Gasgefüllter Röntgendetektor mit GridPix-Auslese DPG-Frühjahrstagung 2012 Göttingen

Christoph Krieger, Yevgen Bilevych, Klaus Desch, Jochen Kaminski, Thorsten Krautscheid

Universität Bonn

28.02.2012

Überblick

Motivation

Röntgendetektor

Analyse von Röntgenereignissen

Untergrundmessungen

Zusammenfassung & Ausblick

Röntgendetektoren

Micromegas

- Gut geeignet für Experimente mit geringen Ereignisraten z.B. Microbulk Micromegas @ CAST
- Untergrundrate: $\sim 10^{-6}/(\text{keV} \cdot \text{cm}^2 \cdot \text{s})$ (2 bis 7 keV)
- Ortsauflösung begrenzt durch Pad- bzw Streifendimensionen

GridPix = Timepix ASIC + Micromegas

- Gute Energieauflösung
- Hohe Ortsauflösung
- Untergrunddiskriminierung durch verbesserte Analyse der Ereignisform (Ausnutzung der hohen Ortsauflösung)

Das CAST-Experiment

CERN Axion Solar Telescope

Nachweis von Axionen

- Axionenproduktion in der Sonne
- Axionen können in starkem \vec{B} -Feld in Photonen konvertieren
- Solare Axionen: 0 bis 12 keV

Materialanforderungen

- Materialien ohne radioaktive Verunreinigungen
- Vermeidung von Metallen mit Röntgenfluoreszenzlinien
- Hohe Konversionswahrscheinlichkeit für Röntgenphotonen: Argon (oder Xenon) bei hohem Druck (1,5 bis 2 bar)

Mechanische Anforderungen

- Gasdichtigkeit, kleines Volumen
- Eintrittsfenster für Röntgenstrahlung

- Detektor aus Aluminium, HV-Isolation mit Kapton®-Folie
- $\hbox{ Auslese und Gasverst\"{a}rkung: GridPix (Timepix + InGrid) } \\$
- \bullet Eintrittsfenster aus $50\,\mu m$ Kapton®-Folie, Durchmesser $1\,mm$
- Betrieb mit Ar/iC $_4$ H $_{10}$ 95/5 (Fluss $\sim 2\,{}^{\rm l}\!/_{\! h}$) und geringem Überdruck (keine Druckregelung)

Röntgendetektor

Integrierte Micromegas - InGrid

- Aufbringen einer Micromegas auf den Timepix mit photolithographischer Nachbearbeitung
- Sehr gute Ausrichtung des Gitters an den Pixeln
- Jede Ladungslawine wird von einem Pixel gesammelt
- Nachweis von einzelnen Elektronen ist möglich (für Gasverstärkungungen ≥ 5000)
- Resistive Schicht (2-8 µm Siliziumnitrid) auf Timepix schützt Chip vor Uberschlägen (Verteilen der Ladung)
- Produktion von InGrids: Vortrag von T.Krautscheid (T58.8)

Typische Röntgenereignisse

Analyse mit MarlinTPC

- Modular Analysis and Reconstruction for the LINear Collider
- Einsammeln aller Pixel eines Röntgenereignisses: Suche nach benachbarten Pixeln innerhalb eines einstellbaren Quadrats um jeden Pixel (hier: 21×21 Pixel)
- Bestimmung geometrischer Eigenschaften: Schiefe, Kurtosis, Breite σ_y , Exzentrizität E

Exzentrizität

Maximierung von E durch Rotation des Koordinatensystems

Ergebnisse mit ⁵⁵Fe-Quelle

Spektrum - Pixel

Spektrum - Ladung

Energieauflösung

- Energieauflösung: $\frac{\sigma_N}{N} \approx 5\%$ bei $5.9\,\mathrm{keV}$ Chromfolie zur Unterdrückung der $6.5\,\mathrm{keV}$ Linie von 55 Fe
- Ladungsspektrum: $\sim 6.6\%$ Energieauflösung
- Gasverstärkung ~ 6500 bei $350\,\mathrm{V}$

Diskriminierung von Untergrundereignissen

Diskriminierung

- Spurrekonstruktion und Röntgen-Algorithmus für jedes Ereignis
- Entscheidung über Likelihood-Ratio $\log Q$

Zusammensetzung von $\log Q$

- $\log Q = \sum_i \log \mathcal{L}(x_i = \chi_i | \mathsf{Photon}) \sum_i \log \mathcal{L}(x_i = \chi_i | \mathsf{Spur})$
- Wahrscheinlichkeiten aus Referenzdatensätzen
- Spurlänge, Pixel pro Länge, Kurtosis entlang Spur, Spurexzentrizität, Exzentrizität, Kurtosis, RMS

Untergrundmessungen

Kupferabschirmung

Bleiabschirmung

- Kupferabschirmung um Detektor $(1\,\mathrm{mm})$, kann mit Stickstoff gespült werden
- Bleiabschirmung: $5\,\mathrm{cm}$ seitlich und unten, $10\,\mathrm{cm}$ oben
- ungefähr $500\,000 \times 1\,\mathrm{s}$ für verschiedene Abschirmungen
- Energie-Kalibration mit ⁵⁵Fe-Quelle

Untergrundraten

nach Diskriminierung

• Durch Diskriminierung: $\sim 70\,\mathrm{mHz} \rightarrow \sim 0.6\,\mathrm{mHz}$

Zusammenfassung & Ausblick

Zusammenfassung

- GridPix basierter Röntgendetektor wurde erfolgreich in Betrieb genommen
- Gute Energieauflösung wurde erreicht (5% bei $5.9 \,\mathrm{keV}$)
- Erreichte Untergrundraten sind vielversprechend ($\sim 2.6 \cdot 10^{-5}/({\rm keV} \cdot {\rm cm}^2 \cdot {\rm s})$ zwischen 0 und $10\,{\rm keV}$)

Ausblick

- Auskoppeln und Aufnehmen des Gitter-Signals
- Austauschen der Aluminium-Bauteile durch Plexiglas
- Verbesserung der Untergrunddiskriminierung
- Untersuchung des Untergrundspektrums
- Mitgliedsantrag für CAST läuft

Danke für die Aufmerksamkeit!

Fragen?

Unterstützung

Effizienz & Untergrundunterdrückung

Variablen für Likelihood-Ratio

Variablen für Likelihood-Ratio

Solarer Axionenfluss

