Prospects for R_p -mSUGRA with $\tilde{\tau}$ -LSP with Early LHC Data

R. Zimmermann

based on **arXiv:1008.1580** by K. Desch, S. Fleischmann, P. Wienemann, H. K. Dreiner, S. Grab Uni Bonn and UCSC

4th Annual Workshop of the Helmholtz Alliance Dresden, 2010 - 12 - 01

- Supersymmetry (SUSY): Fundamental symmetry between bosons and fermions
- mSUGRA: SUSY breaking model with 4.5 parameters only M_0 , $M_{1/2}$, A_0 , tan β , sgn(μ)
- *R*-parity (*R_p*) usually considered conserved to prevent rapid proton decay
 - \Rightarrow SUSY particles produced in pairs
 - \Rightarrow lightest supersymmetric particle (LSP) stable
 - \Rightarrow stable LSP neutral and only weakly interacting for cosmological reasons
- Alternative symmetries exist that stabilize proton but violate *R*-parity (*R*_p): Baryon Triality, Lepton Parity

 \Rightarrow LSP not stable and not cosmologically constrained

R-Parity Violating Terms in the Superpotential

• Most general renormalizable gauge invariant potential can contain terms that violate baryon (B) or lepton (L) number:

$$W_{\mathcal{R}_{p}} = \epsilon_{ab} \left(\frac{1}{2} \underbrace{\lambda_{ijk} L_{i}^{a} L_{j}^{b} \overline{E}_{k}}_{\text{violates } L} + \underbrace{\lambda'_{ijk} L_{i}^{a} Q_{j}^{bx} \overline{D}_{kx}}_{\text{violates } L}\right)$$

$$+ \frac{1}{2} \epsilon_{xyz} \underbrace{\lambda''_{ijk} \overline{U}_{i}^{x} \overline{D}_{j}^{y} \overline{D}_{k}^{z}}_{\text{violates } B} - \epsilon_{ab} \underbrace{\kappa^{i} L_{i}^{a} H_{u}^{b}}_{\text{violates } L}$$

$$i, j, k \text{ generation-},$$

$$x, y, z \text{ SU(3) gauge- (color-)},$$

$$a, b \text{ SU(2) gauge- indices}$$

- To prevent rapid proton decay **either** *B* **or** *L* violating terms allowed only
- Strong bounds on *R_p* couplings (λ,λ',λ",κ) from existing precision measurements
 - ⇒ Mass spectrum and production of SUSY particles mostly unchanged

3/10

Mass and Type of LSP in no-scale mSUGRA

- No-scale mSUGRA: $M_0 = A_0 = 0$
- Dashed contours show mass of lightest higgs
- In R_p-conserving case excluded by LEP SM higgs mass bound

$\tilde{\tau}$ is LSP in significant part of mSUGRA parameter space

\mathcal{R}_p mSUGRA benchmark scenario BC 1

- mSUGRA parameters: $M_0 = A_0 = 0 @M_{GUT}$, sgn $\mu = +1$, tan $\beta = 13$,
 - $M_{1/2} = 400 \text{ GeV}$
- $\tilde{\tau}^{\pm}$ is LSP, $\tilde{\chi}_{1}^{0}$ is NNNLSP
- Typical production: $\tilde{\chi}^0_1 \rightarrow \tilde{\tau} \tau$
- LSP decays promptly
- Expected cross section at 7 TeV: σ = 0.28 pb

BC 1-4 defined in: Allanach, Dedes, Dreiner, Phys. Rev. D69 115002

$\tilde{\tau}$ as Lightest Supersymmetric Particle in $/\!\!\!\!R_p$ SUSY Models Discovery Potential with Early LHC Data

- Recent paper (arXiv:1008.1580, accepted by Phys. Rev. D) studying prospects for BC1 with early LHC data
- Includes parameter scan around benchmark point
- Includes study of feasibility of ~LSP mass reconstruction
- Sample cutflow for 1 fb⁻¹ @ 7 TeV (Delphes):

cuts [GeV]	tī	all SM	BC1
before cuts	155500 ± 416	2258230 ± 1392	282.8 ± 2.8
$p_T^{\mu 1} > 40$	16745 ± 135	319975 ± 510	141.6 ± 2.0
$p_T^{e1} > 32$	1492 ± 40	1837 ± 43	125.9 ± 1.9
$p_{T}^{e2} > 7$	165.6 ± 14.4	184.9 ± 14.8	113.7 ± 1.8
$\sum p_T^\ell > 230$	13.6 ± 4.2	15.1 ± 4.3	85.7 ± 1.6
$\sum_{1}^{4} p_T^{jet} > 200$	5.1 ± 2.1	6.1 ± 2.3	60.3 ± 1.3
$\sum_{1}^{4} p_{T}^{jet} > 300$	3.4 ± 1.7	3.4 ± 1.7	56.6 ± 1.3
$\sum_1^4 ho_T^{ m jet} > 400$	$\lesssim 1.0$	$\lesssim 1.0$	52.5 ± 1.2

R. Zimmermann Rp-mSU

Numbers of Selected Leptons and Cut Variables (Delphes)

Discovery Reach at $\sqrt{s} = 7$ TeV

- Reach for 1fb^{-1} : $M_{1/2} \lesssim 460 \text{ GeV}$
- \bullet Corresponds to squark/gluino masses of $\sim 950~{
 m GeV}/1.1~{
 m TeV}$
- $\lesssim 200 \text{pb}^{-1}$ needed for benchmark point BC1

8/10

LSP Mass Reconstruction (Generator-Level)

- Compute inv. mass of τ and two closest leptons
- But: combinatorical bkg.
 e.g. from second decay chain ⇒ Use OS-SS substraction method
- Can use obs. correlation of $\tilde{\tau}_1$ -mass with 10%-value of gaussian fit to OS-SS curve
- Create calibration curve from parameter scan around BC1

- SUSY models that do not conserve R-parity allow lightest supersymetric particle other than the "usual" $\tilde{\chi}^0_1$
- First comprehensive signal over background analysis of $\tilde{\tau}$ -LSP scenarios with early LHC data performed using fast simulation
- BC1 with its multi-lepton signature nearly background free
- $\bullet~{\rm Parameter}$ space up to BC1 can be probed already with $\lesssim 200 {\rm pb}^{-1}$
- Mass reconstruction of $\tilde{\tau}_1$ not so easy, but mass estimate possible within the first few years of LHC data taking
- ATLAS analysis in progress

Backup Slides

Missing Transverse Energy (Delphes)

 E_T^{miss} can be significant in \mathcal{R}_p models, even though LSP does not escape detection "per se" (here: ν s from \mathcal{R}_p LSP decays and τ s)

Number of Selected Objects per Event (Delphes)

R. Zimmermann

Taus

p_t of Leading Leptons (Delphes)

R. Zimmermann

Electron 2

Muon 2

p_t of Leading Jets (Delphes)

R. Zimmermann

Jet 2

Jet 4

Discovery Reach at $\sqrt{s}=7~{ m TeV}-S/\sqrt{B}$

BC1 Mass Spectrum

17/10

𝑘_𝑘 mSUGRA benchmark scenario BC 2

 Less taus then in BC 1, no leptons from *R_p* decays, but τ mass (in principle) fully reconstructable!