LHC ILC Interplay

Klaus Desch University of Bonn

Fermilab, April 13, 2007

INTERPLAY BILL EVANS

RIVERSIDE

with Freddie Hubbard Percy Heath Jim Hall Philly Joe Jones

For the first time, the great jazz planist is heard in a new context—as leader of a group larger than his customary trio. Evans' interplay with his four colleagues here—each of them one of Bill's personal favorites on his instrument—creates a most unusual and remarkable album.

The Terascale

Very good reasons to explore the TeV-scale:

- Evidence for light Higgs
- SM without Higgs violates unitarity at ~1.3 TeV
- Hierarchy between m_{weak} and m_{Planck} to be protected at TeV scale
- Dark matter consistent with sub-TeV-scale WIMP (e.g. SUSY-LSP)
- 2m_{top} = 350 GeV

Driving Physics Questions

Broad and rich spectrum of fundamental questions are awaiting answers at the Terascale:

- Electroweak Symmetry Breaking
- New Symmetries and Unification of Forces
- Space-Time Structure
- + Connecting Cosmology and Particle Physics and surprises...

Complementarity of tools

Electron positron collisions at high energy provide a powerful tool to explore TeV-scale physics complementary to the LHC

Due to their point-like structure and absence of strong interactions there are clear advantages of e⁺e⁻ collisions:

- known and tunable centre-of-mass energy
- clean, fully reconstructable events
- polarized beams
- moderate backgrounds
 → no trigger

→broad consensus for a

Linear Collider with up to

at least ~500 GeV

Complementarity of tools EPP2010 report TADLE 0.1 Detential C

TABLE 3-1 Potential Synergies Between the ILC and LHC in Explorations of the Terascale			
If LHC Discovers:	What ILC Could Do:		
A Higgs particle	Discover why the Higgs exists and who its cousins are. Discover effects of extra dimensions or a new source of matter- antimatter asymmetry.		
Superpartner particles	Detect the symmetry or supersymmetry. Reveal the supersymmetric nature of dark matter. Discover force unification and matter unification at ultra-high energies.		
Evidence for extra dimensions	Discover the number and shape of the extra dimensions. Discover which particles are travelers in extra dimensions and determine their locations within them.		
Missing energy from a weakly interacting heavy particle	Discover its identity as dark matter. Determine what fraction of the total dark matter it accounts for.		
Heavy charged particles that appear to be stable	Discover that these eventually decay into very weakly interacting massive particles; identify these "super WIMPS" as dark matter.		
A Z-prime particle, representing a previously unknown force of nature	Discover the origin of the Z-prime. Connect this new force to the unification of quarks with neutrinos, or quarks with the Higgs, or with extra dimensions.		
Superpartner particles matching the predictions of supergravity	Discover telltale effects from the vibrations of superstrings.		

