GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

Reconstruction of tau leptons and prospects for SUSY in ATLAS

Carolin Zendler University of Bonn for the ATLAS collaboration

SUSY09, Boston 05.06.-10.06. 2009

- I Introduction and Motivation
- II Tau reconstruction and identification in ATLAS
- III SUSY analyses with tau leptons
 # Inclusive: discovery prospects
 # Exclusive: measurement of properties
- IV Summary

Why are taus interesting for SUSY? * 3rd generation special in SUSY: mixing of $\tilde{\tau}_L$ and $\tilde{\tau}_R$ to $\tilde{\tau}_1, \tilde{\tau}_2$ $\rightarrow \tilde{\tau}_1$ and therefore τ production enhanced $* \widetilde{\tau}_1$ in many models lightest slepton $\rightarrow \widetilde{\chi}_2^0 \rightarrow \widetilde{\tau}_1 \tau$ larger BR than analog e/µ decays, may even be only allowed (2body) decay \rightarrow important discovery channel * tau final states provide unique information not accessible otherwise, e.g. on stau masses * tau decay offers opportunity to measure tau polarization

 \rightarrow information about couplings of $\tilde{\chi}_2^0, \tilde{\chi}_1^0$ and $\tilde{\tau}_1$

Tau characteristics:

m_τ≃1.7 GeV, cτ≃87μm

→ decay within detector, visible only via decay products:

35% leptonically

- $17.8\% \ \tau {\rightarrow} e \nu_{\tau} \nu_{e}$
- **Ι7.4% T** \rightarrow μν_τν_μ

65% hadronically

50.2% Iprong (I charged track) 15.2% 3prong 0.1% 5prong Towards tau reconstruction: * e/μ from T decay hard to distinguish from prompt e/μ \rightarrow current algorithms focus on hadronic decays:

I prong (Ip): 22.4% $\tau \rightarrow \pi^{\pm}\nu_{\tau}$ 73.5% $\tau \rightarrow \pi^{\pm}\nu_{\tau} + n\pi^{0}$ 3 prong (3p): 61.6% $\tau \rightarrow 3\pi^{\pm}\nu_{\tau}$ 33.7% $\tau \rightarrow 3\pi^{\pm}\nu_{\tau} + n\pi^{0}$ \rightarrow tau lepton in detector:

jet of charged and neutral pions

The ATLAS detector

Ingredients for tau identification:

Tracking

R = 1082 mm **Tile barrel** Tile extended barrel Transition TRT Radiation Tracker LAr hadronic TRT end-cap (HEC) R = 554 mmR = 514 mm LAr electromagnetic end-cap (EMEC) R = 443 mm SCT R = 371 mm Semi-R = 299 mm Conductor SCT Tracker LAr electromagnetic R = 122.5 mm Pixels barrel LAr forward (FCal) Pixels R = 88.5 mm R = 50.5 mm R = 0 mm

* cT≃87µm → secondary vertex * Tracking constraint for taus: $|\eta|$ <2.5 High granularity of sampling calorimeter allows * good shower profile reconstruction

Calorimetry

***** reconstruction of π^0 subclusters

Two reconstruction algorithms:
* track based: seeded by high quality tracks
* calorimeter based: seeded by calorimeter

clusters

Basic distinctive τ features: τ jet
* collimated tracks and energy depositions
* low track multiplicity
* isolation
* impact parameter (lp),

3 prong т decay

SUSY09, 05.-10..06.2009

* ratio of EM/HAD energy

displaced vertex (3p)

 π^+

Tau reconstruction

Reconstruction

use combination of track- and calorimeter-seeded algorithms

- * Begin with track based algorithm
- * search matching calorimeter seed
 - → no match: track-only candidate (5%)
 - → match: track+calorimeter seeded candidate (70%)
- * remaining clusters: seeds for calorimeter-only candidates (25%)

Tau identification

Identification

Many discriminating variables, using calorimeter and tracking information:

#tracks in isolation cone and invariant mass of track system
shower radius in electromagnetic calorimeter
#hits with certain energy deposit in certain calorimeter layer
E_T fraction in cone 0.1<ΔR<0.2 w.r.t. total energy in cone 0.4
...

