Combining low energy measurements with LHC exclusion limits

Philip Bechtle¹, Klaus Desch², Herbi Dreiner², Michael Krämer³, Ben O'Leary⁴, Carsten Robens³, Björn Sarrazin¹, <u>Peter Wienemann²</u>

> ¹DESY ²University of Bonn ³RWTH Aachen ⁴University of Würzburg

Workshop "Global BSM fits and LHC data" CERN February 10, 2011

Wealth of precision measurements from LEP/SLC, from Tevatron, from B/K physics, from $(g-2)_{\mu}$ and from astrophysics

Already "low energy" (LE) data exhibits sensitivity to SUSY effects (\rightarrow m prediction), in particular:

List of used LE precision measurements

Observable	Experimental	Uncertainty		Exp. Reference
	Value	stat	syst	
$\mathcal{B}(B \to s\gamma)/\mathcal{B}(B \to s\gamma)_{SM}$	1.117	0.076	0.096	[47]
$\mathcal{B}(B_s \rightarrow \mu \mu)$	$< 4.7 \times 10^{-8}$			[47]
$\mathcal{B}(B_d \rightarrow \ell \ell)$	$< 2.3 \times 10^{-8}$			[47]
$\mathcal{B}(B \to \tau \nu) / \mathcal{B}(B \to \tau \nu)_{SM}$	1.15	0.40		[48]
$\mathcal{B}(B_s \to X_s \ell \ell) / \mathcal{B}(B_s \to X_s \ell \ell)_{\rm SM}$	0.99	0.32		[47]
$\Delta m_{B_s} / \Delta m_{B_s}^{\rm SM}$	1.11	0.01	0.32	[49]
$\frac{\Delta m_{B_s} / \Delta m_{B_s}^{SM}}{\Delta m_{B_d} / \Delta m_{B_s}^{SM}}$	1.09	0.01	0.16	[47, 49]
$\Delta \epsilon_K / \Delta \epsilon_K^{SM}$	0.92	0.14		[49]
$\mathcal{B}(K \to \mu \nu) / \mathcal{B}(K \to \mu \nu)_{SM}$	1.008	0.014		[50]
$\mathcal{B}(K \rightarrow \pi \nu \bar{\nu}) / \mathcal{B}(K \rightarrow \pi \nu \bar{\nu})_{SM}$	< 4.5			[51]
$a_{\mu}^{exp} - a_{\mu}^{SM}$	30.2×10^{-10}	8.8×10^{-10}	2.0×10^{-10}	[52, 53]
$\sin^2 \theta_{\text{eff}}$	0.2324	0.0012		[46]
Γ_Z	$2.4952 {\rm GeV}$	$0.0023 { m GeV}$	$0.001 \mathrm{GeV}$	[46]
R_{I}	20.767	0.025		[46]
R_b	0.21629	0.00066		46
Rc	0.1721	0.003		[46]
$A_{\rm fb}(b)$	0.0992	0.0016		[46]
$A_{\rm fb}(c)$	0.0707	0.0035		[46]
A_b	0.923	0.020		[46]
A_c	0.670	0.027		[46]
A_{l}	0.1513	0.0021		[46]
A_{τ}	0.1465	0.0032		[46]
$A_{\rm fb}(l)$	0.01714	0.00095		[46]
$\sigma_{ m had}$	41.540 nb	0.037 nb		[46]
m_h	> 114.4 GeV		$3.0 \mathrm{GeV}$	[54, 55, 56]
$\Omega_{\rm CDM} h^2$	0.1099	0.0062	0.012	[57]
$1/\alpha_{em}$	127.925	0.016		[58]
G_F	$1.16637 \times 10^{-5} \text{GeV}^{-2}$	$0.00001 \times 10^{-5} \text{GeV}^{-2}$		[58]
α_s	0.1176	0.0020		[58]
m_Z	91.1875 GeV	$0.0021 {\rm GeV}$		[46]
m_W	$80.399 \mathrm{GeV}$	0.025 GeV	$0.010 \mathrm{GeV}$	[58]
m_b	$4.20 \mathrm{GeV}$	$0.17 \mathrm{GeV}$		[58]
m_t	$172.4 \mathrm{GeV}$	$1.2 \mathrm{GeV}$		[59]
$m_{ au}$	$1.77684 { m GeV}$	$0.00017 { m GeV}$		[58]
mc	$1.27 \mathrm{GeV}$	$0.11 \mathrm{GeV}$		[46]

Fit machinery

- Fit to LE data performed using Fittino (P. Bechte, K. Desch, PW, et al.)
- Parameter analysis with Markov Chain Monte Carlo (frequentistic interpretation)
- Theory predictions taken from
 - → SPheno (W. Porod)
 - → Mastercode (O. Buchmüller, et al.) for LE observables

LE data: mSUGRA parameter fit

Fit of mSUGRA parameters to 35 LE measurements:

- non-trivial optimum
- M_0 and $M_{1/2}$ already constrained significantly
- \rightarrow in good agreement with previous findings by
 - O. Buchmüller et al., arXiv:0808.4128

LE: Expected spectrum from mSUGRA fit

Mass spectrum corresponding to mSUGRA parameter constraints:

mSUGRA, μ >0:

LE: Expected spectrum from mSUGRA fit

Mass spectrum corresponding to mSUGRA parameter constraints:

mSUGRA, μ<0:

