The status of constrained SUSY and implications from the Higgs boson

Björn Sarrazin for the Fittino Collaboration ECFA LC2013, DESY HAMBURG

May 28, 2013

B. Sarrazin

Fittino

May 28, 2013

Fittino

- C++ program for SUSY model testing and SUSY parameter analysis
- Currently supported SUSY models:

CMSSM, GMSB, AMSB, MSSM24, NMSSM, NUHM1, NUHM2

Measurements from low/high energy experiments, direct SUSY search
 LEP/SLC, Tevatron, cosmology, LHC and LC, (g-2)_µ, B, K,...

• Use public theory codes: SPheno, Superslo, Micromegas, FeynHiggs, HDecay

• Parameter analysis using

Auto-adaptive Markov Chain Monte Carlo (MCMC)

• Previous publications:

arXiv:0412012 [hep-ph], arXiv:0511006 [hep-ph], arXiv:0907.2589 [hep-ph] arXiv:0909.1820 [hep-ph], arXiv:1105.5398 [hep-ph], arXiv:1102.4693 [hep-ph], arXiv:1204.4199 [hep-ph]

The CMSSM getting into trouble

B. Sarrazin

Fittino

May 28, 2013

Updated Observables

$BR(b \rightarrow s \gamma)$	$(3.55 \pm 0.24 \pm 0.09 \pm 0.23) \times 10^{-4}$
$BR(B_s \rightarrow \mu \mu)$	(3.2 ± 1.5 ± 0.76) x 10 ⁻⁹
$BR(B \rightarrow \tau v)$	(0.72 ± 0.25 ± 0.11± 0.07) × 10 ⁻⁴
Δm_{B_s}	(17.719 ± 0.043 ± 4.2) ps ⁻¹
$a_\mu - a_\mu^{SM}$	(28.7 ± 8.0 ± 2.0) x 10 ⁻¹⁰
m_{W}	(80.385 ± 0.015 ± 0.010) GeV
$\sin^2 heta_{_{eff}}$	0.23113 ± 0.00021
$\Omega_{_{CDM}}h^{_2}$	0.1187 ± 0.0017 ± 0.01187
m_t	(173.18 ± 0.94) GeV

- + Xenon 100 limit via AstroFit
- + LEP chargino limit
- + LHC exclusion from $L_{int} = 5.8 \text{ fb}^{-1}$
- + Higgs limits via *HiggsBounds*
- + Higgs signals via *HiggsSignals*

B. Sarrazin

LHC SUSY searches

B. Sarrazin (University of Bonn)

Fittino

May 28, 2013

HiggsSignals

Philip Bechtle, Sven Heinemeyer, Oscar Stål, Tim Stefaniak, Georg Weiglein

arXiv:1305.1933 [hep-ph]

http://higgsbounds.hepforge.org/

 χ^2 from Higgs mass and signal strength measurements

Takes correlations of major systematic uncertainties into account:

- rate predictions
- mass predictions
- luminosity

Statistics

P_TanBeta:P_A0 {chi2<1000}

Simple Higgs implementation

Assume $m_{h} = (125.5 \pm 2 \pm 3)$ GeV.

χ² / ndf	
= 14.0 / 9	

Higher masses / focus-point & funnel-region allowed due to floating of scale Q at which predictions are calculated

Better fit quality due to new measurement of B $\rightarrow \tau \, \nu$.

Using HiggsSignals

Focus-point & funnel region vanish.

Fit quality improves because the SM like rate measurements can be well described by a SM like Higgs.

Reducing the mass theory uncertainty

Reducing the mass theory uncertainty to 1.5 GeV has minor effect on a 1 sigma region but shrinks 2 sigma region.

NUHM1

χ² / ndf = 45.4 / 56

Lower values of $M_{_0}$, $M_{_{1/2}}$ and tan β preferred.

