Gasgefüllter Röntgendetektor mit GridPix-Auslese DPG-Frühjahrstagung 2012 Göttingen

Christoph Krieger, Yevgen Bilevych, Klaus Desch, Jochen Kaminski, Thorsten Krautscheid

Universität Bonn

28.02.2012

Zusammenfassung & Ausblick

Motivation

Röntgendetektor

Analyse von Röntgenereignissen

Untergrundmessungen

Zusammenfassung & Ausblick

Röntgendetektoren

Micromegas

- Gut geeignet f
 ür Experimente mit geringen Ereignisraten z.B. Microbulk Micromegas @ CAST
- Untergrundrate: $\sim 10^{-6}/({\rm keV}\cdot{\rm cm}^2\cdot{\rm s})$ (2 bis $7\,{\rm keV})$
- Ortsauflösung begrenzt durch Pad- bzw Streifendimensionen

$\mathsf{GridPix} = \mathsf{Timepix} \; \mathsf{ASIC} + \mathsf{Micromegas}$

- Gute Energieauflösung
- Hohe Ortsauflösung
- Untergrunddiskriminierung durch verbesserte Analyse der Ereignisform (Ausnutzung der hohen Ortsauflösung)

Röntgendetektor

Analyse

Untergrundmessunge

Zusammenfassung & Ausblick

Das CAST-Experiment

CERN Axion Solar Telescope

Nachweis von Axionen

- Axionenproduktion in der Sonne
- Axionen können in starkem *B*-Feld in Photonen konvertieren
- Solare Axionen: 0 bis 12 keV

Anforderungen an Röntgendetektoren mit niedrigen Untergrundraten

Materialanforderungen

- Materialien ohne radioaktive Verunreinigungen
- Vermeidung von Metallen mit Röntgenfluoreszenzlinien
- Hohe Konversionswahrscheinlichkeit f
 ür R
 öntgenphotonen: Argon (oder Xenon) bei hohem Druck (1,5 bis 2 bar)

Mechanische Anforderungen

- Gasdichtigkeit, kleines Volumen
- Eintrittsfenster f
 ür R
 öntgenstrahlung

- Detektor aus Aluminium, HV-Isolation mit Kapton®-Folie
- Auslese und Gasverstärkung: GridPix (Timepix + InGrid)
- Eintrittsfenster aus $50\,\mu\mathrm{m}$ Kapton®-Folie, Durchmesser $1\,\mathrm{mm}$
- Betrieb mit Ar/iC_4H_{10} 95/5 (Fluss $\sim 2\,l/{\rm h})$ und geringem Überdruck (keine Druckregelung)

Röntgendetektor

Analyse

Jntergrundmessunge

Zusammenfassung & Ausblick

Röntgendetektor

Ausleseelektronik

Anode mit GridPix

Integrierte Micromegas - InGrid

- Aufbringen einer Micromegas auf den Timepix mit photolithographischer Nachbearbeitung
- Sehr gute Ausrichtung des Gitters an den Pixeln
- Jede Ladungslawine wird von einem Pixel gesammelt
- Nachweis von einzelnen Elektronen ist möglich (für Gasverstärkungungen $\gtrsim 5000)$
- Resistive Schicht (2-8 µm Siliziumnitrid) auf Timepix schützt Chip vor Überschlägen (Verteilen der Ladung)
- Produktion von InGrids: Vortrag von T.Krautscheid (T58.8)

Typische Röntgenereignisse

Doppelereignis

Untergrundereignis

Analyse von Röntgenereignissen

Analyse mit MarlinTPC

- Modular Analysis and Reconstruction for the LINear Collider
- Einsammeln aller Pixel eines Röntgenereignisses: Suche nach benachbarten Pixeln innerhalb eines einstellbaren Quadrats um jeden Pixel (hier: 21×21 Pixel)
- Bestimmung geometrischer Eigenschaften: Schiefe, Kurtosis, Breite σ_y, Exzentrizität E

Ergebnisse mit ⁵⁵Fe-Quelle

Energieauflösung

- Energieauflösung: $\frac{\sigma_N}{N}\approx 5\%$ bei $5.9\,{\rm keV}$ Chromfolie zur Unterdrückung der $6.5\,{\rm keV}$ Linie von $^{55}{\rm Fe}$
- Ladungsspektrum: $\sim 6.6\%$ Energieauflösung
- Gasverstärkung ~ 6500 bei $350\,\mathrm{V}$

Diskriminierung von Untergrundereignissen

Diskriminierung

- Spurrekonstruktion und Röntgen-Algorithmus für jedes Ereignis
- Entscheidung über Likelihood-Ratio $\log Q$

Likelihood-Ratio

Zusammensetzung von $\log Q$

- $\log Q = \sum_i \log \mathcal{L}(x_i = \chi_i | \mathsf{Photon}) \sum_i \log \mathcal{L}(x_i = \chi_i | \mathsf{Spur})$
- Wahrscheinlichkeiten aus Referenzdatensätzen
- Spurlänge, Pixel pro Länge, Kurtosis entlang Spur, Spurexzentrizität, Exzentrizität, Kurtosis, RMS

Zusammenfassung & Ausblick

Untergrundmessungen

Kupferabschirmung

Bleiabschirmung

- Kupferabschirmung um Detektor (1 mm), kann mit Stickstoff gespült werden
- Bleiabschirmung: $5\,\mathrm{cm}$ seitlich und unten, $10\,\mathrm{cm}$ oben
- ungefähr $500\,000 \times 1\,\mathrm{s}$ für verschiedene Abschirmungen
- Energie-Kalibration mit ⁵⁵Fe-Quelle

Untergrundraten

nach Diskriminierung

• Durch Diskriminierung: $\sim 70 \,\mathrm{mHz} \rightarrow \sim 0.6 \,\mathrm{mHz}$

Zusammenfassung

- GridPix basierter Röntgendetektor wurde erfolgreich in Betrieb genommen
- Gute Energieauflösung wurde erreicht (5% bei $5.9 \, {\rm keV}$)
- Erreichte Untergrundraten sind vielversprechend (~ $2.6 \cdot 10^{-5}/(\text{keV} \cdot \text{cm}^2 \cdot \text{s})$ zwischen 0 und 10 keV)

Ausblick

- Auskoppeln und Aufnehmen des Gitter-Signals
- Austauschen der Aluminium-Bauteile durch Plexiglas
- Verbesserung der Untergrunddiskriminierung
- Untersuchung des Untergrundspektrums

Analyse

Danke für die Aufmerksamkeit!

Fragen?

Röntgendetektor

Analyse

Untergrundmessungen

Zusammenfassung & Ausblick

Unterstützung

Effizienz & Untergrundunterdrückung

Variablen für Likelihood-Ratio

Spurexzentrizität

Pixel pro Länge

Kurtosis entlang Spur

Variablen für Likelihood-Ratio

Haufen pro Spur

Zusammenfassung & Ausblick

Solarer Axionenfluss

