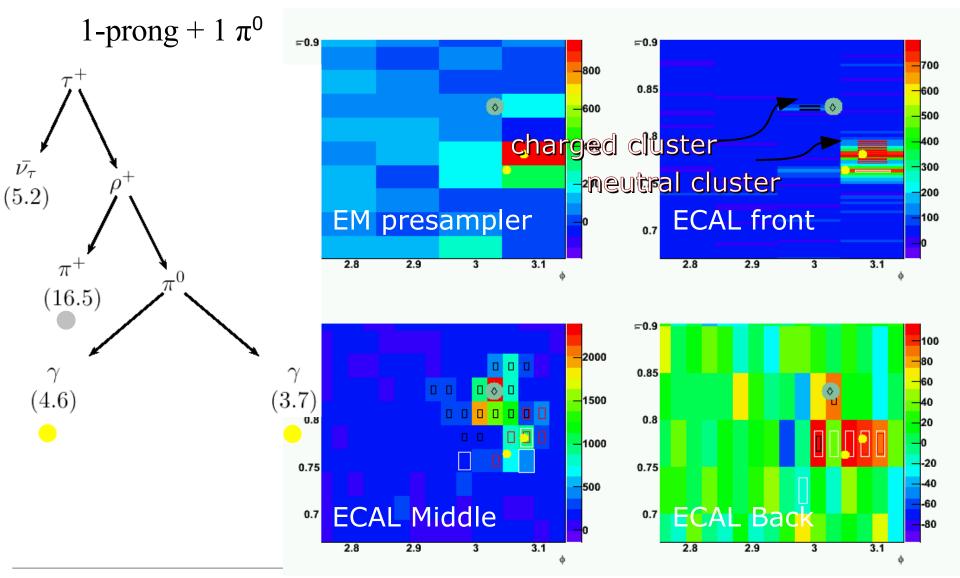


Towards a Particle Based Tau ID at low energies

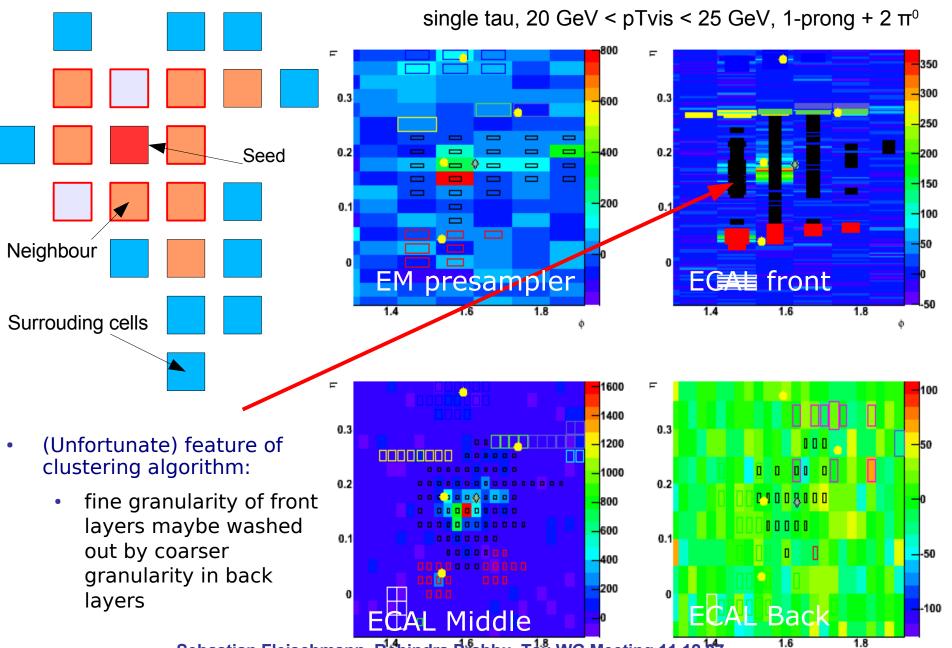
S. Fleischmann, <u>Robindra Prabhu</u>, P. Wienemann

Bonn University

Tau WG Meeting December 11 2007


- (1) Motivation
- (2) Issues with TopoClusters
- (3) Optimizing clustering parameters
- (4) Cluster moments
- (5) Maximum Entropy
- (6) Summary / Outlook

Motivation


A) ATLAS is blessed with a high granularity calorimeter
 B) Topological clustering provides a window towards resolving the energy depositions of individual particles

- Is it possible to separately identify and reconstruct the component particles of the tau-decay jet?
 - e.g reconstruct subclusters within the tau-jet cone with explicit $\pi\pm$ and π (or $\gamma)$ ID
 - exploit tau decay kinematics (mass contraints, angles, etc.)
 - exploit calorimeter segmentation, shower profiles

