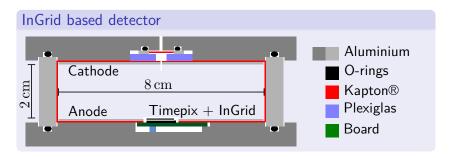
Status of the InGrid/Timepix activities 48th CAST Collaboration Meeting Patras

Christoph Krieger, Yevgen Bilevych, Klaus Desch, Jochen Kaminski, Thorsten Krautscheid, Michael Lupberger

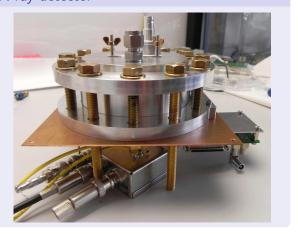
University of Bonn


30.05.2012

Outline

- Detector Concept
 - InGrid Integrated Micromegas
 - Timepix ASIC
- 2 Recent Results
- Work in Progress
 - New Detector Design
 - Wafer Scale InGrid Production
 - Scalable Readout System
- Conclusion & Outlook

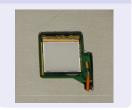
Detector Concept



Pixelized Readout

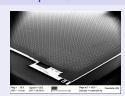
- Detection of single electrons with high spatial resolution
- Energy determination by counting electrons (in principle)
- Possibility to analyze event shape

Current Detector


X-ray detector

Cathode

Anode

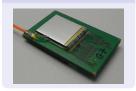

InGrid - Integrated Micromegas

Micromegas on top of Timepix ASIC

- Fabrication by means of photolithographic postprocessing
- Very good alignment of grid and pixels
- Each avalanche is collected on one pixel
- Detection of single electrons possible

Timepix + InGrid

Protection layer

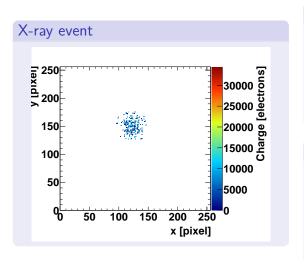

- Timepix was not designed to survive discharges: must protect electronics!
- Resistive layer (2-8 μm silicon nitride) to spread charge in case of discharge

Timepix ASIC

Facts

- 256×256 pixels, $55 \times 55 \, \mu m^2$ pitch
- $1.4 \times 1.4 \,\mathrm{cm}^2$ active area
- ullet Charge sensitive amplifier and discriminator in each pixel, $90\,e$ ENC
- Two modes: Charge or Time

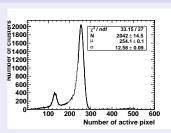
Carrier board

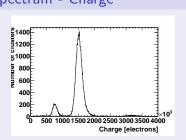

MUROS 2.1

Readout

- Readout with MUROS 2.1
 Medipix reUsable ReadOut System developed at NIKHEF
- Acquisition and control: Pixelman

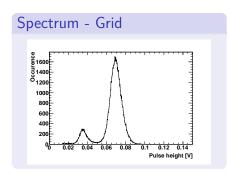
Typical X-ray Events

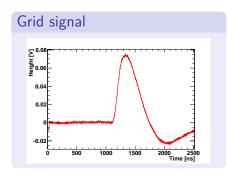




Energy Resolution

Spectrum - Charge

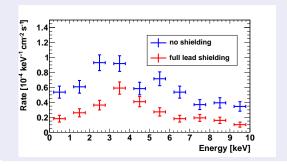

Energy resolution


- Energy resolution: $\sigma_N/N \approx 5\,\%$ at $5.9\,\mathrm{keV}$ Chromium foil to suppress $6.5\,\mathrm{keV}$ line of $^{55}\mathrm{Fe}$
- ullet Charge spectrum: $\sim 6.6\,\%$ energy resolution
- Gas gain ~ 6500 at $350\,\mathrm{V}$

Decoupling of the Grid Signal

Recording

- ALEPH preamplifier
- CAEN FADC 12-bit 2 GHz

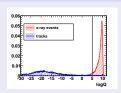


Energy resolution

• $\sigma_E/E \approx 8\%$ at $5.9 \,\mathrm{keV}$

Background Rates

After Likelihood-Ratio based discrimination



 Does software efficiency drop down for low energies?

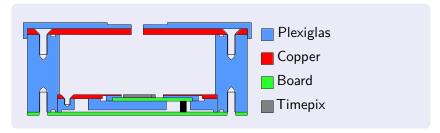
Lead shielding

Likelihood-Ratio

Work in Progress / Next Steps

Sensitivity at low energies

- \bullet α -source plus thin films to get florescence photons
- Need to borrow 'open' α -source from neighboring institute


Background suppression

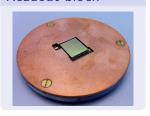
- Improve discrimination algorithm
- Check software efficiency at low energies
- Check activity of lead shielding

New detector

- Assemble it and take it into operation
- Combine readout of Timepix and grid signal (far future)

