

Two-photon processes with early data:

 $\gamma\gamma
ightarrow au au$

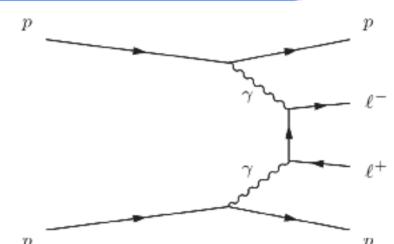
Robindra Prabhu

(K. Desch, P. Wienemann)

Universität Bonn

ATLAS-D Tau Meeting, Freiburg 12.-13.11.08

- GEFÖRDERT VOM
- Bundesministerium für Bildung und Forschung
- Why exclusive dilepton processes?
- Event Signature
- Trigger selection
- Backgrounds
- Offline selection
- Summary / Outlook



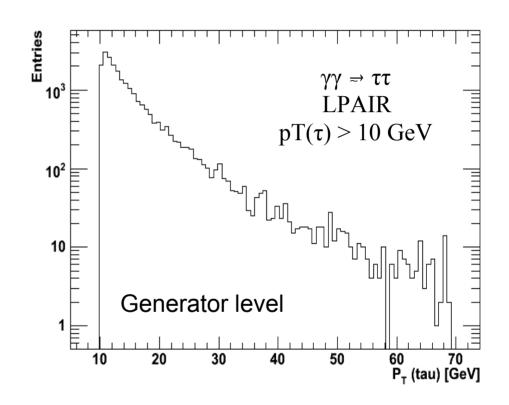
Exclusive dilepton production

- Signal process:
 - → two central leptons:
 - back-to-back
 - balanced in pT
 - opposite charge
 - → protons escape down beamline

- LHC as a "photon collider":
 - → QED two photon processes: small theoretical uncertainties (cross section known to < 1%)</p>
- Low luminosity (+low pileup) phase:
 - → Luminosity monitoring ($\gamma\gamma \rightarrow \mu\mu$)
 - → Useful for tau lepton ID performance studies?

Monte Carlo samples

- LPAIR for elastic (and inelastic) two-photon processes
 - → not part of the ATLASMC Generator suite
 - → generate events with LPAIR standalone, pass output ASCII to ATHENA
- LPAIR cross section estimates


	I0 TeV	I0 TeV
Pt(tau1,tau2)	Cross section (pb)	Cross Section (pb) eta < 2.5
0 GeV	186.2	60.6
I0 GeV	1.7	1.0
20 GeV	0.3	0.2

Trigger selection

- Signal strongly peaked at low pT:
 - need low trigger thresholds
 - → first pass: HLT trigger dump
 - 7944 / 7950 events passed the EF:
 - EF tauNoCut: 3528
 - EF tau12: 1102

Requires more detailed studies...

- → dedicated trigger required?
 - low pT tresholds
 - exactly two "objects"
 - acoplanarity + Et-balance useful?

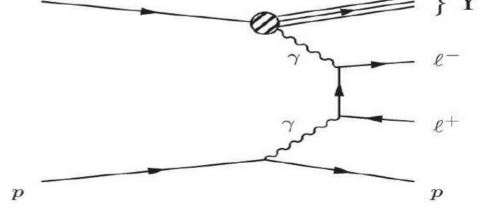
Backgrounds

- Signal:
 - → ideally, two isolated, back-to-back tau candidates
- •Backgrounds:
 - → NON-EXCLUSIVE

·
$$Z^0/\gamma$$
 $\rightarrow 1^+1^-$

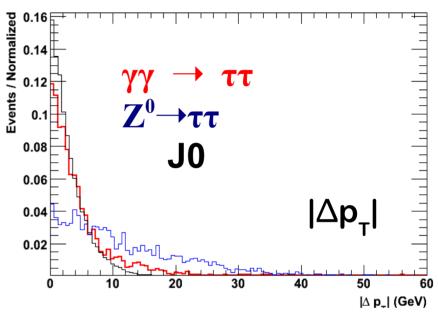
·
$$J/\Psi \rightarrow 1^{+1}$$

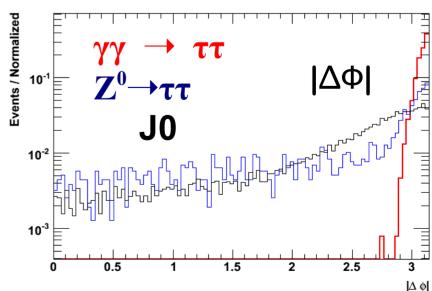
$$\begin{array}{ccc} \cdot & \mathbf{J/\Psi} & \rightarrow 1^{+}1^{-} \\ \cdot & \mathbf{Y} & \rightarrow 1^{+}1^{-} \end{array}$$


· W+W
$$\rightarrow 1^+1^-$$

QCD

additional detector activity?


- one proton dissociates
- cross section similar to elastic signal
- large theoretical uncertainties



Offline selection

Require exactly two "PanTau" seeds

- Require exactly two leptons
 - → two taus, 1 tau + 1 electron/muon?
 - → opposite charge?
- Kinematic cuts
 - → $|\Delta p_{-}|$: expected to peak around 0
 - \rightarrow $|\Delta \Phi|$: expected to peak around π
- CMS: veto additional activity to reduce "non-exclusive" backgrounds
- Inelastic backgrounds might be harder control

Summary / Outlook

- Two-photon processes might provide a clean source of low-pT taus with early data
 - → cross sections non-negligible
 - → clean events:
 - pure QED: well understood
 - non-exclusive backgrounds small and controllable (CMS)
 - → significant number of ditaus appear to pass Event Filter
 - more detailed trigger study required
 - → full-fledged study with backgrounds required to establish feasibility
 - results from CMS involving dieletrons and dimuons look promising
- Possibly a useful complement to existing studies:
 - → useful process to study low-pT tau ID performance?