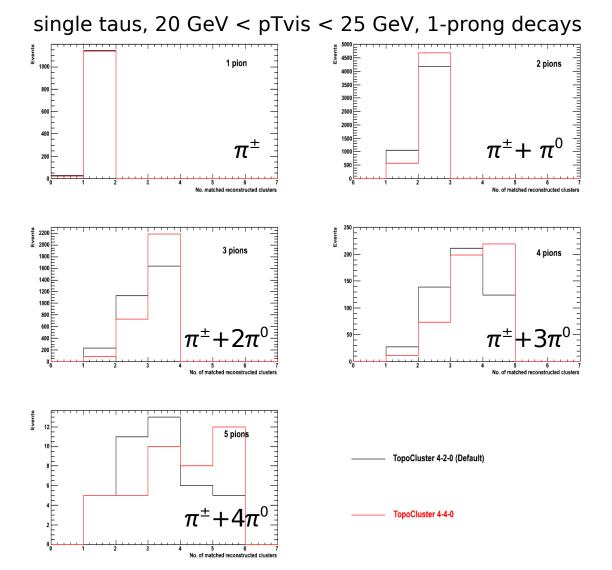
TopoClustering in \tau -decays

Sebastian Fleischmann, Robindra Prabhu, Tau WG Meeting 11.12.07

Sebastian Fleischmann, Robindra Prabhu, Tau WG Meeting 11.12.07

φ

TopoCluster settings optimal?

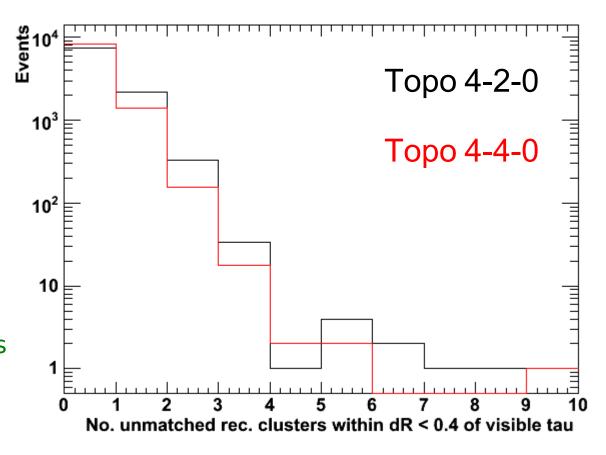

- a single pion "event", will on average contain 12 TopoClusters (in 4-2-0 configuration)
 - feature of total cell number and seed threshold
 - 1 "signal" cluster
 - 11 noise clusters (randomly scattered across calorimeter?)
- 4-2-0 configuration found to give optimal energy resolution

http://indico.cern.ch/getFile.py/access?contribId = s0t7 & resId = 0 & materialId = 0 & confId = a062374 & resId = 0 & resId = a062374 &

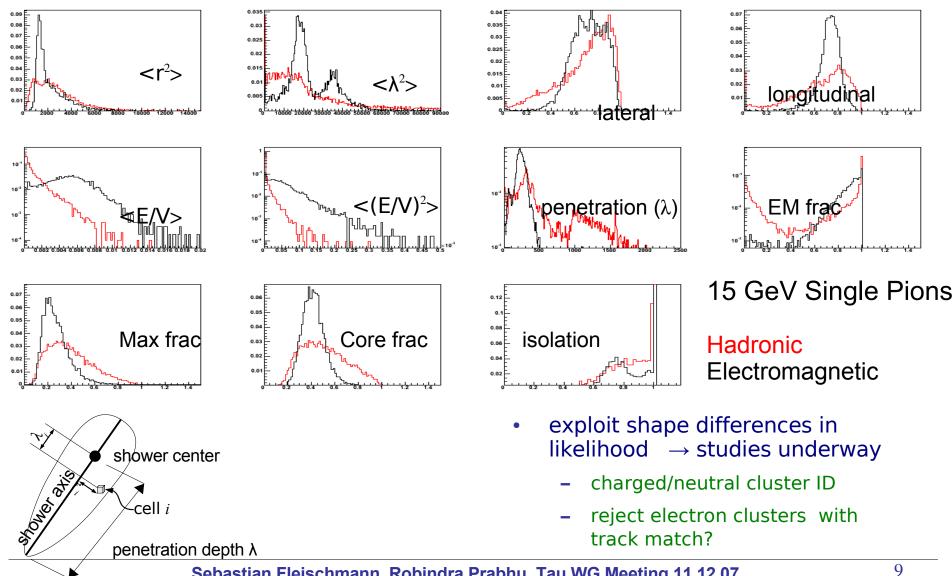
- Sven Menke: for tau ID/reconstruction study the following configurations:
 - n-n-0 (660,550,440, etc.)
 - second n "restrains" cluster growth
 - last 0 ensures the inclusion of tails needed for good energy resolution
- worry less about energy resolution at the ID step
 - n-n-m configuration may provide improved spatial resolution

Optimizing thresholds...

