



Bundesministerium für Bildung und Forschung



# $\frac{\text{Extraction}}{\text{of } \widetilde{\tau}_{1} \text{ mass and } \tau \text{-polarization}}$ $\frac{\text{in 2-body } \widetilde{\chi}_{2} \text{ decays}}{1}$

<u>Till Nattermann,</u> <u>Peter Wienemann</u> <u>Carolin Zendler</u>





- Introduction
- Endpoint determination with "low" integrated luminosity (<10 fb<sup>-1</sup>)
- Endpoint and polarization measurement with "high" integrated luminosity (several 10 fb<sup>-1</sup>)
- Conclusions
- Discussion



# introduction





$$\Rightarrow BR(\chi_{2}^{0} -> e^{+}e^{-}\chi_{1}^{0}) \approx BR(\chi_{2}^{0} -> \mu^{+}\mu^{-}\chi_{1}^{0})$$
  
$$\approx 0.1 * BR(\chi_{2}^{0} -> \tau^{+}\tau^{-}\chi_{1}^{0}) \text{ for SU3}$$
  
$$\Rightarrow \text{ more } \tau \text{ than e, } \mu \text{ due to R,L-mixing}$$

what kind of SUSY are we dealing with?

Ditau mass spectrum holds information about stau mass and mixing angle:

★ Endpoint of  $m_{\tau\tau}$  spectrum:  $m_{\tau\tau}^{max} = \sqrt{\frac{(m(\tilde{\chi}_2^0)^2 - m(\tilde{\tau}_1)^2) \cdot (m(\tilde{\tau}_1)^2 - m(\tilde{\chi}_1^0)^2)}{(m(\tilde{\tau}_1)^2)}}$ 

• if m(
$$\tilde{\chi}^{0}_{1,2}$$
) known -> m( $\tilde{\tau}_{1}$ )

Sum of tau polarizations -> stau mixing angle





- ★ LSP not detected
- no mass peak, kinematic endpoint
- ★  $m_{\tau\tau}^{\nu is}$ : sharp edge washed out due to escaping ν
- ittle statistics left at edge
   need to approximate shape

<u>Technicalities for ATLAS people:</u> all results obtained with athena rel. 12 and TauRec or ATLFAST TauRec parameterization





### mass spectrum II











\* syst. error: fast simulation



# polarization effects





- angular momentum / momentum conservation
- + helicity of neutrino
- pion momentum direction determined by tau charge and helicity
- pion boosted (anti)parallel to tau momentum direction
- shape of mass spectrum depends on tau polarization
   inflection point shifted







 $\star \rho/a_1$ : same (opp.) momentum direction as  $\pi$  for long. (transv.) meson

- ρ: longitudinal share bigger than transversal
- $a_1$ : longitunal and transversal share equal -> mass spectrum not shifted







# <u>detector effects: ATLFAST (fast simulation)</u>



- shape deformed by low tau reconstruction efficiency at low p<sub>1</sub>
- reduced shape information,
   rising edge determined by τ ID

- shift in trailing edge affects inflection point but not endpoint
- additional uncertainty on calibration showed before
- → add. error on endpoint measurement: ± 3.5<sup>(pol)</sup> GeV





- to measure both endpoint and polarization: disentangle mass and polarization effects
- search traits with max. different sensitivity to mass / polarization:



traits for calibration: maximum plus position of 0.1\*maximum

# 2dim calibration













Can results be improved by separation of different tau decay modes? remember: a, decays not affected by polarization effects





# separation of 1prong and 3prong decays: 3p dominated by a<sub>1</sub> (~2/3) and "others" (=not ρ,π,a<sub>1</sub>) -> indepent of polarization



but: only 5% of double-hadronic decays are double-3prong

- + some a<sub>1</sub> also decay 1prong
- on detector level and after selection cuts, not enough double-3prongs for endpoint determination





#### use invariant mass of single tau decay products:







reliminar

## ...but how much *could* be gained by such a separation?

- take reconstructed taus + information about decay mode from truth-match
- fake taus: probability according to branching fraction
- 6 separate calibrations:

2/1/0 taus decayed in polarization sensitive mode

x 2 observables



- ★ 0.1\*maximum: from polarization independent spectrum (21%)
   ★ maximum: from polarization dependent spectrum (50%)
- less parallel, intersection steeper
   error bands broader due to statistics loss
- measurement of  $m_{\tau\tau}^{max}$  and  $p(\tau\tau)$

could not be improved

but: used only 2 out of 6 calibrations
 -> repeat with full information: <u>under study</u>





