of InGrids → Production at IZM
 Adapted readout system → SRS system
 Deal with field distortions
 Cooling

Application LCTPC

One of the two detector concepts at ILC foresees a large TPC as a central tracking device. Micropattern gas amplification stages are needed to fulfill requirements.

size of endcaps $\sim 10 \text{ m}^2$

8 rows of MPGD detector modules; module size ~17×23 cm² 240 modules per endcap

To readout the ILD-TPC with InGrids, one needs \sim 100-120 chips per module \rightarrow 25000-30000 per endcap

universitätbo

Timepix-3

TPCs at h

1.

Layout has basically been finished. Specs see table (from: Timepix3 Designer Manual v1.0)

Some simulations are still ongoing. chip will be submitted in a few weeks.

Most importantly: Charge and time will be available For every pixel, Multi-hit capable Very high output rate: 8×640 MHz Time resolution of 1.5 ns

General Requirements	
Pixel size	55 μm x 55 μm
Pixel matrix array	256 x 256
Target floorplan	3 sides buttable and minimum periphery
Highly Configurable	HEP platform for many projects
Time stamp and TOT recorded simultaneously	YES
No event counting mode	Only for testing
Technology	IBM 130nm DM 4-1
Power consumption	<1.5W/cm ² (~45 µW/pixel) @1.2 V
TSVs possibility	YES
Chip Readout Modes	
Data-driven readout (token pass)	YES
Zero-suppressed and Sparse data readout	YES
Dead time free	YES (if moderated count rate)
Time Stamp	
Global Time stamp (bunchID)	40 MHz (25ns)
Global Time stamp range	14bits (409.6 μs)
Accurate Time stamp per pixel	4bits \rightarrow 1.56ns resolution (640 MHz)
Local Oscillator frequency	640 MHz
On-pixel local oscillator tuning	Locked using periphery PLL
тот	
TOT Clock reference	40 MHz (25ns)
TOT range	10 bits
Periphery	
Analog Blocks	Band-Gap, DACs and Test Pulse
E-fuses (chip ID, hard-wire configuration)	YES
Programmable PLL	40 → 40, 80, 160, 320, 640 MHz
Periphery/output clock	40, 80, 160, 320 MHz
RO architecture	[1 8] LVDS DDR 8b/10b Encoding

IZM

Production at Twente was based on 1 - 9 chips process. This could not satisfy the increasing demands of R&D projects. New production set up at the Fraunhofer Institut IZM at Berlin. This process is wafer-based \rightarrow 1 wafer (107 chips) is processed at a time.

Wafer-based Production Fraunhofer

- 1. Formation of Si_xN_y protection layer
- 2. Deposition of SU-8
- 3. Pillar structure formation
- 4. Formation of Al grid
- 5. Dicing of Wafer
- 6. Development of SU-8

Main challenges: - Formation of layers, in particular protection layer

- Deposition of Al
- Final development of SU-8 \rightarrow still chip-based

Institute for Nanotechnology

SiRN should not cover bond pads

First tests: mechanical mask \rightarrow failed due to thermal stress <u>Better:</u> poyimide mask chem. removed After development of pillars, the grid is too fragile for dicing

Time consuming

SEM Pictures Fraunhofer

Production History

<u>1. batch</u> (10/2011): Problems with resistive layer and Al-grid <u>2. batch</u>: InGrids worked well, good energy resolution ($\sigma_{E}/E \sim 7\%$)

(12/2011) Resistive layer proved vulnerable (chips died after 2 weeks)
<u>3. batch</u>: Chips survived many thousand X-ray-induced sparks
(9/2012) But 7 out of 10 chips died in a hadronic test beam at CERN
<u>4. batch</u>: 4 wafers with different resistive layer thicknesses (4 μm, 8 μm)
(12/2012) Problems with the production (machine failure)

 \rightarrow only few good chips

5. batch: in preparation 6. batch: planned (6 wafers)

Energy resolution is similarly good as before: $\sigma_{E}/E=5.6$ % for the pixel spectrum $\sigma_{E}/E=7.2$ % for charge spectrum

Column [#]

Timepix readout with SRS

The Scalable Readout System is designed by the RD51 collaboration with CERN as a main developer. → See presentation of H. Muller Idea: produce a flexible readout electronics, which can handle different chips (new FPGA code, chip carrier), which many groups can use

U. Bonn is developing a readout for the Timepix chip.

Operation has been demonstrated for a eight chip, more functionality has to be added.

Calibration Results (I)

Distribution of threshold equalization bits of chip 3 on octoboard

Calibration Results (II)

TOT Calibration

Octoboard with 2 chips

2 boards with bare Timepix chips have been completed – it works. First board with InGrids has started.

Short Term Plan

2 LCTPC modules shall be tested at the DESY test beam at the end of March with 8 Timepix chips: - Tripe GEM with bare Timepix chips - 8 InGrids Cooling will be done with water.

Mid-Term Plan

Module completely covered with Timepix chips (~100-120).

Summary and Outlook

InGrids have shown excellent performance:

Energy resolution of $\sigma_{_{\rm F}}/E \sim 5\%$ (at 5.9 keV)

Spatial resolution only limited by diffusion.

High efficiency for single electron detection.

- Production techniques are well advanced, the reliability of the production process has to be optimized.
- Several readout systems optimized for large number of chips has been developed.
- Large systems (~100 chips) will be operated soon.
- Further R&D on InGrids are planned (resistive grid, all ceramic,...) New Timepix-3 could be available this year.

<u>Acknowledgment:</u> This presentation shows the work of many people at NIKHEF, U. Twente/MESA+, U. Bonn, IZM, CEA Saclay.

