Simplified model approaches in the search for supersymmetry with tau leptons in the final state at ATLAS

Oliver Ricken, Physikalisches Institut, University of Bonn

SUSY2013, DESY, Hamburg, Germany, 05/08/2013

Simplified Models – Status at ATLAS

- Only few simplified models with taus so far:
 - First results presented at Moriond '13
 - Legger et al.: elw. simplified model with stau nlsp
- How we tackle this:
 - GMSB-inspired ($ilde{G}$ as LSP)
 - $-\tilde{\tau}_1^{\pm}$ as NLSP (stau promising NLSPs)
 - Expected signature: taus + MET
 - Pseudo-observables (masses) determine grid structure
 - "Hidden" parameters, see if …
 - ... Independent of → good, parameter stays hidden
 - ... effects on analysis visible → try to parametrise
 SUSY2013, DESY, Hamburg, Germany -- a talk by

ATLAS-CONF-2013-028

Studies in Bonn – Status & Plans

- Existing simplified model grids:
 - Electro-weak direct stau pair production
 - Electro-weak direct chargino pair production
 - Surpression of t-channel production ($m\left(\tilde{q}_{\mathrm{L,R}}\right)=6\,\mathrm{TeV}$)
 - Easier to set up & control (less parameters)
 - Rather low production cross sections @ LHC
- Planned grid:
 - Strong gluino/squark production
 - More difficult (more parameters)
 - Larger production cross sections @ LHC

$$- \tilde{q}_{L,R} \in \left\{ \tilde{u}_{L,R}, \tilde{d}_{L,R}, \tilde{c}_{L,R}, \tilde{s}_{L,R} \right\}$$

Stau grid - setup

- Stau pair production (elw.) (just warm-up studies)
 - Parameter: $m(\tilde{\tau}_1)$
 - Hidden parameter: stau mixing angle $\Theta_{\tilde{\tau}}$
 - Studies of FS tau polarisation (wrt. stau mixing)

$$\begin{pmatrix} \tilde{\tau}_1 \\ \tilde{\tau}_2 \end{pmatrix} = \begin{pmatrix} \cos \Theta_{\tilde{\tau}} & \sin \Theta_{\tilde{\tau}} \\ -\sin \Theta_{\tilde{\tau}} & \cos \Theta_{\tilde{\tau}} \end{pmatrix} \begin{pmatrix} \tilde{\tau}_L \\ \tilde{\tau}_R \end{pmatrix}$$

Stau grid – polarisation studies

- FS tau polarisation studies: $\tau \to \nu_{\tau} + X_{\rm had}$.
 - $\angle(\nu_{\tau},\tau)$ in tau RF
 - Charge dependent effects due to stau mixing
 - Hard to probe in the experiment

Stau grid – polarisation studies

- FS tau polarisation studies $\tau \to \nu_{\tau} + X_{\rm had.}$
 - $-\frac{E(\nu_{ au})}{E(au)}$ in LF
 - Charge dependent effects due to stau mixing
 - Hard to probe in the experiment but visible in p_t

Stau grid – polarisation studies

- FS tau polarisation studies $\tau \to \nu_{\tau} + X_{\rm had.}$
 - Both effects vanish when insensitive to tau charge

Chargino/stau grid - setup

- Chargino pair production (elw.)
 - Parameters: $m\left(\tilde{\chi}_{1}^{\pm}\right)$, $m\left(\tilde{\tau}_{1}\right)$
 - Hidden parameters: chargino mixing angle $\,\Phi_{
 m v,u}$, LSP mass $m\left(ilde{G}
 ight)$

$\tilde{\chi}_1$ - $\tilde{\tau}_1$ grid point selection, masses in GeV										
$m_{ ilde{\chi}_1}$	121	221	321	420	520	620	700			
$m_{ ilde{ au}_1}$	100	100	100	100	100	100	100			
$m_{ ilde{ au}_1}$	110	200	200	200	200	200	200			
$m_{ ilde{ au}_1}$	120	210	300	300	300	300	300			
$m_{ ilde{ au}_1}$		220	310	400	400	400	400			
$m_{ ilde{ au}_1}$			320	410	500	500	500			
$m_{ ilde{ au}_1}$				420	510	600	600			
$m_{ ilde{ au}_1}$					520	610	680			
$m_{ ilde{ au}_1}$						620	690			
$m_{ ilde{ au}_1}$							700			

