An InGrid based Detector for the CAST Experiment DPG-Frühjahrstagung 2013 Dresden

Christoph Krieger, Klaus Desch, Jochen Kaminski, Michael Lupberger

University of Bonn

5th March 2013

Outline

- 2 An InGrid based Detector for CAST Why?
- Integrated Micromegas InGrid
- 4 Results of a Prototype Detector
- 5 Detector Integration

Axions

What are Axions? & Where do they come from?

- Goldstone-Boson arising from Peccei-Quinn mechanism
- PQ mechanism is elegant solution for the strong CP problem
 - Non-observation of CP violation in strong interaction
 - Smallness of electric dipole moment of neutron $(d < 0.29 \times 10^{-25} e \text{ cm})$
- Candidate for parts of Cold Dark Matter

Coupling to ordinary matter

- Very small coupling constants
- Coupling to gluons realized in all axion models
- Mixing with π^0 leads to coupling to two photons

Primakoff effect

CERN Axion Solar Telescope

Axions from the sun

- Primakoff effect generates huge axion flux from the sun
- Axions can reconvert to photons inside large \vec{B} fields
- Energy of solar axions below 15 keV (flux peaks at 3 keV)

Current X-ray Detectors

- Microbulk Micromegas
- X-ray Telescope plus pnCCD

CAST - An axion helioscope

CAST – Data taking

- Magnet can track sun $2 \times 1.5 \, \mathrm{h}$ per day
- Otherwise: background data
- Twice per year alignment can be checked visually

CAST – Results

Exclusion plot

PRL-107-26-1302(2011)

Exclusion limit

- No axions found up to now
- ⁴He and ³He used as buffer gas to restore sensitivity for higher axion masses
- CAST could set the most stringent limit for solar axions

An InGrid based Detector for CAST - Why?

Why a new CAST detector is needed

- Replacement of pnCCD will be necessary eventually
- Planned search for Chameleons (Dark Energy particle candidate) requires low threshold X-ray detectors (< 1 keV)

Benefits of a Micromegas with pixelized readout

- Detection/Resolution of single electrons possible
- High spatial resolution can be exploited for event shape analysis (may be used for background rejection)
- Low threshold should be possible: about $300 \, {\rm eV}$ (10 electrons)
- Purely digital data output due to integrated electronics

Integrated Micromegas – InGrid

Micromegas on top of Timepix ASIC

- Fabrication by means of photolithographic postprocessing
- Very good alignment of grid and pixels
- Each avalanche is collected on one pixel
- Detection of single electrons possible

Timepix + InGrid

Production of InGrids

- Single and few chip processing: NIKHEF / Mesa+ (Twente)
- Wafer processing (~ 100 chips at once): in cooperation with IZM Berlin

Timepix ASIC

Facts about the Timepix ASIC

- 256×256 pixels, $55\times 55\,\mu m^2$ pitch
- $1.4 \times 1.4 \, \mathrm{cm}^2$ active area
- Charge sensitive amplifier and discriminator in each pixel, 90 e ENC
- Two modes: Charge or Time

Protection of electronics

- Timepix ASIC is designed for imaging as readout electronics to be bump bonded on a silicon sensor
- Bump bond pads can be used as charge collecting anodes but electronics not designed to survive discharges
- Need resistive protection layer (e.g. $2\text{-}8\,\mu\mathrm{m}$ silicon nitride) to spread charge in case of discharge

How to build an InGrid on top of a Timepix?

