Reconstruction of SUSY Lagrangian parameters with Fittino

Philip Bechtle, Klaus Desch, <u>Mathias Uhlenbrock</u>, Peter Wienemann

Physikalisches Institut University of Bonn

Helmholtz Alliance "Physics at the Terascale" 2nd Annual Workshop Aachen, November 27, 2008

1 Introduction

- Models of elementary particle physics and their parameters
- Principles of parameter reconstruction from measurements
- 2 Functionality of Fittino
- 3 Results
 - Reconstruction of mSUGRA parameters from LHC observables in a global fit
 - Using fit techniques for model discrimination

Standard model (SM)

19 parameters

- 9 fermion masses m_f
- 3 couplings g, g/, g_S
- Higgs mass m_H, VEV v
- strong CP phase θ_{QCD}
- 3 CKM angles, 1 CKM phase

MSSM-24

24 parameters

- 15 sfermion masses m_f
- 3 trilinear couplings A_τ, A_b,
 A_t
- 3 gaugino masses *M*₁, *M*₂, *M*₃
- pseudoscalar Higgs mass m_{A⁰}
- Higgsino mass parameter μ
- ratio of 2 Higgs VEVs $\tan \beta = \frac{v_1}{v_2}$

Multiplicity of parameters due to spontaneous symmetry breaking

Unification of parameters at high energies

assumed model point: SPS 1a

 $\begin{array}{l} \textit{M}_{1/2}=250 \ \text{GeV}, \ \textit{M}_{0}=100 \ \text{GeV}, \\ \textit{A}_{0}=-100 \ \text{GeV}, \ \tan\beta=10, \\ \text{sign}\mu=1 \end{array}$

- In general: observables \neq parameters
- Reconstruction: mapping observables → parameters

- Difficulty: mapping not analytical due to higher order corrections
- But: theory gives mapping parameters → observables
- Strategy: vary parameters until predicted and measured observables in agreement

List of observables (excerpt)

(1, 0, -1)	nominal	uncertainty (GeV)			
LHC observable (1 fb)	value (GeV)	stat.	LES (0.2 %)	JES (5 %)	syst.
m _t	170.9	1.1		1.5	
$m_{\tilde{q}_R} - m_{\tilde{\chi}_1^0}$	533.7	19.6		26.7	10.0
$m_{\ell \ell}^{\max}$	80.2	1.7	0.16		
$m_{\pi\pi}^{max}$	83.2	12.6		4.2	8.3
$m_{\ell\ell q}^{max}$	454.3	13.9		11.4	
$m_{\ell q}^{\text{low}}$	320.3	7.6		8.0	
$m_{\ell a}^{high}$	398.3	5.2		10.0	
$m_{\ell \ell a}^{\text{thres}}$	216.2	26.5		5.4	
m ^w _{tb}	360.9	43.0		18.0	
$\frac{BR(\tilde{\chi}_2^0 \to \tilde{\ell}\ell) \times BR(\tilde{\ell} \to \tilde{\chi}_1^0 \ell)}{BR(\tilde{\chi}_2^0 \to \tilde{\tau}_1 \tau) \times BR(\tilde{\tau}_1 \to \tilde{\chi}_1^0 \tau)}$	0.08	0.009			0.008

low energy observable	nominal		uncertainty	
	value	stat.		syst.
σ_0^h (nb)	41.404	0.037		
R_{ℓ}	20.788	0.025		
A_{EB}^{ℓ}	0.01644	0.00095		
$A_{\ell}(SLD)$	0.1481	0.0021		
Ωh^2	0.194	0.009		0.012
$R(b ightarrow s \gamma)$	0.915	0.122		
$\Delta(g-2)_{\mu}$	29.7×10^{-10}	9.0×10^{-10}		

Simulated Annealing

Simulated Annealing

- \chi_2² surface is considered as potential
- higher χ² is accepted according to Boltzmann distribution to escape from local mimima

$$p < \exp\left(-rac{\chi^{2(t)}-\chi^{2(t-1)}}{T}
ight)$$
 with $p \in [0, 1]$

iterative temperature reduction

$$T' = rT \qquad 0 < r < 1$$

Principles of MC method

observables

parameters

Results of MC method

Non-Gaussian behaviour at low luminosities

- mapping: at 1 fb⁻¹ deviations from linear approximation
- improvement by constraints from low energy (LE) measurements

Global fits for different luminosities

Global fits for different luminosities

χ^2 distributions

Objective quality criterion: reproduce input number degrees of freedom (ndf) $% \left({{{\rm{nd}}}{\rm{f}}} \right)$

Global fits for different luminosities

Alternative view on parameter space: Likelihood maps

- Markov chain with sampling rate proportional to likelihood L that parameter set is realized in data
- plot $2(\ln(L_0) \ln(L)) = \chi^2$
- reveals substructure (e.g. second order minima)

Model discrimination

- 1 Supersymmetry breaking parametrized in Lagrangian
- Reconstruction of mSUGRA point SPS 1a from LHC + low energy measurements with Fittino using complementing techniques
 - for different luminosities
 - used for model discrimination
- 3 Expect interesting results from first data

Backup: Global fits for different luminosities

$\int \mathcal{L} dt = 1 \text{ fb}^{-1}$				
	M ₀	M _{1/2}	A ₀	aneta
M ₀	1.000(0.000)	-0.249(0.042)	-0.299(0.041)	-0.563(0.031)
$M_{1/2}$	-0.249(0.042)	1.000(0.000)	0.358(0.039)	0.809(0.015)
A ₀	-0.299(0.041)	0.358(0.039)	1.000(0.000)	0.435(0.036)
$\tan \beta$	-0.563(0.031)	0.809(0.015)	0.435(0.036)	1.000(0.000)

$\int \mathcal{L} dt = 10 \; \mathrm{fb}^{-1}$				
	M ₀	M _{1/2}	A ₀	tan eta
M ₀	1.000(0.000)	0.310(0.040)	-0.528(0.032)	-0.432(0.036)
$M_{1/2}$	0.310(0.040)	1.000(0.000)	0.470(0.035)	0.331(0.040)
A ₀	-0.528(0.032)	0.470(0.035)	1.000(0.000)	0.830(0.014)
$\tan \beta$	-0.432(0.036)	0.331(0.040)	0.830(0.014)	1.000(0.000)

$\int \mathcal{L} dt = 300 \text{ fb}^{-1}$				
M_0 $M_{1/2}$ A_0 tan β				
M ₀	1.000(0.000)	0.346(0.039)	-0.283(0.041)	0.182(0.043)
$M_{1/2}$	0.346(0.039)	1.000(0.000)	0.698(0.023)	0.083(0.044)
A ₀	-0.283(0.041)	0.698(0.023)	1.000(0.000)	0.280(0.041)
$\tan \beta$	0.182(0.043)	0.083(0.044)	0.280(0.041)	1.000(0.000)