Chargino/stau grid – teaser plots

- Acceptance x efficiency for the full grid
 - Analysis of the elw. chargino pair production applied (ATLAS-CONF-2013-028)

Chargino/stau grid – teaser plots

Acceptance x efficiency for
$$-m\left(\tilde{\chi}_1^{\pm}\right)=520\,\mathrm{GeV}\;,\;m\left(\tilde{\tau}_1^{\pm}\right)=300\,\mathrm{GeV}$$

universität**bonr**

Gluino/squark grid - setup

- Gluino/squark grid (strong production)
 - Still working on proper parametrisation
 - Hidden parameters: yet to be determined
 - exemplary process: $\tilde{q}_{L,R} \to \tilde{\chi}_1^0 + q \to \tilde{\tau}_1^{\pm} + \tau^{\mp} + q \to \tilde{G} + \tau^{\pm} + \tau^{\mp} + q$

Open questions

- Looking for further hidden parameters for all grids that possibly affect the efficiency
 - E.g. stau mixing:
 - Effect on p_t → effect on efficiency & tauID (efficiency/fake rate)
- Looking for possible parametrisation of strong production grid
 - Which sparticle masses are needed?
 - Which hidden parameters are intereseting?

Summary & Outlook

- Simplified models with FS taus
 - Promising (stau NLSP) but challenging (taus hard to detect)
 - So far only few approaches
- Studies in Bonn
 - Elw. stau production → tau polarization effects visible!
 - Elw. chargino production → studies ongoing
 - Strong squark/gluino production → planned

Backup - Chargino/stau selection

- Tau baseline selection
 - $p_t \ge 20 \,\text{GeV}$, $|\eta| < 2.5$, $|q| = 1, 1 \,\text{or} \, 3 \,\text{prong}$
 - MV technique (BDT) to distinguish from e/jet
- Overlap removal in applied order:
 - $\Delta R(e_1, e_2) \ge 0.1$, electron w/ lower energy is rejected
 - $\Delta R(e, j) \ge 0.2$, jet is rejected
 - $\Delta R(j,e)$ ≥ 0.4, electron is rejected
 - $\Delta R(j,\mu) \ge 0.4$, muon is rejected
 - $\Delta R(e,\mu) \ge 0.1$, muon is rejected
 - $-\Delta R(\mu_1, \mu_2) \ge 0.05$, both muons are rejected
 - $m(e_1^{\pm}, e_2^{\mp}) \ge 12 \text{ GeV}$, $m(\mu_1^{\pm}, \mu_2^{\mp}) \ge 12 \text{ GeV}$, both particles are rejected
 - $-\Delta R(e,\tau) \ge 0.2$, $\Delta R(\mu,\tau) \ge 0.2$, tau is rejected
 - $\Delta R(\tau, j) \ge 0.2$, jet is rejected

05/08/2013

- $m(\tau_1^{\pm}, \tau_2^{\mp}) \ge 12 \,\text{GeV}$, both taus are rejected

Backup - Chargino/stau selection

- Pile-up reweighting
- Event selection steps:
 - Event quality
 - Triggers: DiTau OR MET
 - Trigger plateau: 40 GeV + 25 GeV taus, 150 GeV MET
 - Exactely 2 OS signal taus, lepton veto

