FATRAS —

A Novel Fast Track Simulation Engine for the ATLAS Experiment

Sebastian Fleischmann on behalf of the ATLAS Collaboration

Physikalisches Institut - University of Bonn

February 26th 2010 ACAT 2010 Jaipur, India

Sebastian Fleischmann

Outline

Introduction

Simulation strategies

Performance

Summary

Backup

- 1 Introduction
 - The ATLAS detector
 - Fast detector simulations Why?
- 2 Simulation strategies
 - Track simulation in FATRAS
 - Digitisation
 - Combined simulation: Tracking and calorimetry
 - Comparison to other simulation strategies
- 3 Performance
 - Comparison with full simulation
 - Comparison with collision data
 - Special use-cases and applications
- 4 Summary

- TRT drift tubes
 - $\approx 300,000$ straw tubes
 - 130 μ m resolution ($R\phi$)
 - ► Xe/CO₂/O₂
 - about 30 measurements per track
- SCT silicon strips
 - \blacktriangleright \approx 6 million Si strips
 - resolution: $17 \,\mu m \, (R\phi)/580 \,\mu m \, (Z)$
 - 4 (double) measurements / track
- - \approx 80 million Si pixels
 - resolution:
 - $10 \,\mu m \, (R\phi)/115 \,\mu m \, (Z)$
 - 3 measurements / track
- ▶ 2 T solenoidal field

Why do we need fast detector simulations?

FATRAS

Sebastian Fleischmann

Outline

Introduction

- Simulation strategies
- Performance
- Summary
- Backup

- Monte Carlo simulation of detector response is needed to compare theoretical predictions (by Monte Carlo event generators) to data
- Detailed simulation of particles penetrating the detector material is CPU-time consuming
 - ➤ Simulation of a single tt̄ event in full Geant4 simulation takes about 30 kSI2Kminutes
- Fast simulation techniques can increase the amount of simulated events

Track simulation strategies

The simulation scheme of **attas**

FATRAS

Sebastian Fleischmann

- Outline
- Introduction

Simulation strategies

- Performance
- Summary
- Backup

- take extrapolation engine of the ATLAS track reconstruction
- reconstruction modules, such as the estimation of energy loss, are replaced by Monte Carlo implementations
- event data objects identical to full simulation or real data
- ► Where feasible, Geant 4 modules are used, such as particle decays
- Nearly all effects are estimated from first principles (Bethe-Bloch, etc.)
 - ▶ no parametrisations used, despite hadronic interactions

ATLAS Inner Detector Geometry

- Track reconstruction in ATLAS uses greatly simplified detector description
 - Sensitive elements identical to full Geant 4 description!
- fattasuses the same!

Sebastian Fleischmann

Outline

Introduction

Simulation strategies

Performance

Summary

Backup

Outline

Introduction

Simulation strategies

Performance

Summary

Backup

Extract measurements from simulated tracks

Sebastian Fleischmann

Outline

Introduction

Simulation strategies

Performance

Summary

Backup

Extract measurements from simulated tracks

Outline

Introduction

Simulation strategies

Performance

Summary

Backup

Outline

Introduction

Simulation strategies

Performance

Summary

Backup

Add noise and merge clusters

Combined Simulation

FATRAS

Sebastian Fleischmann

Outline

Introduction

Simulation strategies

Performance

Summary

Backup

• **fattas**and FastCaloSim interfaced:

- fattassimulates the Inner Detector including secondaries
- Calorimeter deposits simulated by FastCaloSim
- Muon System simulated by
 Additional system

Material effects Comparison of **Autas** and Geant4

Sebastian Fleischmann

- Outline
- Introduction
- Simulation strategies

Performance

- Summary
- Backup

- Pixels and SCT clusterisation tuned by adapting
 - minimal required path length in the Pixels cell
 - strength of Landau smearing
- ► Tuning can be done within 24h

Track parameter resolutions

FATRAS

Sebastian Fleischmann

Outline

Introduction

Simulation strategies

Performance

Summary

Backup

▶ Single muon events with $p_T = 1$ GeV, 5 GeV, 100 GeV

- In general good agreement, but still some parameters to tune in the digitisation
- ▶ In particular tails better described than in ultra-fast sim

Reconstructed tracks in minimum bias events at $\sqrt{s}=900~{\rm GeV}$

FATRAS

Sebastian Fleischmann

Outline

Introduction

Simulation strategies

Performance

Summary

Backup

Still some discrepancies, but data and misalignments of detector modules in data

Reconstructed tracks in minimum bias events Average number of Pixels hits per track

- Detector conditions like inactive modules automatically taken into account in fattas
- Precise description of the detector geometry

Reconstructed tracks in minimum bias events at $\sqrt{s}=900 {\rm GeV}$

 Cluster size depends on incident angle, because of sensor thickness

 Very sensitive test of the clusterisation model

Reconstructed tracks in minimum bias events at $\sqrt{s}=900 {\rm GeV}$

 Position and size of the beam spot in the simulation taken from detector conditions data base

tras for Super-LHC upgrade studies

FATRAS

Sebastian Fleischmann

- Outline
- Introduction
- Simulation strategies

Performance

- Summary
- Backup

- fatures was used for SLHC upgrade studies of the ATLAS tracker
- Allows easy testing of various geometries at a reasonable time scale

- Detector occupancies can be derived reliably
- Reconstruction effects are included in momentum resolutions, etc.

