$\tau\text{-polarization}$ in the SUSY decay chain $\widetilde{\chi}^0_2 \to \widetilde{\tau}_1 \tau \to \widetilde{\chi}^0_1 \tau \tau$

Till Nattermann

Physikalisches Institut Universität Bonn

Tau Mini-Workshop – Heidelberg 14. + 15. April 2008

motivation

$m_{ au au}$ -distribution

•
$$m_{\tau\tau}^2 = [p(\tau_n) + p(\tau_f)]^2$$

• endpoint
$$\leftrightarrow (m_{\widetilde{\chi}_2^0}, m_{\widetilde{\chi}_1^0}, m_{\widetilde{\tau}})$$

• shape
$$\leftrightarrow \beta$$
, γ (Pol.)

τ s important:

• decays in τ favoured:

•
$$m_{\tilde{\tau}_1} < m_{\tilde{\ell}} \pmod{2}$$

• SU3:
$$\approx \times 10$$

• pol. sensitivity (
$$\beta$$
, γ)

• $\tilde{\tau}$ properties $(m_{\tilde{\tau}}, \vartheta_{\tilde{\tau}})$:

•
$$m_{\tilde{\tau}} \rightarrow m_{\tau\tau}^{\max}$$

• $\vartheta_{\tilde{\tau}} \rightarrow \beta, \ \gamma \ (\text{Pol.})$

- angular momentum conservation
- handness of neutrino
- momentum conservation

- angular momentum conservation
- handness of neutrino
- momentum conservation

- angular momentum conservation
- handness of neutrino
- momentum conservation

- angular momentum conservation
- handness of neutrino
- momentum conservation

- angular momentum conservation
- handness of neutrino
- momentum conservation

result

 π momentum direction in $\tau\text{-restframe}$ specified by τ charge and helicity (chirality)

$\tau \rightarrow \nu_{\tau} \pi$ decays

τ rest system \rightarrow lab system

- spin-quantization-axis $[\vec{p}(\tau)]_{LAB}$ -direction
- LORENTZ-boost τ -rest system \rightarrow lab-system
- high and low energy πs

$[\pi\pi]$ -spektra on generator level

$$\tau \to \pi \nu_{\tau}$$
• $m_{\pi\pi}^2 = [p(\pi_n) + p(\pi_f)]^2$
• $m_{\pi\pi}$ sensitive to polarization
• allows distinction between $RL = LR, LL, RR$ (chirality)
• but not τ_n and τ_f

$$\begin{bmatrix} P(\tau_n) + P(\tau_f) \end{bmatrix}$$

result:

comparison theory^{*a*} \leftrightarrow measurement \Rightarrow polarization

^aS.Y. Choi, K. Hagiwara, Y.G. Kim, K. Mawatari, P.M. Zerwas, τ *Polarization in SUSY Cascade Decays*, hep-ph/0612237

fast ATLAS-detector simulation (ATLFAST 12.0.7)

detector level

- fakes and combinatorial background: OS-SS suppressed
- poor τ -reconstruction for small $M(\tau\tau)$
- endpoint (SUSY-masses) ↔ shape (polarization)

polarization and mass effects

strategy

• SUSY-masses and polarization show up differently in spectra

• fit spectra:
$$f(x) = \frac{p_0}{p_1\sqrt{2\pi}} \exp\left(-\frac{1}{2}\left(\frac{x-p_2}{p_1}\right)^2\right)$$

o compare calibration ↔ measurement

2-dimensional calibration

- Obs.: maximum and position with $\frac{1}{10}$ of maximum
- calibration → maps of observables

2-dimensional calibration

Fit of observables

- $g(P(n) + P(f) = y, EP = x) = p_0y + p_1x + p_2xy + p_3$
- $\bullet \ \ \text{measured observable} \rightarrow \text{equipotential line}$
- ${\ensuremath{\bullet}}$ intersection \rightarrow polarization and endpoint

fit spectrum

measurement of observables of unkonown spectum (SU3)

• observables: $\sigma_{\text{stat.}}$ from fit, $\sigma_{\text{syst.}}$ with 3 binnings \times 5 fit-ranges