Backup – Susy decay chains in GMSB

Λ / TeV	$tan(\beta)$	most abundant elw. chain	abundance	most abundant strong chain	abundance	ratio stau/slepton to G
,	0 7					
60	2	$l_{ m R} ightarrow { m G}$	4824	$\tilde{q}_R \to \chi^0 \to l_R \to \tilde{G}$	719	5946/14054
60	5	$ar{ ext{l}}_{ ext{R}} ightarrow ar{ ext{G}}$	3570	$\tilde{q}_R \to \chi^0 \to \tilde{l}_R \to \tilde{G}$	622	6231/13569
60	10	$ ilde{ m l}_{ m R} ightarrow ilde{ m G}$	3416	$\tilde{q}_R \rightarrow \chi^0 \rightarrow \tilde{l}_R \rightarrow \tilde{G}$	54	7317/12683
60	15	$ m I_R ightarrow G$	3325	$\tilde{q}_R \rightarrow \chi^0 \rightarrow l_R \rightarrow G$	490	8586/11414
60	20	$ m l_R ightarrow ilde{ au}_1 ightarrow ilde{ m G}$	2863	$\tilde{q}_R \to \chi^0 \to \tilde{l}_R \to \tilde{\tau}_1 \to \tilde{G}$	397	18344/1656
60	30	$ar{ m l}_{ m R} ightarrow ilde{ au}_{ m 1} ightarrow ilde{ m G}$	3282	$\tilde{q}_R \to \chi^0 \to \tilde{l}_R \to \tilde{\tau}_1 \to \tilde{G}$	384	19995/3
60	40	$ ilde{ au}_1 o ilde{ ext{G}}$	4018	$\tilde{q}_R \to \chi^0 \to \tilde{\tau}_1 \to \tilde{G}$	392	20000/0
60	50	$ ilde{ au}_1 o ilde{ ext{G}}$	8040	$\tilde{\mathbf{q}}_{\mathbf{R}} \to \chi^0 \to \tilde{\tau_1} \to \tilde{\mathbf{G}}$	367	20000/0
60	55	$ ilde{ au}_1 o ilde{ ext{G}}$	12137	$\tilde{\mathrm{g}} \to \tilde{\mathrm{q}}_{\mathrm{R}} \to \chi^0 \to \tilde{\tau}_1 \to \tilde{\mathrm{G}}$	217	20000/0
60	61	$ ilde{ au}_1 o ext{G}$	19414	$\tilde{\mathrm{g}} ightarrow \tilde{\mathrm{q}}_{\mathrm{R}} ightarrow \chi^0 ightarrow ilde{ au}_1 ightarrow \tilde{\mathrm{g}}$	21	20034/0
30	30	$\chi^+ \to \tilde{\tau}_1 \to G$	2130	$ ilde{ ilde{q}}_{ m R} ightarrow \chi^0 ightarrow ilde{ au}_1 ightarrow ilde{ ilde{G}}$	2246	20000/0
35	30	$\chi^+ \to \tilde{\tau}_1 \to G$	2198	$\tilde{\mathrm{g}} ightarrow \tilde{\mathrm{q}}_{\mathrm{R}} ightarrow \chi^0 ightarrow ilde{ au}_1 ightarrow \mathrm{G}$	1648	20000/0
40	30	$\chi^+ \to \tilde{\tau}_1 \to \tilde{G}$	2195	$\tilde{q}_R \rightarrow \chi^0 \rightarrow \tilde{\tau}_1 \rightarrow \tilde{G}$	1236	20000/0
45	30	$\chi^+ \to \tilde{\tau}_1 \to \bar{G}$	2152	$\tilde{q}_R \to \chi^0 \to \tilde{\tau}_1 \to \tilde{G}$	932	20000/0
50	30	$ar{ ext{l}}_{ ext{R}} ightarrow ilde{ au}_1 ightarrow ilde{ ext{G}}$	2193	$\tilde{\mathbf{q}}_{\mathbf{R}} \to \chi^0 \to \tilde{\tau}_1 \to \tilde{\mathbf{G}}$	688	20000/0
70	30	$ar{ ext{l}}_{ ext{R}} ightarrow ilde{ au}_{ ext{1}} ightarrow ilde{ ext{G}}$	3956	$\tilde{q}_R \to \chi^0 \to \tilde{l}_R \to \tilde{\tau}_1 \to \tilde{G}$	212	19991/9
80	30	$ ilde{ m l}_{ m R} ightarrow ilde{ au}_{ m 1} ightarrow ilde{ m G}$	4664	$\tilde{q}_R \to \chi^0 \to l_R \to \tilde{\tau}_1 \to G$	94	19955/45

Simplified Models - Motivation

Goals:

- Make model-independent predictions
- Set limits on visible cross section of particular susy processes
 - Acceptance x efficiency x cross section
- Determine parametrisation
 - Set of pseudo-observables (e. g. sparticle masses)
 - Keep parameter space as small as possible
- Manual for theorists:
 - Plug in parameters & determine limit
 - Multiply with branching ratio & lumi.
 - See if result is excluded

