GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

Extracting SUSY parameters from LHC measurements using Fittino

Philip Bechtle¹, Klaus Desch², Mathias Uhlenbrock², Peter Wienemann²

¹DESY ²University of Bonn

17th International Conference on Supersymmetry and Unification of Fundamental Interactions June 7, 2009 Boston, USA

The "SUSY Genome Project"

Excess of events ≠ discovery of SUSY

Need to check, whether new physics is truly SUSY and find out the underlying blueprint:

- Particle contents (MSSM, NMSSM, N=1 SUSY, ...)
- SUSY breaking mechanism (SUGRA, GMSB, ...)
- R-parity conserved?
- CP violation in SUSY sector?
- Flavour violation?

Check compatibility of measurements with different models and give constraints on their parameters

SUSY genes:

Determination of SUSY parameters

Mapping complicated if loop corrections are taken into account (in principle every parameter depends on every observable and vice versa)

Fittino approach

Theory predictions: SPheno (W. Porod) and Mastercode (Buchmüller et al.)

Fit to "low energy" measurements

Fit of 4 SM + mSUGRA parameters to "low energy" measurements (LEP, SLC, B-factories, WMAP, ...):

Result:	Parameter		Best Fit		Uncertainty	
	${ m sign}\mu$		+1			
	α_s		0.11774	\pm	0.00199	
4	$1/\alpha_{em}$		127.924	\pm	0.017	
inal	m_Z	(GeV)	91.1871	\pm	0.0020	
dinni	m_t	(GeV)	172.4	\pm	1.1	
pre	$\tan\beta$		13.2	\pm	7.2	
•	M_{12}	(GeV)	331	\pm	87	
	M_0	(GeV)	76		+79 - 29	
	A_0	(GeV)	384	\pm	$6\bar{4}\bar{7}$	

$$\chi^2_{min}$$
 = 20.6 (ndof = 22)

Relevance of some observables

Fits using all observables: Fits without $(g-2)_{\mu}$ or/and Ωh^2 : 2D 95% CL no (g-2) no Ω 5% CL Ω_{thes} <Ω_{ebs} 1D 68% CL no (α-2) no Ω preliminary SUSY preliminary 2D 95% CL no (g-2) SUSY 2D 95% CL all Observables 1D 68% CL all Observables 1D 68% CL no (g-2) 2D 95% CL no Ω 800 1D 68% CL no Ω 4000 700 M¹² (GeV) 5000 M¹² (GeV) M₁₂ (GeV) 600 500 400 1000 300 200 0 700 100 200 300 400 500 600 0 1000 2000 3000 4000 5000 0 M_o (GeV) M_o (GeV)

Preferred point rather robust

Mass spectrum from fits to LE data

Light SUSY particles favoured

Comparison with LHC potential

Good prospects for early BSM hints at LHC

Projection to LHC

Fit result of mSUGRA fit to "low energy" data accidentally very close to an experimentally well studied SUSY benchmark point:

				SPS1a values	
aneta	13.2	\pm	7.2	10	6
M_{12} (GeV)	331	\pm	87	250	Clin
M_0 (GeV)	76		$^{+79}_{-29}$	100	nina
A_0 (GeV)	384	\pm	647	-100	2

Thus: Experimental SPS1a studies well suited to dare a projection to LHC era and predict evolution of LHC precision on SUSY parameters as function of luminosity

mSUGRA fit to LHC "data"

mSUGRA parameter distributions for toy fits:

mSUGRA fit to LHC "data"

mSUGRA parameter distributions for toy fits:

sign(μ)

Performed two fits (with μ >0 and μ <0) for each toy data set smeared around best fit values and compared χ^2 values

SPS1a: μ>0

Chain ambiguities

Full combinatorics for chain ambiguities not yet considered in analysis. Exemplarily looked at impact of one possible misinterpretation of one single observable to test methodology:

Perform fit to same toy data for each possible interpretation and choose result with smallest χ^{2}

