

GOSSIPO-3: Measurements on the Prototype of a Read-Out Pixel Chip for Micro-Pattern Gas Detectors

<u>André Kruth</u>¹, Christoph Brezina¹, Sinan Celik², Vladimir Gromov², Ruud Kluit², Francesco Zappon², Klaus Desch¹, Harry van der Graaf²

¹Physics Department, University of Bonn, Nussallee 12, 53115 Bonn, Germany ²National Institute for Subatomic Physics (Nikhef), Science Park 105, 1098 XG Amsterdam, The Netherlands

- Read-Out of Ingrid-Gaseous
 Detectors
- GOSSIPO-3: Features & Architecture
- Measurement Results & Discussion
- Summary & Outlook

Gas-avalanche detector combining a gas layer as signal generator with a CMOS readout pixel array

- •Particle track image (projection) with 3D track reconstruction
- •No sensor leakage current compensation
- •Low parasitic capacitance (less than 10fF)
- •Single-electron efficiency by high gas gain
- Micro-discharges in avalanche gap
- •Time (z-) resolution set by longitudinal diffusion

- Small prototype for a read-out chip for MPGDs
- IBM 130nm CMOS (8 metal layers)
- 60μm x 60μm pixels (high granularity)
- ToA Measurement and ToT Measurement [Charge]
- Local TDC in every pixel
- Design Goals:
 - 3µW per channel
 - Arrival time measurement up to $102 \mu s$
 - Arrival time accuracy 1.6ns (one fast VCO bin)
 - ToT accuracy 200e⁻ accuracy (<50ns)

B

reset / pixel enable	
particle passing	l
trigger	Λ
discriminator	
640 MHz fast counter	
40 MHz slow counter	
40 MHz ToT counter	
common stop	Л
data ready	

- Fast clock: 640MHz (1.6ns time bins), started by discriminator
- Slow clock: 40MHz (25ns time bins), absolute external timing

GOSSIPO-3 Architecture SILAB

Front-End Performance SILAB

- Pre-Amplifier with MOSFET feedback parasitic capacitance
- C_{FB} about 1fF high gain
- Low parasitic input capacitance

Front-End Performance

Front-End Performance

- Pre-amplifer measurement for different channels
 - Metal-Metal Injection Capacitance C_{TEST}~1fF
 - Stable high gain
 - Varying time constant of

Front-End Performance SILAB

- <u>ToT measurement for</u> <u>different channels</u>
 - Q_{IN}=375e⁻
 - ToT channel to channel mismatch up to 50% w/o offline calibration
 - Jitter on TOT trailing edge caused by noise on preamplifier signal trailing edge
 - Cross-talk between channels observed when pad driver switches

Front-End Performance

- Analysis of time variation of the feedback discharge
 - Process variation of small feedback MOSFET responsible for variation of feedback current
 - Small feedback MOS needed for high gain

- Internal delay [including pad drivers] due to time walk
 - 6ns asymptotical delay for a charge >6000e⁻
 - Delay injection to comperator >1.6ns TDC bin
 - Further reduction of delay saves offline calibration

LDO Performance

- LDO controls supply voltage of fast TDC ringoscillator (arrival time measurement)
- Oscillation frequency of f=640MHz in all process corners
 - Time bin size T=1.56ns
 - Maximum run time 25ns (16 bins)
 - V_{OUT_LDO}=0.61V (fast corner)..1.10V (slow corner)
 - Occupancy expectation gives
 - avg. ΔI_{OUT_LDO} =24mA
 - peak ΔI_{OUT_LDO} =44mA
 - VCO control characteristic allows for max. ΔV_{LDO_OUT} =31mV for 25ns

LDO Performance

- Step response to typical load step of 20mA
 - Load externally connected
 - Inductance of package and bond wires limits response time

LDO Performance

 Settling time to nominal V_{OUT} value for different (external) load steps

TDC Performance

• Counting steps of TDC (input signal directly at digital logic)

Pixel Performance

Counting steps of TDC (input signal at analog input)
 Complete Pixel Delay Scan @1V, 200 Pulses each

Summary

- Successful operation and measurements:
- Front-End:
 - Internal delay limited by pad drivers
 - Source of pixel to pixel TOT mismatch identified
 - High gain / low noise
- <u>LDOs:</u>
 - Step response time critical for TDC performance
 - Close match between simulation and measurement
- <u>TDC:</u>
 - Transition region of counting steps ~25% of TDC bin (wc)
 - Bin size / fast oscillator frequency reproducible for multiple channels and chips
- Gossipo-3 design team joins Timepix II design efforts
 - Timepix II will benefit from lessons learned

Backup Slides

Pre-Amplifier Schematic Subur Labor Bonn

- Internal delay (very first measurements)
- 9ns assumptotical delay for a charge >6000e⁻ (injection to comperator) > 1.6ns TDC bin
- Further reduction of delay needed

universitätbon

• Simulated internal delay [Injection to Comparator Output] based on parasitc extraction

universität**bonn**

LDO Performance

• Static R_{OUT} measurement

LDO Performance

EF

• Linearity measurement

LDO Performance

- Step response to maximum load step 40mA
 - additional external load
 - inductance of package and bond wires limit response time

GOSSIP vs. TPC

- <u>GOSSIP</u>
 - Small drift gap (1mm)
 - Track
 perpendicular to read-out plane

- <u>TPC</u>
 - Large drift gap (1m)
 - Track parallel to read-out plane

Outlook

- Larger pixel array needed for InGrid test
- The Gossipo-3 design team joins Timepix II design efforts