Interplay and Synergy

HC + LC > HC $HC \oplus LC > HC + LC$ $HC \otimes LC > HC \oplus LC$

LCWS Korea 2002

LHC/ILC Study group Phys. Rept. 426 (2006) 47

ELSEVIER

Physics Reports III (IIII) III-III

www.elsevier.com/locate/physrep

Physics interplay of the LHC and the ILC $\stackrel{\text{th}}{\sim}$

The LHC/ILC Study Group

G. Weiglein^{a,*}, T. Barklow^b, E. Boos^c, A. De Roeck^d, K. Desch^e, F. Gianotti^d, R. Godbole^f, J.F. Gunion^g, H.E. Haber^h, S. Heinemever^d, J.L. Hewett^b, K. Kawagoeⁱ, K. Mönig^j, M.M. Nojiri^k, G. Polesello^{d,1}, F. Richard^m, S. Riemann^j, W.J. Stirling^a, A.G. Akeroydⁿ, B.C. Allanach^o, D. Asner^p, S. Asztalos^q, H. Baer^r, M. Battaglia^s, U. Baur^t, P. Bechtle^e, G. Bélanger^u, A. Belyaev^r, E.L. Berger^v, T. Binoth^w, G.A. Blair^x, S. Boogert^y, F. Boudjema^u, D. Bourilkov^z, W. Buchmüller^{aa}, V. Bunichev^c, G. Cerminara^{ab}, M. Chiorboliac, H. Davoudiaslad, S. Dawsonae, S. De Curtisaf, F. Deppischw, M.A. Díazag, M. Dittmar^{ah}, A. Djouadi^{ai}, D. Dominici^{af}, U. Ellwanger^{aj}, J.L. Feng^{ak}, I.F. Ginzburg^{al}, A. Giolo-Nicolleratah, B.K. Gjelstenam, S. Godfreyan, D. Grellscheidao, J. Gronbergq, E. Gross^{ap}, J. Guasch^{aq}, K. Hamaguchi^{aa}, T. Han^{ar}, J. Hisano^{as}, W. Hollik^{at}, C. Hugonie^{au}, T. Hurth^{b, d}, J. Jiang^v, A. Juste^{av}, J. Kalinowski^{aw}, W. Kilian^{aa}, R. Kinnunen^{ax}, S. Kraml^{d, ay}, M. Krawczyk^{aw}, A. Krokhotine^{az}, T. Krupovnickas^r, R. Lafaye^{aaa}, S. Lehti^{ax}, H.E. Logan^{ar}, E. Lytken^{aab}, V. Martin^{aac}, H.-U. Martyn^{aad}, D.J. Miller^{aac, aae}, S. Moretti^{aaf}, F. Moortgat^d, G. Moortgat-Pick^{a, d}, M. Mühlleitner^{aq}, P. Nieżurawski^{aag}, A. Nikitenko^{az, aah}, L.H. Orr^{aai}, P. Osland^{aaj}, A.F. Osorio^{aak}, H. Päs^w, T. Plehn^d, W. Porod^{au, aal}, A. Pukhov^c, F. Quevedo^o, D. Rainwater^{aai}, M. Ratz^{aa}, A. Redelbach^w, L. Reina^r, T. Rizzo^b, R. Rückl^w, H.J. Schreiber^j, M. Schumacher^{ap}, A. Sherstnev^c, S. Slabospitsky^{aam}, J. Solà^{aan, aao}, A. Sopczak^{aap}, M. Spira^{aq}, M. Spiropulu^d, Z. Sullivan^{av}, M. Szleper^{aaq}, T.M.P. Tait^{av}, X. Tata^{aar}, D.R. Tovey^{aas}, authorA. Tricomi^{ac}, M. Velasco^{aaq}, D. Wackeroth^t, C.E.M. Wagner^{v, aat}, S. Weinzierl^{aau}, P. Wienemann^{aa}, T. Yanagida^{aav, aaw}, A.F. Żarnecki^{aag}, D. Zerwas^m, P.M. Zerwas^{aa}, L. Živković^{ap}

Getting excited

With first collisions at 14 TeV next year, it is obvious that we have to start understanding implications of LHC discoveries for the ILC in much more detail

Getting excited

Basic (since 2001): Case for a 500 GeV Linear Collider upgradable to 1 TeV → general physics case of the ILC does not depend on the LHC (no matter what LHC will see, ILC has an important additional value)

Advanced (2002-2006): Explore the synergies if LHC and ILC \rightarrow both machines, if analyzed (and ideally running) simultaneously, will provide added value

Facing the real thing (2007-): Optimizing the ILC choices in the light of LHC discoveries

 \rightarrow no reason to get nervous but a reason to get excited

Abe Seiden @ SLAC : "It could be that the physics is not in the ILC reach" could that really be the case? under which circumstances? Burt Richter @ SLAC: "How interesting will 500 GeV be in 2020?" are there scenarios where the initial ILC parameters (energy,luminosity) need revisiting? Need good answers to this scepticism a.s.a.p.!

The LHC Early Phase for the ILC Workshop charge

What could be the impact of early LHC results on the choice of the ultimate ILC energy range and the ILC upgrade path? Could there be issues that would need to be implemented into the ILC machine and detectors design from the start?