- $m_{\tau\tau}^{max}$  and sum of tau polarizations P( $\tau\tau$ ) provide important information for SUSY parameter determination
- can be measured accurately:

```
for SU3 (m_{\tau\tau}^{max} = 99 GeV, P(\tau\tau)= +0.08) our methods yield
```

```
m_{\tau\tau}^{max} = (103 \pm 5^{stat} \pm 4.5^{syst} \pm 3.5^{pol}) GeV for 10 fb<sup>-1</sup>
```

and

```
m_{rr}^{max} = (98.3 \pm 2.5) \text{ GeV},
```

 $P(\tau\tau) = (-0.02 \pm 0.6) \text{ GeV}$  for 36 fb<sup>-1</sup>

- these results could *principally* be improved by use of tau decay information: under study
- an accurate separation of tau decay modes would be desirable for high luminosity studies





# backup



|     | A<br>T |
|-----|--------|
| NA. | LAI    |
|     | D      |

1 trigger

# trigger

| 2 efficiency (SU3)                             |
|------------------------------------------------|
| 3 efficiency for SU3 events passing cuts:      |
| met>230GeV, jet pts(220/50/50/40), 2Ntaus DR<2 |
| 2h officianay for SU2 avanta pagaing auto      |

3b efficiency for SU3 events passing cuts:

met>230GeV, jet pts(220/50/50/40), Ntaus>=2

tau trigger results also not compatible to numbers given for SU3 in Tau Trigger CSC Note

| <mark>≁</mark> rel. 12 | study: |      | ★rel 13:<br>can not repro | oduce rel | l 12 resu | Ilt for tau trigger! |     |
|------------------------|--------|------|---------------------------|-----------|-----------|----------------------|-----|
| 1                      | 2      | 3    | 1                         | 2         | 3b        | in for taa triggor.  |     |
| xe120                  | 0.75   | 1    | xe120                     | 0.72      | 0.92      |                      |     |
| j70_xe70               | 0.87   | 1    | j70_xe70                  | 0.85      | 0.99      | rel. 12:             |     |
| j400                   | 0.23   | 0.31 | j400                      | 0.34      | 0.52      | SusvView             |     |
| j160                   | 0.81   | 0.99 | j160                      | 0.82      | 1         | rol 12:              |     |
| 2j120                  | 0.62   | 0.76 | 2j120                     | 0.64      | 0.78      |                      | kor |
| 3j65                   | 0.52   | 0.77 | 3j65                      | 0.53      | 0.84      | TauDFDIvial          | VEI |
| tau10i                 | 0.34   | 0.86 | tau10i                    | 0.7       | 0.99      |                      |     |
| tau15i                 | 0.28   | 0.83 | tau15i                    | 0.67      | 0.99      |                      |     |
| tau20i                 | 0.27   | 0.81 | tau20i                    | 0.46      | 0.96      |                      |     |
| tau25i                 | 0.24   | 0.77 | tau25i                    | 0.41      | 0.92      |                      |     |



# selection cuts: efficiency



| + n jets |   |        |        |  |
|----------|---|--------|--------|--|
|          |   | а      | b      |  |
| ttbar    |   |        |        |  |
| ->Inulnu | 0 | 1*10-5 | 2*10-6 |  |
|          | 1 | 3*10-4 | 3*10-5 |  |
|          | 2 | 1*10-3 | 9*10-5 |  |
|          | 3 | 4*10-3 | 4*10-4 |  |
| ->Inuqq  | 0 | 5*10-5 | 1*10-6 |  |
|          | 1 | 3*10-4 | 2*10-5 |  |
|          | 2 | 8*10-4 | 6*10-5 |  |
|          | 3 | 2*10-3 | 8*10-5 |  |
| ->qqqq   | 1 | 4*10-7 | 0      |  |
|          | 2 | 7*10-7 | 0      |  |
|          | 3 | 4*10-6 | 0      |  |
| Ζ        |   |        |        |  |
| ->tautau | 2 | 8*10-5 | 1*10-5 |  |
|          | 3 | 4*10-4 | 7*10-5 |  |
|          | 4 | 7*10-4 | 1*10-4 |  |
|          | 5 | 1*10-3 | 7*10-5 |  |
| ->nunu   | 4 | 5*10-4 | 9*10-6 |  |

a: met>230GeV, jet pts>(220/50/50/40)GeV b: a + Ntaus>=2

|         |   | а      | b      |
|---------|---|--------|--------|
| SU3     |   | 0.26   | 0.01   |
| W       |   |        |        |
| ->taunu | 2 | 3*10-5 | 7*10-7 |
|         | 3 | 7*10-4 | 3*10-5 |
|         | 4 | 2*10-3 | 9*10-5 |
|         | 5 | 3*10-3 | 9*10-5 |





rho/a1 difference:



# separation of 1p/3p







# inv mass dec prod



