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The ATLAS detector

MuonMuon
SpectrometerSpectrometer

HadronicHadronic
CalorimeterCalorimeter

ElectromagneticElectromagnetic
CalorimeterCalorimeter

TRTTRT

Pixel/SCTPixel/SCT
Tracking SystemTracking System

SolenoidSolenoid
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The ATLAS Inner Detector

I TRT drift tubes
I ≈ 300 000 straw tubes
I 130 µm resolution (Rφ)
I Xe/CO2/O2
I about 30 measurements

per track

I SCT silicon strips
I ≈ 6 million Si strips
I resolution:

17 µm (Rφ)/580 µm (Z)
I 4 (double)

measurements / track

I silicon Pixel
I ≈ 80 million Si pixels
I resolution:

10 µm (Rφ)/115 µm (Z)
I 3 measurements / track

I 2 T solenoidal field
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Why do we need fast detector simulations?

I Monte Carlo simulation of detector response is needed to
compare theoretical predictions (by Monte Carlo event
generators) to data

I Detailed simulation of particles penetrating the detector
material is CPU-time consuming

I Simulation of a single tt̄ event in full Geant4 simulation
takes about 30 kSI2Kminutes

I Fast simulation techniques can increase the amount of
simulated events
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Track simulation strategies

standard high energy physics
libraries (e.g. PYTHIA)

detector simulation
simulates passage of particles 
through the detector, charge 
deposition in sensitive detectors, 
showers, material interactions 

digitisation
emulates readout

reconstruction
pattern recognition, track finding, 
track fitting
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The simulation scheme of

I uses the component model of the ATLAS software
I take extrapolation engine of the ATLAS track
reconstruction

I reconstruction modules, such as the estimation of energy
loss, are replaced by Monte Carlo implementations

I event data objects identical to full simulation or real data
I Where feasible, Geant 4 modules are used, such as particle

decays
I Nearly all effects are estimated from first principles

(Bethe-Bloch, etc.)
I no parametrisations used, despite hadronic interactions
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ATLAS Inner Detector Geometry

Geant 4
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I Track reconstruction in ATLAS uses greatly simplified
detector description

I Sensitive elements identical to full Geant 4 description!

I uses the same!
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Track simulation in
Postprocessing

Extract measurements from simulated tracks

Add noise and merge clusters
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Track simulation in
Postprocessing

Extract measurements from simulated tracks

Add noise

and merge clusters
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Track simulation in
Postprocessing

Extract measurements from simulated tracks

Add noise and merge clusters
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Digitisation in
Silicon clusterisation with geometric approach

A
B

C
A B C

track

( )

intersection with surface

exit of sensor material
pixel position (vetoed)
cluster position

Q1

θL

Track
Q3Q2

Without Lorentz angle:

θL Lorentz Angle

θL

Track
Q1 Q2

With Lorentz angle:
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Combined Simulation
and FastCaloSim

I and FastCaloSim interfaced:

I simulates
the Inner Detector
including
secondaries

I Calorimeter deposits
simulated by
FastCaloSim

I Muon System
simulated by
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The Fast and the Furious
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Material effects
Comparison of and Geant4

Multiple scattering

Geant4

Single Gaussian
(Highland)

Gaussian Mixture
(Frühwirth et al.)

Radiation of brem photons

Energy loss

Hadronic interactions

Energy of secondary particles
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Digitisation in
Tuning of the silicon clusterisation

I Pixels and SCT clusterisation tuned by adapting
I minimal required path length in the Pixels cell
I strength of Landau smearing

I Tuning can be done within 24h

Cluster width in Pixels Measurement residual in Pixels
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Track parameter resolutions

I Single muon events with pT =1 GeV, 5 GeV, 100 GeV
I In general good agreement, but still some parameters to

tune in the digitisation
I In particular tails better described than in ultra-fast sim

(mm)
0

-d
0

d
d0 - d0 [mm]

E
nt
ri
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/b
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FATRAS

offline/NEWT
ATLFAST

Transverse impact parameter d0

FATRAS

Geant 4

    1 GeV
    5 GeV
100 GeV

    1 GeV
    5 GeV
100 GeV

Inverse track
momentum q/pT
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Reconstructed tracks in minimum bias events at√
s = 900 GeV

I on minimum bias Monte Carlo (Pythia) at the
center of mass energy

√
s = 900 GeV

I Still some discrepancies, but not yet tuned to
data and misalignments of detector modules in data



FATRAS

Sebastian
Fleischmann

Outline

Introduction

Simulation
strategies

Performance

Summary

Backup

1818

Reconstructed tracks in minimum bias events
Average number of Pixels hits per track