Could there be cases that would change the consensus about the physics case for an ILC with an energy of about 500 GeV?

What are the prospects for LHC/ILC interplay based on early LHC data?

Strategy

Largely signal-driven (not so much model driven)

- 1. The detection of only one state with properties that are compatible with those of a Higgs boson
- 2. No experimental evidence for a Higgs boson at the early stage of LHC
- 3. The detection of new states of physics beyond the Standard Model.
 - a. Missing Energy (+nothing, leptons, jets) signals
 - **b.** Leptonic resonances
 - c. Multi-Gauge-Boson signals
 - d. Everything else.

From a maze to a decision tree

iase for the ILC http://conferences.fnal.gov/ilc-lbco7/ division of the local nmuniti Den 1 fatta Cetatry again

Here, the artist might have failed: There is more than one path from the LHC to the ILC!

When we talk about the first 10 fb⁻¹ we have to account for additional time to get the detectors into a state where they are ready for discoveries.

This time certainly depends on the complexity of the signal but ATLAS + CMS deserve some patience from the community Solid results are better than fast results

Before discovery: work hard

The first three minutes of data taking...

Energy dependence of dN/dη?

Vital for tuning Underlying Event model, Important of Jet-Energy, Etmiss Only requires a few thousand events but needs to be accounted for in subsequent searches

Before discovery: work hard

example top:

Establish the major SM signals: Z, W, top

Channel	events/100 pb ⁻¹
₩→μν	∼10 ⁶
Ζ →μμ	~10 ⁵
tt →μν bjjb	~10 ⁴
jets w p _T >1TeV	∼10 ³

also: hadronic W-mass peak (→jet E-scale)

No one will believe in a discovery if Z+jets, W+jets, tt+jets are not observed in agreement with SM predictions and well modelled

Before discovery: work hard

Understand and calibrate Jets & Etmiss

To understand the major backgrounds at the LHC (Z+jets, W+jets, tt+jets,...) we need Monte Carlo simulations beyond the classical LO+ parton shower approach.

Recent developments MC@NLO (1 additional jet at full NLO) ALPGEN, SHERPA, ... (n additional jets as LO matrix element + "matching" of ME and PS

Here, the Tevatron is an important training camp...

Higgs at LHC

SM Higgs discovery assured for ~10 fb⁻¹ over full mass range if nothing goes wrong

- rather easy (and fast) for m_H > 140 GeV
- more involved for light Higgs $m_H < 140 \text{ GeV}$

Higgs signals at the LHC

MSSM Higgs at LHC

Weak Boson Fusion can cover whole parameter space for lightest MSSM Higgs boson with 30 fb⁻¹

With more luminosity heavier MSSM Higgses are accessible only for large tan β , some indirect sensitivity from light h: $R = \frac{BR(H \rightarrow WW)}{BR(H \rightarrow \tau\tau)} \quad \Delta = R/R_{SM}$

ILC: if m_H < 160 GeV

Full program of Higgs precision measurements can (and must) be done

- decay-mode-independent observation
- mass (50 MeV)
- absolute couplings (Z,W,t,b,c,τ) (1-5%)
- total width (model-independent)
- spin, CP
- top Yukawa coupling (~5%)
- self coupling (~20%, 120-140 GeV)
- $\Gamma_{\gamma\gamma}$ at photon collider (2%)

fully establish Higgs mechanism!