- Starting with bare Timepix
- Deposition of protection layer (8 µm Si_xN_y)
- Deposition of negative photoresist SU-8 (50 µm)
- Exposure of SU-8
- Sputtering aluminium $(1 \, \mu m)$
- Putting mask on aluminium layer (photoresist)
- Structuring aluminum layer by etching the holes
- Development of SU-8, cleaning of interistitials

Prototype Detector

Cathode

Anode

Typical X-ray Events

Detector Performance – Tests with ⁵⁵Fe

Spectrum - Charge

Spectrum - Grid

Energy resolution

- Ar/iC_4H_{10} 95/5
- Cr foil to suppress $6.1 \, \mathrm{keV}$
- Pixels: $\sigma_N/N \approx 5.2 \,\%$
- Charge: $\sigma_Q/Q \approx 6.7 \,\%$
- Grid: $\sigma_U/U \approx 8\%$

Background Rates

After Likelihood-Ratio based discrimination

 Reduction should be possible by improvement of algorithm

Lead shielding

Likelihood-Ratio

A CAST compatible Detector Design

Exploded view

Features

- Modular design based on the current CAST Micromegas
- Body made of plexiglas
- X-ray windows:
 - Mylar films $2\,\mu m$ or $5\,\mu m$ with strongback
 - Under investigation: Array of silicon nitride membranes (200 nm thick)
- Operation pressure: 1.1 bar(a) or higher

Comparison of X-ray Window Transmission

Comparison of X-ray Window Transmission

Readout System

Virtex6 board

FPGA based readout system

- A new readout system for Timepix ASIC is being developed at Bonn (→ T77.1)
- FPGA based and therefore very flexible and adoptable to custom needs
- For CAST a slightly modified firmware will be used in combination with a Virtex6 evaluation board

Implementing the grid signal in the readout

- Idea: Use grid signal as kind of trigger
- $\bullet\,$ Close Timepix frame few μs after trigger signal
- Maybe recorded grid signal and longitudinal event shape can be used for background discrimination

X-ray Telescope – Status Quo

X-ray Telescope & pnCCD

Interfacing the InGrid Detector with the XRT

- $\bullet\,$ Very limited space: $\sim 300\,mm$ from adopter to focal plane
- $\bullet\,$ Need space for lead shielding and $^{55}\mathrm{Fe}$ source manipulator
- Differential pumping may be necessary to ensure good vacuum in XRT

Interfacing the InGrid Detector with the XRT

Interfacing the InGrid Detector with the XRT

Conclusion & Outlook

Conclusion

- InGrid based X-ray detector has shown good energy resolution and promising background rates
- A CAST compatible detector based on InGrid technology has been designed (and built)
- Efforts to mount detector on XRT at CAST are ongoing

Outlook

- Tests at low X-ray energies in the CAST Detector Lab towards mid/end of April
- Installation of detector at CAST mid of the year
- Implementation of grid signal in readout scheme and improvement of background discrimination

Backup Slides

Timepix ASIC – More Details

Timepix 3

- Is under development and will be submitted this year
- Will be able to recognize multihits and to measure Charge and Time simultaneously
- Will allow data driven readout

The Peccei-Quinn Mechanism

Strong CP problem

• Lagrangian of strong interaction contains CP violating term

$$\mathcal{L} = \underbrace{\sum_{n} \bar{q}_{n} (\gamma^{\mu} i D_{\mu} - m_{n}) q_{n} - \frac{1}{4} G^{a}_{\mu\nu} G^{\mu\nu}_{a}}_{\mathcal{L}_{\text{QCD}}} + \theta \frac{g^{2}}{32\pi^{2}} G^{a}_{\mu\nu} \tilde{G}^{\mu\nu}_{a}$$

An elegant solution - The Peccei-Quinn mechanism

- A bit similar to Higgs mechanism
- \bullet Introduction of new global, chiral symmetry $U(1)_{\rm PQ}$ which is spontaneously broken at energy scale f_a
- heta becomes dynamic variable instead of theory parameter
- Spontaneous symmetry breaking gives rise to a Goldstone boson called **axion**

Solar Axion Flux

Chameleons – Dark Energy Particles?

Dark energy as a new form of matter

- Scalar fields interacting with matter and photons could be strong candidates
- Constraints would lead to large gravitational effects and a fifth force with long range
- Exploit screening mechanisms to avoid unnatural models
- Chameleon screening: Models with a density dependent effective mass

Solar Chameleons

- Chameleons could be produced in the sun a bit similar to axions via a Primakoff-like effect
- Production not in the suns core but in a small shell around the tachocline and an energy spectrum peaking below $1 \, \rm keV$