New Detector Design

Changes in detector design


- New design based on the CAST Micromegas
 - ightarrow mechanical CAST compatibility
- Plexiglas instead of aluminium
- ullet Metalized Mylar ${\mathbb R}$ film $(5\,\mu{\rm m})$ as cathode and window
- New carrier and intermediate boards (HV connection from downside, HV feedthroughs, plug and socket connection)

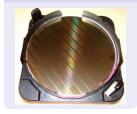
New Detector Design

Drift volume

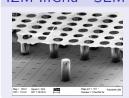
Readout block

Carrier board

Status


- Received parts from mechanical workshop
- Still waiting for new intermediate board (detector end plate)
- As soon as board arrives and is assembled detector can be put together

Wafer Scale InGrid Production

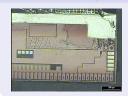

InGrid fabrication

- Fabrication steps take about one week
- Single and few chip processing: NIKHEF / Mesa+ (Twente)
- Wafer processing (~ 100 chips at once): in cooperation with IZM Berlin

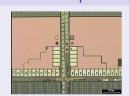
Timepix wafer

IZM InGrid - SEM

Results of wafer processing


- Structures of IZM InGrids look and behave good (similar to Twente InGrids)
- BUT: chips die fast when operated above moderate grid voltages & some inactive (less sensitive) areas

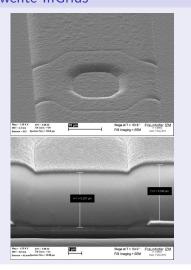
Wafer Scale InGrid Production


Formation of the protection layer

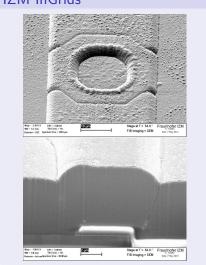
- Vapor deposition process
- Very critical, high temperature ($> 200 \, ^{\circ}\mathrm{C}$)
- Bondpads have to be protected
- Achieved with photolithographic polyimide mask and a lift-off process

Covered bondpads

Clean bondpads



How to solve the 'issues'?


- Inactive areas: probably residuals from cleaning → improve cleaning procedure
- Dieing chips: several possible reasons (e.g. cracks in protection layer)
 - \rightarrow Investigation is ongoing

Focused Ion Beam Imaging

Twente InGrids

IZM InGrids

Scalable Readout System - SRS

Prototype readout

Why do we need a new readout?

- MUROS is no longer produced
- MUROS is quite slow and inflexible

Scalable Readout System

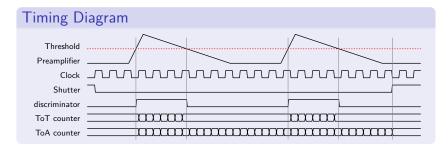
- FPGA based, very flexible
- Needed for Timepix readout: Custom FPGA firmware & custom adapter board

Benefits

- Up to $70\,\mathrm{Hz}$ readout frequency ($\sim 10\,\mathrm{ms}$ dead time)
- Usage of grid signal as 'trigger' should be possible

Conclusion & Outlook

Conclusion

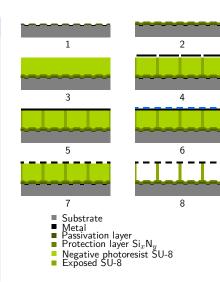

- Grid signal could be recorded successfully
- New detector will be available soon, so tests can start
- Tests with low energy photons should be possible soon
- InGrid production on wafer scale works in principle
- New readout system for the Timepix is under development
- Still much work to do ©

Outlook

 Test data-taking at CAST or at least at the CAST area towards end of the year So long, and thanks for all the fish...

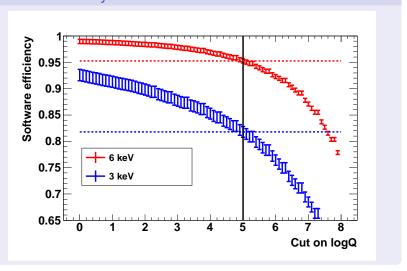
Backup

Timepix ASIC

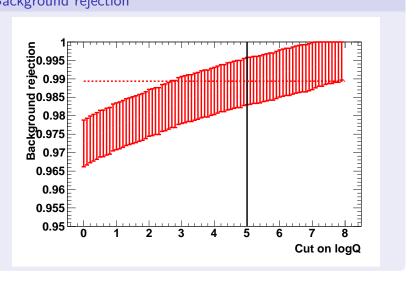

Timepix 3

- Is under development and will be submitted this year
- Will be able to recognize multihits and to measure ToT and ToA simultaneously
- Will allow data driven readout

Fabrication of an InGrid


Fabrication steps

- Starting with bare Timepix
- ② Deposition of protection layer $(8 \mu \text{m Si}_x \text{N}_u)$
- Exposure of SU-8
- Sputtering aluminium
- Putting mask on aluminium layer (photoresist)
- Structuring aluminum layer
- Oevelopment of SU-8, cleaning of interistitials


Background suppression

Software efficiency

Background suppression

Background rejection