→ input for different discriminants: cut method, likelihood, neural network, boosted decision trees, PDRS

Identification in early data: "safe variables"

Reduce complex set of input variables to a few, well understood "safe" variables and use cut-based identification method for early data taking

Inclusive search strategy: cover all possible signatures

x jets + y leptons/taus + E_T^{miss} modes

- \rightarrow defined complementary to simplify combination
- * development of selection cuts in chosen benchmark points in mSUGRA-like models
- * scans of subsets of SUSY parameter space with fast detector simulation

* Exclusive studies: focus on special signatures

- * often very little background
- * main goal: measurement of SUSY properties

* Plots and numbers here: Ifb⁻¹ of I4 TeV data * τ identification: track- and calorimeter-based algorithms used separately, safe variables not implemented yet * mSUGRA examples \rightarrow R-parity conservation

Inclusive searches: tau mode

Trigger: 97-100% efficiency expected when triggering on 1 jet (p_T>70GeV) plus E_T^{miss} (>70GeV) (trigger rate: ~20 Hz (for 2x10³³cm⁻²s⁻¹))

→ <u>Expected events at Ifb⁻¹</u> <u>after tau mode selection cuts:</u> (S: signal, B: background)		S	В	S/√ _B
	SU3	259	51	36.3
	SU6	119	51	16.7

Exclusive studies:

#For SUSY discovery:
 show it is SUSY

 \rightarrow need to measure properties

* no mass peaks because of missing LSPs

→ kinematic edges

* dilepton mass spectrum holds information about SUSY masses involved in the decay chain: $\tilde{\chi}_{I}^{0}$, $\tilde{e}/\tilde{\mu}/\tilde{\tau}$, $\tilde{\chi}_{2}^{0}$

)²) 800

 $\widetilde{\boldsymbol{\chi}}_{2}^{0}$

 $m_{\tau\tau}^{max} = \sqrt{\frac{(m(\tilde{\chi}_{2}^{0})^{2} - m(\tilde{\tau}_{1})^{2}) \cdot (m(\tilde{\tau}_{1})^{2} - m(\tilde{\chi}_{1}^{0})^{2})}{(m(\tilde{\tau}_{1})^{2})}}$

* shape of ditau mass spectrum also holds information about stau mixing angle

near)

 $\widetilde{\boldsymbol{\chi}}_{1}^{(}$

far)

$\underline{\tau\tau}$ Invariant mass spectrum: triangular shape washed out due

systematic error: includes fit uncertainty (binning, fit range) and 5% jet energy scale uncertainty

Endpoint measurement

<u>Model independence of endpoint</u> <u>method</u>

* use same fit function and calibration for coannihilation point (SUI):

- # lower cross section (factor 0.4)
- # far tau very soft, hard to reconstruct
- \rightarrow <u>different event selection</u>:
- $\gg \geq 2\tau$ (track-seeded reconstruction)
- **ж 2 jets: р⊤>100/50GeV**
- ₩ E_T^{miss} >100GeV
- # elliptical cut in (ET^{miss}, pT^{jet1}+pT^{jet2}) plane (semi-axes 450GeV (ET^{miss}), 500GeV (sum jet pT))

→ <u>measured endpoint</u>: (nominal value: 78 GeV) $m_{\tau\tau}^{max} = 70 \pm 6.5^{stat} \pm 5^{syst} \text{ GeV} (18 \text{ fb}^{-1})$

* ongoing work: use method in non-mSUGRA scenario

Influence of τ polarization on $\tau\tau$ mass spectrum:

 $\tau \rightarrow \pi^{\pm} v_{\tau}$: fixed neutrino handedness \rightarrow pion momentum boosted (anti)parallel to tau momentum, dependent on tau polarization

→ mass spectra shifted for different τ polarizations: * $\tau\tau$ spectrum depends on combination of near and far τ polarization P_n+P_f and P_n*P_f

- * Sum $P_n + P_f$ has far more impact than product
- * Product $P_n * P_f \rightarrow$ variation bands

Endpoint and polarization measurement

SUSY masses and $\boldsymbol{\tau}$ polarizations change spectrum in different way

 \rightarrow fit spectrum with gaussian: more stable to polarization effects than log-normal function

Implications for SUSY parameters

Constraints on mixing angle and stau mass:

Possible improvement by separation of τ decay modes:

Tau decay mode reconstruction

Reconstruction of π^0 subclusters:

* High granularity of ATLAS electromagnetic calorimeter allows reconstruction of isolated subclusters from π^0

I prong candidates:

decay mode	no π^0	$I \pi^0$	$\geq 2 \pi^0$
$\tau \rightarrow \pi \nu_{\tau}$	<u>65%</u>	20%	I 5%
$\tau \rightarrow \rho \nu_{\tau}$	15%	50%	35%
$\tau \rightarrow a_1 (\rightarrow 2\pi^0 \pi) v_{\tau}$	9%	34%	57%

Invariant mass: candidates with at least one reconstructed π^0 subcluster, from $W \rightarrow \tau v_{\tau}$

