

Study of supersymmetric tau final states with Atlas at LHC: discovery prospects and endpoint determination

Carolin Zendler University of Bonn

<u>Outlook:</u>

- supersymmetry: overview and signal
 LHC and ATLAS
- invariant mass distribution
- background and selection cuts
- endpoint measurement

Motivation for Supersymmetry

Standard Model: > fermions → matter bosons → force mediation > generation of mass via Higgs mechanism

quarks	u	S	b	
	d	С	t	+ anti
leptons	е	μ	τ	1 anti
	ν _e	ν_{μ}	ν,	

• γ (em), g (strong), Z^o, W[±] (weak)

with supersummetric extension: if R-Parity is conserved: **Shortcomings:** stable LSP \rightarrow no explanation for dark matter and dark energy Standard Model Minima supersymmetric > unification of the coupling constants 50 extension of Standard Model > hierarchy problem / finetuning α_2 30 20-1010 1015 1010 1015 105 н н Energy, GeV Energy, GeV bosonic and energy dependence changes fermionic with particle content of the theory contributions cancel

Supersymmetry - Overview

Supersymmetric Extension of the Standard Model:

- > symmetry of fermions and bosons: every particle has a supersymmetric partner with spin $\pm 1/2$
- > known particles don't built superpartners -> particle number doubles
- → SUSY particles not observed so far → heavy SUSY particles → symmetry must be broken

Minimal Supersymmetric Standard Model (MSSM):

- > soft susy breaking terms lead to 105 add. free parameters
- > R-parity conservation: R = -1 SUSY-particles +1 SM

$$R = (-1)^{3(B-L)+}$$

- → pair production of SUSY particles
- → lightest SUSY particle (LSP) must be stable

mSUGRA:

- > SUSY breaking via gravity
- > only 5 additional free parameters left:
 - m.: scalar mass at GUT scale
 - ϕ m_{1/2}: fermion mass at GUT scale
 - tanβ: ratio of Higgs vacuum expectation values
 - A₀: coupling constant Higgs-Sfermion-Sfermion
 - \bullet sgn μ : sign of higgsino mixing parameter μ

particle conte	ent with s	upersymmetry		
quarks	q	squarks	q	
leptons	1	sleptons	ĩ	
neutrinos	ν	sneutrinos	\tilde{v}	
photon	Y	photino	$ ilde{\mathcal{Y}}$	~ 0
W, Z-Bosons	$W^{\pm,}Z$	wino, zino	Ŵ±,Ž	X _{1,2,3,4}
gluons	g	gluinos	$ ilde{g}$	$ ilde{\chi}_{1,2}^{\pm}$
higgs-bosons	h,H,A,	H [±] higgsinos <i>F</i>	$H_1^0, \tilde{H}_2^0, \tilde{H}_1^-$	$, \tilde{H}_2^+ $

<u>Signal</u>

- > <u>Signal Channel</u>: $\chi_2^{o} \rightarrow \tau^{\pm} \tau^{\mp} \chi_1^{o}$
- * two typical ATLAS points in the mSUGRA parameter space:
 - <u>SU1:</u> coannihilation-region
 - <u>SU3:</u> bulk-region

	SU1	SU3
m _o	70 GeV 100 G	
m _{1/2}	350 GeV	300 GeV
$\mathbf{A}_{_{0}}$	0 GeV	-300 GeV
Tanβ	10	6
Sgnµ	+	+
$\Delta m(\tilde{\tau_1} - \chi_1^0)$	9 GeV	32GeV

 $BR(\chi_{2}^{0} -> e^{+}e^{-}\chi_{1}^{0}) \approx BR(\chi_{2}^{0} -> \mu^{+}\mu^{-}\chi_{1}^{0})$ $\approx 0.25 * BR(\chi_{2}^{0} -> \tau^{+}\tau^{-}\chi_{1}^{0}) (SU1)$ $\approx 0.1 * BR(\chi_{2}^{0} -> \tau^{+}\tau^{-}\chi_{1}^{0}) (SU3)$ -> factor 4 to 10 more taus than electrons/muons from χ_{2}^{0} -decays

> goal:

SUSY-masses can be measured via combinations of invariant masses in the decay chain – here: **m**_m