Many motivations for precise measurements...

distinguish models

Yamashita

indirect mass determination of heavy Higgses, if there (MSSM):

Zivkovic et al

 $\Delta m_A = 30\%$ for $m_A = 800$ GeV

also in parameter regions where LHC is blind

LHC-ILC interplay on Higgs couplings

KD, Dührssen, Heinemyer, Logan, Rainwater, Weiglein, Zeppenfeld - preliminary

m_H>~160 GeV

Here we need more work for the ILC

Shopping list:

- couplings to WW, ZZ still measurable (but how much better than LHC?) \rightarrow improve precision (include hadronic Z?, more luminosity?)
- fully explore WW-Fusion
- Yukawa couplings hard to access
 - \rightarrow BR(H \rightarrow bb) measurable up to ~ 220 GeV
 - \rightarrow H \rightarrow tt^{*} below threshold ?
 - \rightarrow ttH needs high energy (studied up to m_H= 200 GeV so far...)
- explore total width measurement from WW \rightarrow H \rightarrow WW!
- total width from threshold scan?
- selfcoupling from vvHH→vvWWWW (energy, luminosity)?

upper limit on sensitivity...

m_H>~160 GeV: SM precision measurements

If there is a heavy SM-like Higgs we need precision measurements to test quantum structure \rightarrow indication for new physics close by.

We will need:

- precise m_{top} (100 MeV) from tt-threshold
- precise m_W (6 MeV) from WW threshold
- precise sin²Θ_w
 from Giga-Z

• e⁺e⁻→ff, WW, ...

Summary on Higgs-like state

- excellent discovery prospects at the LHC
- discovery of heavier SM-like Higgs (140, >160) may be very fast
- light Higgs (<160) discovery calls for ILC precision Higgs program immediately (even w/o further new physics observed yet)
- heavier Higgs (>160) likely also calls for ILC precision
 Higgs program + SM precision program (needs more activity)!

Huge variety of possible models with large MET

Jet multi (high Pt)	Additional	Favored scenario	Dominant background processes
High Multiplicity Nj>=3,4	No lepton	SUGRA,AMSB, Heavy \tilde{q}	QCD(light & bb/cc) $t\overline{t}(\rightarrow bb q\overline{q} \tau v)$ Z(->nunu) and W(->taunu)
	One lepton	SUGRA,AMSB, Heavy \tilde{q}	$t\overline{t}(\rightarrow b\overline{b}q\overline{q}\ell\nu)$ W(->taunu)
	Dilepton,3L	SUGRA,AMSB, GMSB (Nm>1)	OS: $t\overline{t}(\rightarrow b\overline{b}\ell\nu\ell\nu)$ SS,3L ZW,ZZ $t\overline{t}(\rightarrow b\overline{b}\ell\nu\ell\nu)$
	Tau (ditau)	Large tanβ, GMSB (Nm>1)	W (->taunu) $t\bar{t}(\rightarrow b\bar{b}q\bar{q}\tau\nu)$
	ΥY	GMSB (Nm \sim 1) $\bar{\chi}_1^0 \rightarrow \gamma \bar{G}$	Almost BG Free $t\bar{t}(\rightarrow b\bar{b}evev)$ FSR
Low Multiplicity Nj∽1,2	No lepton	Heavy \widetilde{g} KK Graviton	Z(->nunu) W(->taunu)
	One lepton	Heavy \tilde{g} Top like particle LH(W'Z')	$W,Z t\overline{t} (\rightarrow b\overline{b} \ell \nu \ell \nu)$
No jet Nj = 0	One Lepton	W'	W
	Dilepton,3L	Direct $ ilde{\chi}$	WW,WZ,ZZ WZ main for 3L

in addition to model-driven searches, topology-driven searches required

S.Asai

SUSY at LHC

1 fb⁻¹, m(squark,gluino) ~ 1 TeV

SUSY at LHC

mSugra discovery reach with 10 fb⁻¹

MET signal at LHC

after observation of an excess: need estimate of thresholds at ILC

Figure 20-5 Peak of M_{eff} distribution as a function of. $M_{SUSY} = \min(M_{\tilde{g}}, M_{\tilde{u}_R})$ for various models.

Fast estimate of m(gluino), m(squark) is not enough!

need to get estimates of masses of the cascading particles!