LE: Expected spectrum from GMSB fit

Mass spectrum corresponding to GMSB parameter constraints:

GMSB, μ>0, Ν₅ = 2:

All measurements:

No dark matter density:

With dark matter density and with $(g-2)_{\tau}$ from τ data: Predicted Mass Spectrum of SUSY Particles τ (g-2). 1σ Environment 4000 2σ Environment Predicted Particle Mass [GeV] **Best Fit Value** 3500 3000 2500 2000 1500 1000 500 $\mathbf{h^0} \, \mathbf{A^0} \, \mathbf{H^0} \, \mathbf{H^+} \, \chi_1^0 \, \chi_2^0 \, \chi_3^0 \, \chi_4^0 \, \chi_1^+ \, \chi_2^+ \, \widetilde{\mathbf{I}}_{\mathrm{R}} \, \, \widetilde{\mathbf{I}}_{\mathrm{L}} \, \, \widetilde{\boldsymbol{\tau}}_1 \, \, \widetilde{\boldsymbol{\tau}}_2 \, \widetilde{\mathbf{Q}}_{\mathrm{R}} \, \widetilde{\mathbf{Q}}_{\mathrm{L}} \, \widetilde{\mathbf{b}}_1 \, \widetilde{\mathbf{b}}_2 \, \, \widetilde{\mathbf{t}}_1 \, \, \widetilde{\mathbf{t}}_2 \, \, \widetilde{\mathbf{g}}_{\mathrm{R}} \, \, \widetilde{\mathbf{q}}_{\mathrm{R}} \, \, \widetilde{\mathbf$

With dark matter density and with SM value for (g-2) : Predicted Mass Spectrum of SUSY Particles SM (g-2). 1σ Environment 4000 2σ Environment Predicted Particle Mass [GeV] **Best Fit Value** 3500 3000 2500 2000 1500 1000 500 $\mathbf{h^0} \ \mathbf{A^0} \ \mathbf{H^0} \ \mathbf{H^+} \ \chi_1^0 \ \chi_2^0 \ \chi_3^0 \ \chi_4^0 \ \chi_1^+ \ \chi_2^+ \ \widetilde{\mathbf{I}}_{\mathrm{R}} \ \widetilde{\mathbf{I}}_{\mathrm{L}} \ \widetilde{\tau}_1 \ \widetilde{\tau}_2 \ \widetilde{\mathbf{Q}}_{\mathrm{R}} \ \widetilde{\mathbf{Q}}_{\mathrm{L}} \ \widetilde{\mathbf{b}}_1 \ \widetilde{\mathbf{b}}_2 \ \widetilde{\mathbf{t}}_1 \ \widetilde{\mathbf{t}}_2 \ \widetilde{\mathbf{g}}$

Summary of LE fits

- Available LE data exhibits sensitivity to SUSY parameters
- It favours (at least some) light SUSY masses
- mSUGRA with μ > 0 can describe the data well. μ < 0 disfavoured by (g-2)_{μ}. But also GMSB is fine (but needs an additional CDM candidate).
- Most constraining measurements are $(g-2)_{\mu}$ followed by CDM relic density.
- Best-fit point rather stable when removing a single observable
- After removal of $(g-2)_{\mu}$ and relic density almost all sensitivity is lost

First mSUGRA exclusion limits were just released by LHC collaborations and are pushing up the SUSY mass limits:

"Die Frage"

What does it mean if the LHC does not find SUSY in the initial 7 TeV run?

- How does the remaining allowed SUSY parameter space look like?
- Does it create any tension between low energy measurements and LHC exclusions?
- What are the implications for a future Linear Collider?

In the quest to answer "die Frage" we use the ATLAS 4-jet + MET + 0 lepton cuts from ATL-PHYS-PUB-2010-010 (7 TeV sensitivity study) and cross-checked our analysis on the discovery reach:

Our analysis nicely reproduces discovery reach of ATLAS sensitivity study (which used LO SUSY cross-section)

Projection: LE data vs. LHC exclusion

Projection of how the LHC exclusion potential evolves during the 7 TeV run compared to the LE data preferred region:

Combined fit of LE data and LHC exclusion

A combined global fit of LE data and estimate of present LHC exclusions:

Combined LE+LHC (35pb⁻¹) fit: Mass spectrum

Mass spectrum corresponding to mSUGRA parameter constraints:

A combined global fit of LE data and projected LHC exclusions yields:

 $\chi^2_{\rm min}$ (with LHC) – $\chi^2_{\rm min}$ (without LHC) = 4.9

Fits using NLO x-secs. for different LHC lumi assumptions available soon

Combined LE+LHC (2 fb⁻¹) fit: Mass spectrum

Mass spectrum corresponding to mSUGRA parameter constraints:

Summary of combined LE+LHC fit

- LHC has started to probe parameter region favoured by LE mSUGRA fits
- We combine LE data with potential LHC exclusions in a global mSUGRA parameter fit
- $M_{_0}$, $M_{_{1/2}}$ and tan β are pushed towards larger values with increasing LHC luminosity
- Non-discovery leads to moderate tension between LE data and LHC exclusions (at least up to 2 fb⁻¹) in mSUGRA
- This was an exploratory study. Fit machinery is ready to perform combined fits based on actually observed LHC data. But we need the data in appropriate form from the LHC collaborations.