* Taus are important for SUSY

 \rightarrow needed for searches and measurements

* Endpoint of $\tau\tau$ invariant mass spectrum can be measured accurately with ~Ifb^{-I}

 \rightarrow constraint on $\tilde{\tau}_1$ mass

* Sum of polarizations can be measured additionally with ~35fb⁻¹

 \rightarrow constraint on $\tilde{\tau}$ mixing angle $\theta_{\tilde{\tau}}$

* Performance of tau reconstruction and identification crucial

- → high reconstruction efficiency for visible signals
- \rightarrow high purity for meaningful signals

→ information about tau decay could improve measurements significantly

backup

Tau reconstruction

Reconstruction

* Begin with track based algorithm

- * Seed: high quality track (p_T>6GeV, requirements on #hits in subdetectors and χ^2 /ndf)
- * additional quality tracks (p_>IGeV) in cone ΔR <0.2
- * η , ϕ reconstruction with p_T -weighting of tracks
- * check charge consistency

* search matching calorimeter seed

- * Jet "Cone4HITopoJet" (E_T >I0GeV, $|\eta|$ <2.5) within ΔR <0.2
- → no match: track-only candidate (5%)

→ match: track+calorimeter seeded candidate (70%)

* E_T from cells of calorimeter based algorithm

* remaining clusters: seeds for calorimeter-only candidates (25%)

- * η , ϕ reconstruction from cluster
- # looser track quality selection (pT>IGeV)

Identification

- Discriminating variables:
- * variance W_{tracks} (multiprong only)
- * invariant mass of track system
- #tracks in isolation cone
- * electromagnetic radius R_{em}
- $* # \eta$ strips with certain energy deposit
- * width of the energy deposit
- * E_T fraction in cone 0.1 < ΔR < 0.2 w.r.t. total energy in cone 0.2
- * transverse energy at EM scale in core cone and isolation cone E_T^{core} , E_T^{isol} , $E_T^{isolHAD}$
- * hadronical E_T fraction in core region w.r.t. sum p_T of tracks * visible mass
- * transverse impact parameter
- # transverse flight path
- $st \pi^0$ subclusters

safe variables:

- Calorimter-based:
- * radius in EM calorimeter
- isolation fraction
- * width in strip layer
- **₩ E**_T(EM)/E_T
- → uses only calorimeter information

additional for track+calorimterbased:

- * width of track momenta
- # electromagnetic and hadronic
- E_{T} fraction w.r.t. sum p_{T} of tracks
- * sum p_T of tracks / E_T

mSUGRA benchmark points used:

	m₀ [GeV]	m _{1/2} [GeV]	A₀ [GeV]	tanβ	sgn µ	
SUI coannihilation	70	350	0	10	+	
SU3 bulk	100	300	-300	6	+	
SU6 funnel	320	375	0	50	+	

Tau polarization

$$\begin{split} A_{j1L}^{\tau} &= -\frac{m_{\tau}}{\sqrt{2}m_W \cos\beta} N_{j3}^* \sin\theta_{\tilde{\tau}} + \frac{1}{\sqrt{2}} \left(N_{j2}^* + N_{j1}^* \tan\theta_W \right) \cos\theta_{\tilde{\tau}} \\ A_{j1R}^{\tau} &= -\frac{m_{\tau}}{\sqrt{2}m_W \cos\beta} N_{j3} \cos\theta_{\tilde{\tau}} - \sqrt{2}N_{j1} \tan\theta_W \sin\theta_{\tilde{\tau}} \,, \end{split}$$

→ polarization:
$$P = \frac{\left(A_{j1R}^{\tau}\right)^2 - \left(A_{j1L}^{\tau}\right)^2}{\left(A_{j1R}^{\tau}\right)^2 + \left(A_{j1L}^{\tau}\right)^2},$$

Ditau mass spectrum for $\tau{\rightarrow}\pi^{\pm}v_{\tau}$

$$N(m_{\pi\pi}) = 4m \left\{ \left(P_n \cdot P_f \right) \left[\ln m \left(\ln m + 4m^2 + 4 \right) + 4 \left(1 - m^2 \right) \right] + \left(P_n + P_f \right) \left[m^2 - 2 \ln m - 1 - \ln^2 m \right] + \ln^2 m \right\}$$

Endpoint and polarization measurement

SUSY masses and τ polarizations change spectrum in different way

- \rightarrow fit spectrum with gaussian: more stable to polarization effects that log-normal function
- \rightarrow possible to measure both with 2 ovservables: $x(f^{max}), x(0, I^{*}f^{max})$
- \rightarrow 2dim calibration needed:

