Physics at the Terascale

A brief and incomplete overview

Klaus Desch Physikalisches Institut der Universität Bonn

Bonn Cologne Graduate School of Physics and Astronomy July 6th , 2007

Outline

",The Standard model is (almost) complete and so is particle physics – there's (almost) nothing left to do..." *

Part 1: The Standard Model and why it is far from complete

"Detectors at colliders look alike each other so much – why should I work on novel detectors at all?" *

Part 2: Better Detectors

"The LHC will be the last machine – any new collider will be too monstrous" *

Part 3: Future Colliders

* commonly heard prejudices and convictions...

Part 1: The Standard-Model and why it is incomplete

- <u>3 families of matter</u> <u>particles</u> (fermions)
 - quarks
 - leptons
- <u>3 Forces</u> (gauge bosons)
 - U(1): electromagnetism
 - SU(2): weak force
 - SU(3): strong force
- Relativistic Quantum Field
 Theory Action from
 Gauge Principle
- <u>1 Higgs boson</u> (scalar)

Experimental consistency...

	Measurement	Fit		as_Ofit	o ^{meas}
$\Delta \alpha_{\rm had}^{(5)}({\rm m_{7}})$	0.02758 ± 0.00035	0.02768			
m _z [GeV]	91.1875 ± 0.0021	91.1875			
г _z [GeV]	2.4952 ± 0.0023	2.4957	-		
$\sigma_{had}^{\overline{0}}$ [nb]	41.540 ± 0.037	41.477			
R	20.767 ± 0.025	20.744			
A ^{0,I}	0.01714 ± 0.00095	0.01645			
$A_{I}(P_{\tau})$	0.1465 ± 0.0032	0.1481			
R _b	0.21629 ± 0.00066	0.21586			
R _c	0.1721 ± 0.0030	0.1722			
$A_{fb}^{0,b}$	0.0992 ± 0.0016	0.1038			
A ^{0,c} _{fb}	0.0707 ± 0.0035	0.0742		•	
A _b	0.923 ± 0.020	0.935			
A _c	0.670 ± 0.027	0.668			
A _I (SLD)	0.1513 ± 0.0021	0.1481			
$sin^2 \theta_{eff}^{lept}(Q_{fb})$	0.2324 ± 0.0012	0.2314			
m _w [GeV]	80.398 ± 0.025	80.374			
Г _w [GeV]	2.140 ± 0.060	2.091			
m _t [GeV]	170.9 ± 1.8	171.3			
			0	1 2	2 3

This is only the essence of several hundreds of independent and precise (often % or better) measurement (LEP,Tevatron,SLC,HERA, ...)

They test the model at the level of quantum corrections

But fundamental puzzles...

- Electro-weak symmetry breaking: Higgs or no Higgs?
- If Higgs, why is it so light??
- Three different forces without a common origin???
- What is the dark matter made of, if it exists ????
- Three flavours without a common origin ?????
- A stable proton ????? and Q(p) = Q(e⁺) ??????
- Why is there only matter in our world
 where has the antimatter gone ??????

A non-standard beyond standard (one out of many...)

- EWSB: no Higgs

eg. Chivukula et al, hep-ph/0607124 A three site Higgsless model

(Very) Schematically:

A non-standard beyond standard (one out of many...)

- fermiophobic Z', W' can be seen at LHC, but may need longer

- ILC can do precise tests of couplings (triple gauge couplings)
- ultra-heavy fermions are beyond LHC/ILC reach

Part 2: Advancing detectors

Part 2: Advancing detectors

Progress in high-energy physics is not only driven by higher energies and higher collision rates but also by progress in detector physics

- collider environment (backgrounds, radiation, collission rates)
- measurement precision (resolution, efficiencies)

Next steps:

Improving the LHC detectors:

+ lots of impact on other fields (medical imaging, photon science, ...)

Radiation hardness Better and faster triggers Specialized detectors – depending on physics...

New detectors for Lepton Colliders and precision experiments (sth rather different...)

Different Detector Challenges

Charged particle tracking goals (momentum resolution):

LHC (ATLAS): ∆p/p = 0.4 p [TeV] ILC (LDC): ∆p/p = 0.05 p [TeV]

Calorimetry (jet energy resolution):

LHC (ATLAS) △E/E = 50%/√E[GeV] + 3% ILC (LDC) △E/E = 30%/√E[GeV] + 1%

Radiation levels:

LHC (1st pixel layer) o(10¹⁴ /cm² a) ILC (1st pixel layer) o(10¹⁰ /cm² a)

factor 10

factor 2-3

Different Detector Challenges

Event rates

New detectors for ILC: an example

TPC – elegant principle for charged particle tracking with ~ no material

invented by D.Nygren (Berkeley)

Challenges: Minimize material in endplate Maximize spatial resolution Maximize robustness + redundancy

New detectors for ILC: an example

Use Micro Pattern Gas Detectors (GEMs, MicroMegas) for gas amplification and micro-pads (pixelized electronics)

GEM foil

invented by F. Sauli (CERN)

New detectors for ILC: an example

Timepix-Chip

55 μm pixel pitch

Achieved point resolution of <20 μm (for 0 drift length)

first tracks at DESY test beam looks like "digital bubble chamber"

Part 3: Future Colliders

Prof. K.H. Althoff (Bonn) (in my 2nd semester exp. physics lecture) "Whenever a significant increase in energy was needed, a **new idea** had to come along to make it possible"

Wait for the LHC?? Sure – but accelerator projects have very long lead times (e.g. LHC planning started in 1984)

The future:

- The immediate future: ILC
- Ideas for bright young kids new accelerating principles

The International Linear Collider ILC

- elementary particles
- well-defined
 - energy,
 - spin
- uses full CM energy
- produces particles democratically (ew. interaction)
- can mostly fully reconstruct events

The International Linear Collider

The "one shot" problem: in a linear machine, particles only have one chance to collide

→ each accelerating structure (resonator) can be used only once (need a high gradient)

→ make the beams as small (nm!) as posible to make sure that a collision happens!

The International Linear Collider: a real plan

needs to be "ready to be built" when LHC data give us enough motivation to do so

Beyond the ILC: Plasma wakefield acceleration?

use a pre-accelerated beam through gaseous Lithium to produce a plasma which though electromagnetic interaction with the head of the beam can produce an accelerating electric field

SLAC: achieved energy increase of (tiny part) of the particle bunch of 40 GeV on 85 cm

http://cerncourier.com/cws/article/cern/30148

Colliding heavy but pointlike particles: Muon collider

challenge (far from being met): provide enough muons in sufficiently small phase space suffiently fast (i.e. before they decay) "muon cooling"

Upshot

Particle physics at highest energies is as fascinating as it could be There fundamental, well-posed questions awaiting answers at the Terascale

The future is not set I'd like to see Supersymmetry – but "no Higgs, no SUSY" will be at least as interesting...

Sharpening the experimental tools is a must

- Detector R&D for LHC upgrade, ILC and beyond

I would not bet that LHC and ILC will be the last (colliding) machines... - room for fantasy