- Ansatz (first iteration):
 - For each pion in the tau decay, there should be a corresponding spatially resolved cluster
- Number of MC π 's in tau decay with cluster match ($\Delta R < 0.1$)
- n-n-0 configuration seen to perform slightly better than 4-2-0

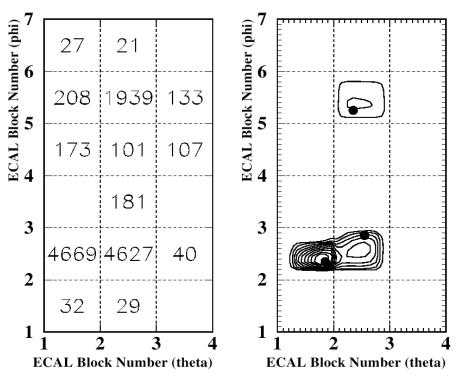


Optimization


2 pions	0 clusters	1 cluster	2 clusters	3 clusters	4 clusters	5 clusters
topo440	0.02%	10.80%	89.20 %			
topo430	0.04%	13.70%	86.30%			
topo420	0.02%	20.20%	79.70%			
topo550	0.00%	11.40%	88.60%			
topo540	0.02%	12.90%	87.00%			
topo660	0.00%	11.80%	88.20%			
topo650	0.02%	12.70%	87.30%			
3 pions						
topo440	0.00%	2.80%	24.40%	72.70%		
topo430	0.00%	4.10%	29.40%	66.60%		
topo420	0.00%	7.70%	37.80%	54.50%		
topo550	0.00%	3.10%	25.20%	71.70%		
topo540	0.00%	3.80%	28.30%	67.90%		
topo660	0.00%	3.10%	26.40%	70.50%		
topo650	0.00%	3.60%	28.50%	68.00%		
4 pions						
topo440	0.00%	2.30%	14.50%	39.60%	43.70%	
topo430	0.00%	3.20%	17.70%	43.50%	35.60%	
topo420	0.00%	5.60%	27.60%	42.10%	24.70%	
topo550	0.00%	2.40%	15.90%	37.20%	44.50%	
topo540	0.00%	3.00%	18.90%	40.40%	37.80%	
topo660	0.00%	2.90%	14.90%	38.40%	44.10%	
topo650	0.00%	2.80%	18.50%	39.60%	39.10%	
5 pions						
topo440	0.00%	12.50%	12.50%	25.00%	20.00%	30.00%
topo430	0.00%	12.50%	17.50%	25.00%	17.50%	27.50%
topo420	0.00%	12.50%	27.50%	32.50%	15.00%	12.50%
topo550	0.00%	12.50%	12.50%	32.50%	20.00%	22.50%
topo540	0.00%	12.50%	15.00%	30.00%	27.50%	15.00%
topo660	0.00%	10.00%	5.00%	45.00%	17.50%	22.50%

unmatched clusters

- Number clusters within ΔR < 0.4 of visible tau with no match to tau decay pions
- n-n-0 configuration seen to:
 - increase # clusters matched to tau decay pions
 - decrease # clusters with no match to decay pions
- Note: resolved γ clusters with no match


TopoCluster Moments

Sebastian Fleischmann, Robindra Prabhu, Tau WG Meeting 11.12.07

New approach: Maximum Entropy

- Maximum entropy method investigated in OPAL for enhancement of spatial calorimeter resolution and often used in astronomy:
 - [M.A. Thomson, NIM A382 (1996) 553]
 [J. Skilling & R.K. Bryan, Mon Not R astr Soc 211 (1984) 111]
- Resolutions below detector granularity achieved with response function of detector → Introduce physics knowledge!

from [M.A. Thomson, NIM A382 (1996) 553]

- Response function: taken from FastCaloSim (to give "inverse FastCaloSim")
 - Currently using single shower shape for all particles and all energies
 - Handle sampling layers separately
- Not only useful for Tau ID, but also for general calo reco (e/γ , ...)

Maximum Entropy & Bayesian Networks

- Second step (new idea): Include different response functions for particle types to get a particle hypothesis from fit
 - Problem: Continuous and discrete variables in objective function make optimization more difficult (perhaps use techniques like Deterministic Annealing as used in Tracking to assign measurements to tracks)
 - Information from the Inner Detector may serve as starting point for better convergence
- Third Step: Apply Bayesian Networks
 - Very flexible framework for Pattern Recognition and Machine Learning, many different implementations possible...
 - Started to investigate how to model the system "tau children penetrate through the ATLAS detector"
 - Combine all sources of information: Different sampling layers, tracking, ...
 - Main idea: include all *a priori* knowledge (branching ratios, etc.) rather than just training the system (allthough training is possible)

Summary / Outlook

- TopoClusters properly tuned provide a promising handle on the substructure of the tau decay
- Along with enhanced calorimetric information (shower profiles, etc.), a more "particle-based" approach to tau identification might be possible
 - studies of optimal topocluster settings underway
 - still need to understand impact on energy resolution
 - studies of shower profiles underway
 - cluster moments are promising, but further studies are required
- Draw on experiences from pattern recognition?
 - Maximum Entropy algorithm seems promising
 - studies underway using shower shapes from FastCaloSim