SUSY at LHC

Dileptons:

A sharp edge in the dilepton mass spectrum is a "go" for the ILC

$$M_{\ell\ell}^{\max} = m(\tilde{\chi}_2^0) \sqrt{1 - \left(\frac{m(\tilde{\ell}_R^*)}{m(\tilde{\chi}_2^0)}\right)^2} \sqrt{1 - \left(\frac{m(\tilde{\chi}_1^0)}{m(\tilde{\ell}_R^*)}\right)^2}$$

`MET signal at LHC

what we need is a model-independent estimate of the particle masses in cascade decays, which end in an invisible massive particle (DM candidate)

Full kinematic reconstruction is tough See e.g. Kawagoe, Nojiri, Polesello hep-ph/0410160

Need more effort here...

Fully exploit

- \bullet p_ spectra of visible objects and MET
- invariant masses
- rates!

SUSY at ILC

once a few thresholds are in reach, the ILC is the place to reveal SUSY

precise masses of color-neutral states (50 MeV to 1 GeV)

spin (angular distributions)

chiral quantum numbers (polarisation!)

- \rightarrow prove that it is SUSY
- → no model assumptions
- → learn about SUSY breaking

SUSY at ILC + LHC

ILC and LHC together can likely measure precisely

- the parameters of constrained models (mSugra...)
- determine the underlying SUSY parameters w/o model assumptions
- determine the properties of the LSP \rightarrow dark matter density
- test more complex realisations (e.g. NMSSM)

Leptonic Resonances at LHC

can possibly be seen very early...

Discovery reach 3-4 TeV with 10 fb⁻¹

Resonances: ILC consequences

- Not very likely, that a <500 GeV II-Resonance appears (but ILC would of course study it in s-channel ©©)
- A resonance within the direct reach of an upgraded ILC would probably call for a fast upgrade path (still would like to do the precision Higgs (if there) and SM program)
- A resonance beyond the direct ILC reach: ILC+LHC can determine coupling structure from interference with γ/Z exchange to determine its nature

Godfrey et al, hep-ph/0511335

E6 χ model LR symmetric Littelest Higgs (LH) Simplest Little Higgs (SLH) KK excitations in ED

Multigauge bosons at LHC

Rich field

- Measure TGCs in WW,WZ,ZZ
- Measure QGCs in WWZ, WWγ

Crucial test of EWSB: Weak boson fusion at high mass: e.g. $qq \rightarrow jjWW \rightarrow jjlvlv$

Needs more attention at LHC (did I miss something?) Important for ILC planning!

$$L_4 = \frac{\alpha_4}{16\pi^2} tr(V_{\mu}V_{\nu})tr(V^{\mu}V^{\nu})$$
$$L_5 = \frac{\alpha_5}{16\pi^2} tr(V_{\mu}V^{\mu})tr(V_{\nu}V^{\nu})$$

effective Lagrangian approach valid at m(WW)>1.2 TeV??

exclusion potential?

see also Kilian,Reuter
hep-ph/0507099

Something else

Grupen

Not unlikely, but hard to prepare for Important that ATLAS+CMS are open-minded enough and perform broadband searches...

Nothing yet...

With 10-30 fb⁻¹ analysed at the LHC, many of our favourite scenarios can be excluded:

- SM Higgs
- MSSM Higgs

- MSSM indirect: absence of light Higgs, direct: up to ~1.5 TeV

- ... Major focus then: EWSB

has the LHC missed the Higgs(es)?
 (e.g. invisible, Higgs continuum, H→jets, ...)
 ILC can discover the Higgs in these scenarios.

2. there is really no Higgs

Technicolor/Higgsless models Signals might show up with higher luminosity (WW scattering at high masses crucial) if this scenario can be excluded at LHC, revisit option 1.

Conclusions

The LHC Early Phase will be exciting!

The LHC Early Phase will confront our ideas about Terascale physics with real data

We will have to demonstrate that there is indeed a strong case for the ILC in the light of these data: that's no free lunch! (but I'm not nervous...)

Some possible signals at LHC (light Higgs, SUSY-like signals, leptonic resonances,...) are clear "go ahead" signs for ILC

Others (e.g. heavier Higgs) need more studies to assess the ILC physics potential within the various physics scenarios

Optimal ILC run plan and upgrade path have to be inferred from LHC data