MarlinTPC: Towards a common TPC software framework

Jason Abernathy¹, Klaus Dehmelt², Ralf Diener², Christian Hansen¹, Matthias Enno Janssen², Martin Killenberg³, Astrid Münnich⁴, Peter Wienemann³

¹University of Victoria ²DESY ³University of Bonn ⁴RWTH Aachen

International Linear Collider Workshop 2007 May 29 – June 04, 2007 Hamburg, Germany

Status quo

- Many different TPC simulation, reconstruction and analysis packages have been developed
- Varying motivations for writing them
- Often similar codes, but they use different data formats, coordinate systems, units, etc.
- Most are monolithic programmes
- Exchanging code or data for cross-checks can be time consuming and error-prone

Agreement

Held a TPC software workshop at DESY in June 2006, trying to improve on the situation

Outcome of long discussions:

Proposal for an ILC TPC data stream

Ties Behnke^a, Maximilien Chefdeville^b, Frank Gaede^a, Christian Hansen^c, Matthias Enno Janssen^a, Alexander Kaoukher^d, Martin Killenberg^e, Jason McGeachie^c, Astrid Münnich^e, Adrian Vogel^a, Michael Weber^e, Peter Wienemann^f

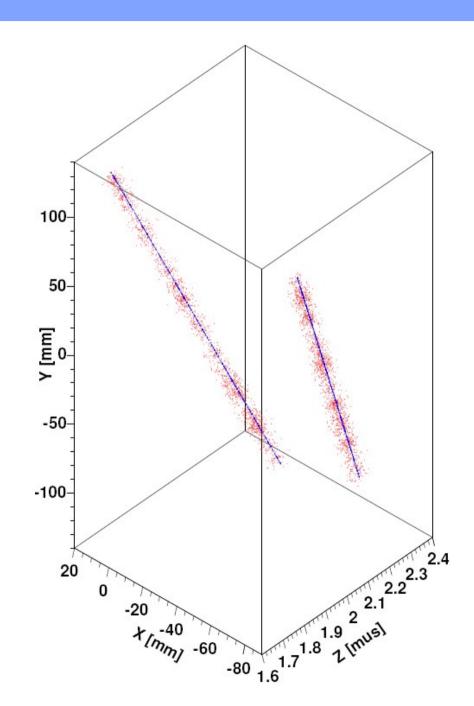
 aDESY bNIKHEF $^cUniversity\ of\ Victoria$ $^dUniversity\ of\ Rostock$ $^eRWTH\ Aachen$ $^fUniversity\ of\ Freiburg$

Draft from July 3, 2006

Abstract

This document proposes a TPC data flow model for use during ILC detector R&D studies. It is based on LCIO data structures and Marlin as analysis and reconstruction framework.

MarlinTPC


- Goal: provide complete simulation, reconstruction and analysis framework using the data model described in the document
- Collection of existing and new algorithms in a single modular framework
- Modularity simplifies re-usability
- Based on ilcsoft tools widely used in ILC community:
 - LCIO: underlying model for transient and persistent data
 - MARLIN: modular analysis and reconstruction framework
 - GEAR: store and access geometry information
 - LCCD: conditions database package

Simulation

 Included Astrid Münnich's GEMTPCSimulation package in MarlinTPC

Performs

- parametrised primary charge deposition
- drift with diffusion
- detailed parametrised simulation of amplification and charge transfer in GEM stack
- digitisation (providing
 lcio::TrackerRawData)

Reconstruction

Reconstruction chain (from document):

Data structure	Processor name	input/output collection name
TrackerRawData		TPCRawData
	${\bf Tracker Raw Data 2 Data Converter}$	done
TrackerData		TPCConvertedRawData
	PedestalSubtractor	done
	${\it Channel By Channel Corrector}$	missing
	LinearityCorrector	missing
	TimeShiftCorrector	missing
TrackerData		TPCData
	$\operatorname{PulseFinder}$	done
	$\operatorname{ChannelMapper}$	done
	GainCorrector	missing
TrackerPulse		TPCPulses
	$\operatorname{HitFinder}$	done
	HitPRFCorrector	under development
TrackerHit		TPCHits
	$\operatorname{TrackFinder}[\operatorname{Method}]$	done
Track		TPCSeedTracks
	TrackFitter[Method]	under development
Track		TPCTracks

Reconstruction

PulseFinder:

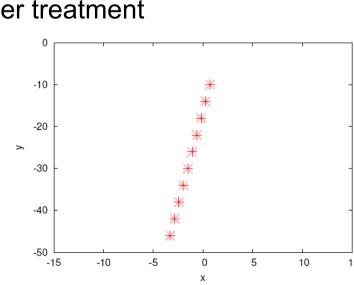
handles positive and negative signal polarity, both zero and non-zero

20

10

suppressed data

pre and post samples included in pulses


threshold in terms of standard deviations from pedestal calculator

no correct handling of double pulses

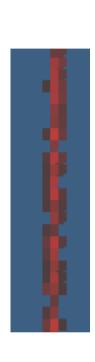
HitFinder:

simple clustering algorithms without proper treatment of double tracks

only RectangularPadRowLayout

10

15


Time [Samples]

25

30

In the pipeline

- Global likelihood based track fit processor
 - algorithm as developed at University of Victoria
- Event display
 - extension of CED
- Analysis processor
 - providing all information as formulated in the conclusion of the first ILC TPC Analysis Jamboree in 2006
- Track finder for strongly curved tracks
- Pad response function corrector and hit based track fitter
 - algorithm as developed at DESY

Summary and outlook

- Test MarlinTPC with real prototype data (not simulation)
- Include other readout technologies (TDCs, Timepix) in the data model and subsequently in MarlinTPC code