•
$$\sigma^2 = \sigma_{\text{stat.}}^2 + \sigma_{\text{syst.}}^2$$

• $\sigma_y^2 = \left(\frac{\partial y}{\partial O}\sigma\right)^2 + \sum_{i,j=1}^4 \text{cov}(p_i, p_j)\frac{\partial y}{\partial p_i}\frac{\partial y}{\partial p_j}$

measurement of spectrum

result of measurement of SU3

• $M_{\tau\tau}^{\rm max} = 100 \pm 3 \text{ GeV}$ (99GeV), $P(\tau_n) + P(\tau_f) = -0.11 \pm 0.63$ (0.08)

• 1-
$$\sigma$$
-contour: $\left(\frac{x}{\sigma_x}\right)^2 + \left(\frac{y}{\sigma_y}\right)^2 - 2\rho \frac{xy}{\sigma_x \sigma_y} = 1 - \rho$ with $\rho = -0.9$

strong experimental correlation

- angular momentum conservation
- handness of neutrino
- momentum conservation

- angular momentum conservation
- handness of neutrino
- momentum conservation

- angular momentum conservation
- handness of neutrino
- momentum conservation

- angular momentum conservation
- handness of neutrino
- momentum conservation

- angular momentum conservation
- neutrino handness
- momentum conservation

result:

longitudinal (transversal) $\rho,~a_1:$ same (opposite) momentum direction as π

$$\frac{\frac{1}{\Gamma_{v}}\frac{\mathrm{d}\Gamma_{v}}{\mathrm{d}\cos\vartheta}}{\prod_{\tau}\frac{\mathrm{d}\Gamma_{v}}{\mathrm{d}\cos\vartheta}} = \underbrace{\left(\frac{m_{v}^{2}}{m_{\tau}^{2}+2m_{v}^{2}}\left(1-P_{\tau}\cos\vartheta\right)\right)}_{\mathrm{transversal}} + \underbrace{\left(\frac{\frac{1}{2}m_{\tau}^{2}}{m_{\tau}^{2}+2m_{v}^{2}}\left(1+P_{\tau}\cos\vartheta\right)\right)}_{\mathrm{longitudinal}}$$

$au ightarrow {\it a}_1, ho$ decays (generator level)

vector mesons

- a_1 pol. independent, ρ depends on pol.
- selection τ -decays \rightarrow spectra with max (min) dependence on pol.
- compare [ππ] and [a₁a₁]-spectra

polarization dependence of τ decays

prong based τ selection (generator level)

invariant mass based τ selection (generator level)

15

au selection detector level (truth information)

selection of decay modes (from MC truth) on detector level

- a_1 pol. independent, ρ depends on pol.
- 4000 (all dec.) = 800 (a_1 &other) + 1500 (ρ , π , K) + 1700 (mixed)
- gain in information compensated by loss of statistics

improve sensitivity with selection of τ decay modes:

- compare polarization affected and non-affected spectra
- 2 but: requires discrimination of decay modes
- Maybe: gain of information is overcompensated by loss of statistics

results with shape related observables for $51.7 fb^{-1}$:

- endpoint = 100 ± 3 GeV (theoretical: 99GeV)
- 2 sum of polarization = -0.11 ± 0.63 (theoretical: +0.08)
- 3 strong experimental correlation

backup

fakes and combinatorial background

OS - SS

• $M(au au) > M(au au)_{max} \Rightarrow$ fakes and combinatorial background

•
$$M(\tau\tau) > M(\tau\tau)_{\max}$$
: $[\tau^{\pm}\tau^{\pm}] \approx [\tau^{\pm}\tau^{\mp}]$ (uncorrelated)

•
$$\widetilde{\chi}_4^0 \to \widetilde{\chi}_1^{\pm} \tau^{\mp} \nu_{\tau} \to \widetilde{\tau}^{\pm} \nu_{\tau} \tau^{\mp} \nu_{\tau} \to \tau^{\pm} \widetilde{\chi}_1^0 \nu_{\tau} \tau^{\mp} \nu_{\tau}$$