Individual pull: CMSSM

 $M_0 = 681 \text{GeV}, M_{1/2} = 1025 \text{GeV}, A_0 = -2914 \text{GeV}, m_t = 174 \text{GeV}, \tan \beta = 24$

BR(B _s → μ⁺μ⁻) / 10 ⁻⁹	3.20 +- 1.50+- 0.76
BR(b→ τν) / 10 ⁻⁴	0.72 +- 0.27 +- 0.11+- 0.07
BR(b \rightarrow s γ) / 10 ⁻⁴	3.55 +- 0.24 +- 0.09+- 0.23
∆ m _s / ps ⁻¹	17.719 +- 0.043+- 4.200
$(a_{\mu}^{} - a_{\mu}^{SM}) / 10^{-10}$	28.7 +- 8.0+- 2.0
m _w / GeV	80.385 +- 0.015+- 0.010
sin²θ ^I	0.23113 +- 0.00021
$\Omega_{CDM} h^2$	0.1187 +- 0.0017+- 0.0119
m,	173.18 +- 0.94
σ ^{si} / pb	
LHC	
m _h / GeV	
μ _h	

Main contribution coming from g-2.

Individual pull: NUHM1

M₀=27GeV, M 12=457GeV, A 0=-2485GeV, M 2=-3126421GeV 2, m1=GeV, m1=173GeV, tan β=7

		:	⊥/su	SY
3.48			PRELIMIN	ARY
0.80				
3.19				
21.189				
13.1				
80.375				
0.23144				
0.1153				
173.13				
1.8e-11				
120.7				
	0	1 IMeas -	23 Fitl/σ	

$BR(B_s \rightarrow \mu^* \mu^{-}) / 10^{-9}$	3.20 +- 1.50+- 0.76	3.48	
BR(b \rightarrow τ ν) / 10 ⁻⁴	0.72 +- 0.27 +- 0.11+- 0.07	0.80	

BR(b \rightarrow sy) / 10⁻⁴ 3.55 +- 0.24 +- 0.09+- 0.23

∆ m_s / ps⁻¹ 17.719 +- 0.043+- 4.200

(a _ - aSM_µ) / 10⁻¹⁰ 28.7 +- 8.0+- 2.0

m_w / GeV 80.385 +- 0.015+- 0.010

sin² θ^I 0.23113 +- 0.00021

Ω_{CDM} h²0.1187 +- 0.0017+- 0.0119

173.18 +- 0.94

σ^{si} / pb LHC

m,

m, / GeV

μ

Reduced contribution from g-2 due to lower mass scale.

	0	
к	Sarr	azır
р.	June	

Fittino

May 28, 2013 13

Predicted mass spectrum: CMSSM

Lower bound of 250 GeV on spartlicle masses.

B. Sarrazin

Fittino

May 28, 2013 14

Predicted mass spectrum: NUHM1

Best fit values for mass of sleptons, staus and light chargino within 500GeV.

B. Sarrazin

Fittino

May 7, 2013 15

NSLP-LSP mass difference

Preliminary χ^2 -profiles showing the point density.

CMSSM: minimum at $\Delta m \sim 0$ GeV NUHM1: minimum at $\Delta m \sim 10$ GeV

How well does constrained SUSY do ?

 χ^2 / ndf = 43.4 / 56

"The fit is good if this number is roughly one"

This is because the mean value of a $\chi 2$ distribution is the number of degrees of freedom.

However our χ^2 function is not necessarily χ^2 distributed:

$$\chi^{2} = (M - O(P))^{T} cov^{-1}(M - O(P))$$

χ² distributed if
(1) *M* Gaussian distributed
(2) dependence *O(P)* linear

P-value

What is the p-value?

Assuming the best fit point found is the real one, if measurements are repeated, how often do you get agreement at least as bad as the one observed?

Computation of the p-value of the best fit point with toys:

- Take the observable values at the best fit point
- Smear the observables values
- Calculate the χ^2 for these new pseudo-measurements
- Spot the new best fit point
- Repeat that procedure many times
- Integrate the distribution for $\chi^2 \ge \chi^2$ (best fit point)

P-value

We had a very first look at this...

naive P-Value: 41% overestimates goodness of fit

Update to current measurements is work in progress.

Summary

We fit CMSSM / NUHM1 to all kind of available measurements.

New measurement of $\mathbf{B} \rightarrow \tau \mathbf{v}$ improves fit quality significantly.

Special care taken to include Higgs measurements properly via *HiggsSignals*.

CMSSM and NUHM1 are both capable to describe given data \rightarrow have to go to SM like region of parameter space.

The first **real frequentist p-values** for constrained SUSY are work in progress.

Detailed predictions on Higgs rate measurements and couplings coming soon.