Pixels hits / track vs η

“sinoidal structure” due to
inactive Pixels modules in
b-layer folded with the
z-position of the primary vertex

Pixels hits / track vs φ

I Detector conditions like inactive modules automatically
taken into account in

I Precise description of the detector geometry
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Reconstructed tracks in minimum bias events at√
s = 900GeV

Pixel cluster size

Mean cluster size (in η direction)
vs incident angle (η) on the Pixel
module

I Cluster size depends on
incident angle, because of
sensor thickness

Q1

θL

Track
Q3Q2

Without Lorentz angle:

θL Lorentz Angle

θL

Track
Q1 Q2

With Lorentz angle:

I Very sensitive test of the
clusterisation model
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Reconstructed tracks in minimum bias events at√
s = 900GeV

Transverse impact parameter wrt.
primary vertex Longitudinal impact parameter

I Position and size of the beam spot in the simulation taken
from detector conditions data base
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for Super-LHC upgrade studies

I was used
for SLHC upgrade
studies of the
ATLAS tracker

I Allows easy testing
of various
geometries at a
reasonable time
scale

I Detector occupancies can be
derived reliably

I Reconstruction effects are
included in momentum
resolutions, etc.
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Stress tests for track fitters
simulation with high noise levels

I Detailed truth
information by
allows to evaluate
performance of track
fitters

I Quick simulation of
arbitrary noise levels

0.0 0.1 0.2 0.3 0.4 0.5 0.6

TRT noise occupany

) 
[M

eV
]

T
p(

σ

55

60

65

70

75

80

85

Kalman

DAF

Silicon-only

5 GeV single muon events

I Example: Study of adaptive
track fitter (Deterministic
Annealing Filter)

I High detector occupancy
I Solution of left-right

ambiguities in the TRT
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Conclusions

I is a new track simulation concept between full
Geant4 simulation and conventional fast detector
simulations

I The full reconstruction chain can be run on
output

I Speed improvement mostly due to simplified Tracking
Geometry and extrapolation

I (Nearly) no parametrisations needed
I All important physics effects included, like multiple
scattering, brem, conversions, particle decays, hadronic
interactions

I Allows studies to be performed that cannot easily be done
either with full simulation or conventional fast simulations

I Currently in the tuning phase
I Validation with collision data has started
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Backup
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The ATLAS Muon System

I Monitored Drift Tubes (MDT)
I ≈ 354k straw tubes
I barrel and forward region
I 80 µm straw resolution (Z)
I 20 measurements / track

I Resistive Plate Chambers (RPC)
I barrel region
I chamber resolution:

10 mm (Z)/10 mm (φ)
I 6 measurements / track
I trigger (+ 2nd coordinate)

I Thin Gap Chambers (TGC)
I end-cap
I chamber resolution:

2−6 mm (R)/3−7 mm (φ)
I 9 measurements / track
I trigger (+ 2nd coordinate)

I barrel toroid: 1.5−5.5 Tm
bending power,
end-cap toroids: 1−7.5 Tm

I Cathode-Strip Chambers (CSC)
I forward region
I multi-wire prop. chambers
I plane resolution:

60µm (R)/5mm (φ)
I 4 measurements / track

Muons with momenta of 4 GeV and 20 GeV
in the bending plane of the barrel muon
spectrometer.
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– The green simulation

Simulation
time/event,
kSI2Kseconds

Minimum
Bias

tt̄ Jets W±→ e±νe Heavy
Ion

Full Sim 551 1990 2640 1150 56,000
Fast G4 Sim 246 757 832 447 21,700
ATLFAST-II 31.2 101 93.6 57.0 3050
ATLFAST-IIF 2.13 7.41 7.68 4.09 203
ATLFAST-I 0.029 0.097 0.084 0.050 6

I Hard to estimate how much CO2 is emitted for one CPU
second by the grid

I Taking 0.01 grams/s: Simulating 100k tt̄ events with
ATLFAST-IIF ( + FastCaloSim) instead of Full
Simulation saves about 2 tons of CO2
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Digitisation in
Simulation of hits with transition radiation in the Transition Radiation Tracker

I transition radiation in the TRT produces hits with
stronger signal and is used for particle ID

I probability of transition radiation depends on relativistic γ

factor
I measured with test beams and cosmic ray data
I fit of turn-on curve has been fed into

FATRAS

γ
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Combined simulation
Comparison of reconstructed muon pT resolution

I central muons (|η |< 1.2) in Z → µ+µ− events

Muon System stand-alone
Combined Muon Spectrometer
/ Inner Detector reconstruction
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Reconstruction efficiencies

I Single electrons and muons with transverse momentum
pT = 5 GeV

I Shape roughly reproduced, but “too perfect” for
electrons

I Needs some extra fudge factors
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