

Development of a Pixel Based TPC

Martin Killenberg

Christoph Brezina, Klaus Desch, Michael Henseler, Thorsten Krautscheid,

Walter Ockenfels, Martin Ummenhofer, Peter Wienemann, Simone Zimmermann

universitätbonn Physikalisches Institut

Andreas Bamberger, Uwe Renz, Maxim Titov, Nikolai Vlasov, Andreas Zwerger

University of Freiburg

ALCPG and GDE 2007, Fermilab, Batavia, October 23, 2007

Martin Killenberg

R&D activities in Bonn

MarlinTPC

Martin Killenberg

TPC laboratory in Bonn

Currently being set up

- Gas system
- High voltage supply
- Laminar flow box
- Scintillator trigger system
- Small TPC field cage
- Readout electronics

Martin Killenberg

Hodoscope?

universitätbonn

Gas System

Reuse flow meters and pressure controllers from ZEUS gas system

- Controlled by embedded PC
- Mixing of up to 3 gases
- Allows constant pressure operation
- Oxygen and water monitor

Small TPC Field Cage

Clone of the Aachen field cage

- 26 cm diameter
- 26 cm drift distance
- 3 GEM gas amplification system
- Fits into 5 T magnet at DESY

Development of a Pixel Based TPC

Pixel size: 55×55 µm²

Combined TimePix and Pad Readout

TimePix Chip

- 256×256 pixels per chip
- Each pixel can be operated in two modes
 - TOT (time over threshold): proportional to charge
 - TIME $\widehat{=}$ drift time

Martin Killenberg

6

Readout

Martin Killenberg

Development of a Pixel Based TPC

Shield With GEM

Martin Killenberg

Development of a Pixel Based TPC

Module for the EUDET Prototype

- Based on the "Quad Board" designed at NIKHEF
- Two Quad Boards glued into PCB back plane
- Three standard GEMs (10×10 cm²) surrounded by shield
- 1 mm gap between the GEMs
- Total height of active detector:
 6 mm + connectors / cooling element

Module for the EUDET Prototype

- Based on the "Quad Board" designed at NIKHEF
- Two Quad Boards glued into PCB back plane
- Surrounded by shield
 Three standard GEMs (10×10 cm²) surrounded by shield
- 1 mm gap between the GEMs

Martin Killenberg

universitä

Total height of active detector:
 6 mm + connectors / cooling element

Shield		GEMs	 	
Ground Board	Quad Board	TimePix		
"Red Frame"				

Development of a Pixel Based TPC

Module for the EUDET Prototype

- Based on the "Quad Board" designed at NIKHEF
- Two Quad Boards glued into PCB back plane
- Three standard GEMs (10×10 cm²) surrounded by shield
- 1 mm gap between the GEMs
- Total height of active detector:
 6 mm + connectors / cooling element

Ground Board With TimePixes

MarlinTPC

universitätbonr

MarlinTPC is a TPC simulation, digitisation, reconstruction and analysis package for the Marlin / LCIO framework

Developers: Jason Abernathy¹, Klaus Dehmelt², Ralf Diener², Jim Hunt³, Matthias Enno Janssen², Martin Killenberg⁴ Thorsten Krautscheid⁴, Astrid Münnich⁵, Martin Ummenhofer⁴, Adrian Vogel², Peter Wienemann⁴ and Simone Zimmermann⁴

1: University of Victoria — 2: DESY Hamburg — 3: Cornell University

4: University of Bonn — 5: RWTH Aachen

- Works for prototypes and ILC detectors (every TPC that can be described with GEAR)
- Works for Micromegas, GEMs and anode wires
- Independent of readout: TDCs, ADCs, TimePix
- Provides standardised analysis to allow better comparability

Simulation and Digitisation

Reconstruction Data Flow

Martin Killenberg

universität bonn

Data Structure	Processor Name	Collection Name
TrackerRawData		TPCRawData
	TrackerRawDataToDataConverter	
TrackerData		TPCConvertedRawData
	PedestalSubtractor	
TrackerData		TPCData
	PulseFinder	
	ChannelMapper	
	CountsToPrimaryElectronsProcessor	
TrackerPulse		TPCPulses
	HitTrackFinderTopoProcessor	
TrackerHit		TPCHits
Track		TPCTrackCandidates
	TrackSeeder	
Track		TPCSeedTracks
	TrackFitterLikelihood	
Track		TPCTracks

- Independent of trajectory, no track hypothesis
- Works in 3D

universität**bonn**

300

250

200

TrackFitterLikelihoodProcessor

- The pad response can only be calculated correctly if angle of track wrt. pad row is known.
- This cannot be done on hit basis
- \Rightarrow Do it globally for the whole track

universitätbon

- Calculate likelihood of charge distribution on a single pad row for given track parameters, assuming Gaussian distribution along the track
- Sum up log(likelihood) on all pad rows to get global likelihood
- Maximise the log(likelihood) by varying the track parameters

W

h

TimePix Reconstruction

Data Structure	Processor Name	Collection Name
TrackerRawData		TimePixRawData
Ti	mePixZeroSuppressionProcessor	
TrackerRawData		TimePixZeroSuppressedRawData
	TimePixClusterFinderProcessor	
TrackerHit		TimePixHitCandidates
TimePi	ixClusterProjectionSeparatorProce	essor
TrackerHit		TimePixSepHitCandidates
Tim	nePixHitCenterCalculatorProcesso	r
TrackerHit		TimePixHits

TimePix Reconstruction

Data Structure	Processor Name	Collection Name
TrackerRawData		TimePixRawData
	TimePixZeroSuppressionProcessor	
TrackerRawData		TimePixZeroSuppressedRawData
	TimePixClusterFinderProcessor	
TrackerHit		TimePixHitCandidates
Time	PixClusterProjectionSeparatorProce	essor
TrackerHit		TimePixSepHitCandidates
Ti	imePixHitCenterCalculatorProcesso	r
TrackerHit		TimePixHits
100		

Freiburg test beam data

50

universitätbonn

TimePix Reconstruction

Freiburg test beam data

universitätbonr

Analysis

Planned:

Provide a set of processors implementing the default analyses agreed on at first TPC Analysis Jamboree 2006 in Hamburg.

- Resolution using geometric mean of fits with and without the test row
- Resolution using external reference track (hodoscope or MC truth)
- Resolution in dependence on the drift distance
- Distribution showing number of 1-pad, 2-pad, 3-pad hits
- Bias plots (residuals vs. position on the pad)

Summary

TPC laboratory in Bonn being set up

- Small prototype
 - 3 standard GEMs and combined TimePix and pad readout
- Eudet LP module
 - 3 standard GEMs and 8 TimePix Chips

MarlinTPC software

- Simulation for detailed studies
- Digitisation for detailed and MOKKA data
- Reconstruction for various readouts
- Analysis

universitätbonn

http://ilcsoft.desy.de/portal/software_packages/marlintpc/