LE + LHC combination

tan β	Luminosity 1 fb-1 10 fb-1 300 fb-1	Uncertainty LHC 3.7 (41 %) 0.8 (8 %) 0.4 (4 %)	Uncertainty LHC+LE 2.5 (25 %) 0.8 (8 %) 0.3 (3 %)	
A ₀ (GeV)	Luminosity 1 fb-1 10 fb-1 300 fb-1	Uncertainty LHC 742 (742 %) 53 (53 %) 11 (11 %)	Uncertainty LHC+LE 169 (169 %) 48 (48 %) 12 (12 %)	D _{relin}
M ₀ (GeV)	Luminosity 1 fb-1 10 fb-1 300 fb-1	Uncertainty LHC 4.2 (4.2 %) 2.1 (2.1 %) 0.39 (0.4 %)	Uncertainty LHC+LE 3.3 (3.3 %) 1.9 (1.9 %) 0.44 (0.4 %)	minary
M _{1/2} (GeV)	Luminosity 1 fb-1 10 fb-1 300 fb-1	Uncertainty LHC 6.7 (2.7 %) 1.2 (0.5 %) 0.30 (0.1 %)	Uncertainty LHC+LE 4.9 (2.0 %) 1.1 (0.4 %) 0.32 (0.1 %)	

LE observables set to nominal SPS1a values for this combination

SUSY mass spectra

SUSY mass spectra derived from "low energy" and LHC (300 fb⁻¹) observables for different model assumptions:

MSSM18

mSUGRA

Summary

- "Low energy" data favour light SUSY particles
- New physics might be found with early LHC data
- Finding out its origin is probably more challenging and time consuming
- High scale unification models can be tested early on at the LHC
- More general scenarios can be checked and constrained as LHC accumulates more luminosity
- Just have to exercise a bit more patience until we can test our machinery on *real* LHC data

BACKUP

"Low energy" measurements

Numerous "low energy" measurements by past and present experiments:

- LEP, SLC
- B factories
- WMAP
- ...

They constrain possible SUSY parameter space

observable	meas. value	$\operatorname{constraint}$	theo. uncert.
$\alpha_{\rm em}$	127.925	± 0.016	
α_{S}	0.1176	± 0.0020	
$G_F (\text{GeV}^{-2})$	1.16637×10^{-5}	\pm 0.00001 $\times 10^{-5}$	
m_Z (GeV)	91.1875	\pm 0.0021	
m_W (GeV)	80.399	± 0.025	± 0.010
m_c (GeV)	1.27	± 0.11	
m_b (GeV)	4.20	± 0.17	
m_t (GeV)	172.4	± 1.2	
m_{τ} (GeV)	1.77684	± 0.00017	
m_h (GeV)	> 114.4		± 3.0
Γ_Z (MeV)	2495.2	± 2.3	± 1.0
Δa_{μ}	30.2×10^{-10}	\pm 8.8 $\times 10^{-10}$	\pm 2.0 $\times 10^{-10}$
σ_{had}^0 (nb)	41.540	± 0.037	
R_{ℓ}	20.767	± 0.025	
R_b	0.21629	± 0.00066	
R_c	0.1721	± 0.003	
A_{FB}^{ℓ}	0.01714	± 0.00095	
A^b_{FB}	0.0992	± 0.0016	
A_{FB}^{c}	0.0707	± 0.0035	
$A_{\ell}(SLD)$	0.1513	± 0.0021	
$A_{\ell}(P_{\tau})$	0.1465	± 0.0032	
A_b	0.923	± 0.020	
A_c	0.670	± 0.027	
$sin^2 \theta_W^{\ell}(Q_{fb})$	0.2324	\pm 0.0012	
Ωh^2	0.1099	± 0.0062	± 0.012
$BR(B_d \rightarrow \mu^+ \mu^-)$		$< 2.3 \times 10^{-8}$	\pm 0.01×10 ⁻⁹
$BR(B_s \rightarrow \mu^+ \mu^-)$		$< 4.7 \times 10^{-8}$	\pm 0.02×10 ⁻⁸
$R(b \rightarrow s\gamma)$	1.117	\pm 0.076 \pm 0.082	± 0.050
$R(B \rightarrow \tau \nu)$	1.15	± 0.40	
$R(B \rightarrow X_s \ell \ell)$	0.99	± 0.32	
$R(K \rightarrow \mu\nu)$	1.008	± 0.014	
$R(K \rightarrow \pi \nu \overline{\nu})$		< 4.5	
$R(\Delta m_{B_s})$	1.11	± 0.01	± 0.32
$R(\Delta m_{B_s})/R(\Delta m_{B_d})$	1.09	± 0.01	± 0.16
$R(\Delta \epsilon_K)$	0.92	± 0.14	

LHC "measurements"