Stress tests for track fitters

FATRAS

- Sebastian Fleischmann
- Outline
- Introduction
- Simulation strategies
- Performance
- Summary
- Backup

- Detailed truth information by fattas allows to evaluate performance of track fitters
- Quick simulation of arbitrary noise levels

- 5 GeV single muon events
 - Example: Study of adaptive track fitter (Deterministic Annealing Filter)
 - High detector occupancy
 - Solution of left-right ambiguities in the TRT

Sebastian Fleischmann

- Outline
- Introduction
- Simulation strategies
- Performance
- Summary
- Backup

- factas is a new track simulation concept between full Geant4 simulation and conventional fast detector simulations
 - The full reconstruction chain can be run on dilas output
 - Speed improvement mostly due to simplified Tracking Geometry and extrapolation
 - (Nearly) no parametrisations needed
 - All important physics effects included, like multiple scattering, brem, conversions, particle decays, hadronic interactions
 - Allows studies to be performed that cannot easily be done either with full simulation or conventional fast simulations
- Currently in the tuning phase
- Validation with collision data has started

Sebastian Fleischmann

Outline

Introduction

Simulation strategies

Performance

Summary

Backup

 Special thanks to Andreas Salzburger (CERN), Sharka Todorova (Tufts University) and Simone Zimmermann (Bonn)

Sebastian Fleischmann

Outline

Introduction

Simulation strategies

Performance

Summary

Backup

Sebastian Fleischmann

Outline

Introduction

Simulation strategies

Performance

Summary

Backup

- Monitored Drift Tubes (MDT)
 - \approx 354k straw tubes
 - barrel and forward region
 - ▶ 80 µm straw resolution (Z)
 - 20 measurements / track
- Resistive Plate Chambers (RPC)
 - barrel region
 - chamber resolution: 10 mm (Z)/10 mm (φ)
 - 6 measurements / track
 - trigger (+ 2nd coordinate)
- ► Thin Gap Chambers (TGC)
 - end-cap
 - chamber resolution:
 - $2-6 \text{ mm } (R)/3-7 \text{ mm } (\phi)$
 - ► 9 measurements / track
 - trigger (+ 2nd coordinate)
- barrel toroid: 1.5 5.5 Tm bending power,

end-cap toroids: 1-7.5 Tm

- Cathode-Strip Chambers (CSC)
 - forward region
 - multi-wire prop. chambers
 - plane resolution:
 60μm (R)/5mm (φ)
 - ► 4 measurements / track

Muons with momenta of 4 GeV and 20 GeV in the bending plane of the barrel muon spectrometer.

Sebastian Fleischmann

Outline

Introduction

Simulation strategies

Performance

Summary

Backup

Simulation	Minimum	tŦ	Jets	$W^{\pm} ightarrow e^{\pm} v_e$	Heavy
time/event,	Bias				lon
kSI2Kseconds					
Full Sim	551	1990	2640	1150	56,000
Fast G4 Sim	246	757	832	447	21,700
ATLFAST-II	31.2	101	93.6	57.0	3050
ATLFAST-IIF	2.13	7.41	7.68	4.09	203
ATLFAST-I	0.029	0.097	0.084	0.050	6

- Hard to estimate how much CO₂ is emitted for one CPU second by the grid
- ► Taking 0.01 grams/s: Simulating 100k tt̄ events with ATLFAST-IIF (Tattas + FastCaloSim) instead of Full Simulation saves about 2 tons of CO₂

Digitisation in **attas**

Simulation of hits with transition radiation in the Transition Radiation Tracker

FATRAS

- Sebastian Fleischmann
- Outline
- Introduction
- Simulation strategies
- Performance
- Summary
- Backup

- transition radiation in the TRT produces hits with stronger signal and is used for particle ID
- \blacktriangleright probability of transition radiation depends on relativistic γ factor
- measured with test beams and cosmic ray data
- ► fit of turn-on curve has been fed into **fattas**

Combined simulation

Comparison of reconstructed muon p_T resolution

Sebastian Fleischmann

- Outline
- Introduction
- Simulation strategies
- Performance
- Summary
- Backup

- Single electrons and muons with transverse momentum $p_T = 5$ GeV
- Shape roughly reproduced, but datas "too perfect" for electrons
 - Needs some extra fudge factors