The Atlas-Detector at the LHC

Invariant Mass Distribution: Exspectation

Tau-ID: parameterizations based on full simulation

- performance of *calorimeter based* TauRec and *track based* Tau1p3p algorithm parametrized via tables of efficiency and rejection values for different p_{T} and
- default mean efficiencies (used here):
 - TauRec: 50 %
 - Tau1p3p: 35 % (1p) / 8 % (3p)

whole study done in Athena 11.0.4 currently confirming results in Athena **12.0.6**

Background

Took subsample of official production done by SUSY WG, gen. with Alpgen: • 11.0.41: Z, tt, W, multijets, bb • 12.0.64: Z, tt, Wbb, sliced multijets

- ★ Z + (1-5)Jets:
 - ♦ Z -> νν
 - Z -> *ll*: ττ, μμ, ee
- ★ tt + (0-3)Jets:
 - tt -> bb + lv lv
 - ♦ tt -> bb + *l*v qq
 - ♦ tt -> bb + qq qq
- L (fb⁻¹): 1-12 per sample 2-18 per sample

 $L(fb^{-1}):$

3-8 per sample

not included vet

0.2-20 per sample

2-20 per sample

L (fb⁻¹):

- ★ W + Jets:
 - ♦ W + (2-5) Jets

- ***** QCD-Jets:
 - 11.0.4:

- L (fb⁻¹): 10⁻⁵-400 per sample not included yet
- Multijets (2-5 Jets)
 bb + (1-3)Jets
- Dijets, Pythia, in p_T-bins
 (private production, with 10.0.4)

12.0.6: *sliced* Alpgen Multijets

Carolin Zendler

11.0.4

Cut Variables

11.0.4

Cut Flow

11.0.4

Invariant Mass after Cuts

11.0.4

Endpoint Determination

11.0.4

New approach:

- approximate shape
- extract endpoint from other trait

* modified adoption from: CMS NOTE 2006/096

measure inflection point

- -> more stable to change of fitting range or binning
- -> need <u>calibration</u> for endpoint:
 - -> change involved masses $m(\tilde{x^0}) = m(\tilde{x^0}) = m(\tilde{x^0})$
 - $m(\tilde{x_2^0}), m(\tilde{\tau_1}), m(\tilde{x_1^0})$ -> measure inflection point as function of known endpoint

inflection point:

$$x_{IP} = \exp\left(\frac{1}{2}p_{2}^{2}\left(3 + \sqrt{(1 + \frac{4}{p_{2}^{2}})}\right) + p_{1}\right)$$

error:

$$s_{x}^{2} = s_{\rho_{1}}^{2} \left(\frac{\partial x}{\partial p_{1}} \right)^{2} + s_{\rho_{2}}^{2} \left(\frac{\partial x}{\partial p_{2}} \right)^{2}$$
$$+ 2 cov (p_{1}, p_{2}) \left(\frac{\partial x}{\partial p_{1}} \right) \left(\frac{\partial x}{\partial p_{2}} \right)$$

11.0.4 Calibration: example of variation of $\tilde{\tau_1}$ -mass (SU3: 150 GeV) for fixed $m(\tilde{x_2^0}), m(\tilde{x_1^0})$

12.0.6

Summary and Conclusions:

- Study of SUSY signals with τ-leptons
- Cut based selection delivers clear signal over BG in both SU1 (coannihilation region) and SU3 (bulk region)
- Kinematic endpoint of $\chi_{2}^{o} \rightarrow \tau^{\pm} \tau^{\mp} \chi_{1}^{o}$ measurable in SU3
- Inflection point method is applicable for endpoint determination
- Endpoint can be measured in SU3 with 10 fb⁻¹ (15% precision)
- Previous results (11.0.4) could be confirmed with new Atlfast Tau-ID (12.0.6)

backup

variation of \tilde{x}_1^0 -mass (SU3: 150 GeV) for fixed $m(\tilde{x}_2^0), m(\tilde{\tau}_1)$

variation of $\tilde{x_2^0}$ -mass (SU3: 150 GeV) for fixed $m(\tilde{\tau_1}), m(\tilde{x_1^0})$

12.0.6 Calibration: example of variation of $\tilde{\tau_1}$ -mass (SU3: 150 GeV) for fixed $m(\tilde{x_2^0}), m(\tilde{x_1^0})$

variation of \tilde{x}_1^0 -mass (SU3: 150 GeV) for fixed $m(\tilde{x}_2^0), m(\tilde{\tau}_1)$

variation of $\tilde{x_2^0}$ -mass (SU3: 150 GeV) for fixed $m(\tilde{\tau_1}), m(\tilde{x_1^0})$