Observable	Nominal	Uncertainty							
	Value	$1 {\rm fb}^{-1}$	$10 {\rm ~fb^{-1}}$	$300 \ {\rm fb}^{-1}$	LES_1	$LES_{10,300}$	JES_1	$JES_{10,300}$	syst.
m_h	109.1		1.4	0.1		0.1			
m_t	170.9	1.1*	0.05	0.01			1.5^{*}	1.0	
$m_{\tilde{\chi}^{\pm}_{1}}$	179.9			11.4				1.8	
$m_{\tilde{\ell}_L} - m_{\tilde{\chi}_1^0}$	105.4			1.7		0.1			6.0
$m_{\tilde{g}} - m_{\tilde{\chi}_1^0}$	510.2		13.7	2.5				5.1	10.0
$m_{\tilde{q}_R} - m_{\tilde{\chi}_1^0}$	454.0	19.6	6.2	1.1			22.7	4.5	10.0
$\langle m_{\tilde{g}} - m_{\tilde{b}_{1,2}} \rangle$	522.6		5.4					5.2	
$m_{\tilde{g}} - m_{\tilde{b}_1}$	89.0			1.5				0.9	
$m_{\tilde{g}} - m_{\tilde{b}_2}$	56.7			2.5				0.6	
$m_{\ell\ell}^{\max} = \tilde{\epsilon}_1(m_{\tilde{\chi}_1^0}, m_{\tilde{\chi}_2^0}, m_{\tilde{\ell}_R})$	80.2	1.7	0.5	0.03	0.16	0.08			
$m_{\ell\ell}^{\max} = \epsilon_1(m_{\tilde{\chi}_1^0}, m_{\tilde{\chi}_4^0}, m_{\tilde{\ell}_L})$	279.1		12.6	2.3		0.28			
$m_{\tau\tau}^{\max} = \epsilon_1(m_{\tilde{\chi}_1^0}, m_{\tilde{\chi}_2^0}, m_{\tilde{\tau}_1})$	83.2	12.6	4.0	0.73			4.2	0.8	5.7
$m_{\ell\ell q}^{\max} = \epsilon_1(m_{\tilde{\chi}_1^0}, m_{\tilde{q}_L}, m_{\tilde{\chi}_2^0})$	454.3	13.9	4.2	1.4			22.7	4.5	
$m_{\ell q}^{\text{low}} = \epsilon_1(m_{\bar{\ell}_R}, m_{\bar{q}_L}, m_{\bar{\chi}_2^0})$	324.2	7.6	3.5	0.9			16.2	3.2	
$m_{\ell q}^{\text{high}} = \epsilon_2(m_{\tilde{\chi}_1^0}, m_{\tilde{\chi}_2^0}, m_{\tilde{\ell}_R}, m_{\tilde{q}_L})$	398.3	5.2	4.5	1.0			19.9	4.0	
$m_{\ell\ell q}^{\text{thres}} = \epsilon_3(m_{\tilde{\chi}_1^0}, m_{\tilde{\chi}_2^0}, m_{\tilde{\ell}_R}, m_{\tilde{q}_L})$	216.2	26.5	4.8	1.6			10.8	2.2	
$m_{\ell\ell b}^{\text{thres}} = \epsilon_3(m_{\tilde{\chi}_1^0}, m_{\tilde{\chi}_2^0}, m_{\tilde{\ell}_R}, m_{\tilde{b}_1})$	196.4		19.7	3.6				2.0	
$m_{tb}^{w} = \epsilon_4 (m_t, m_{\bar{t}_1}, m_{\bar{\chi}^{\pm}}, m_{\bar{g}}, m_{\bar{b}_i})$	360.9	43.0	13.6	2.5			18.0	3.6	
$\frac{\operatorname{BR}(\tilde{\chi}_{2}^{0} \to \tilde{\ell}\ell) \times \operatorname{BR}(\tilde{\ell} \to \tilde{\chi}_{1}^{0}\ell)}{\operatorname{BR}(\tilde{\chi}_{2}^{0} \to \tilde{\tau}_{1}\tau) \times \operatorname{BR}(\tilde{\tau}_{1} \to \tilde{\chi}_{1}^{0}\tau)}$	0.08	0.009	0.003	0.001					0.008
$\frac{\operatorname{BR}(\bar{g} \to \bar{b}_2 b) \times \operatorname{BR}(\bar{b}_2 \to \bar{\chi}_2^0 b)}{\operatorname{BR}(\bar{g} \to \bar{b}_1 b) \times \operatorname{BR}(\bar{b}_1 \to \bar{\chi}_2^0 b)}$	0.16			0.078					